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Peak power ?

The peak power is the maximum power
consumption of the circuit at any
iInstance during its execution.
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Average power ?

Total energy consumed per unit time.
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Why peak power reduction ?

Reduction of peak power consumption is essential :
(i) to maintain supply voltage levels
(i) to increase reliability
(i) to use smaller heat sinks
(iv) to make packaging cheaper
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Why average power reduction ?

4/25/2003

The average power reduction is essential
for the following reasons :

(i) to increase battery life time,

(i) to enhance noise margin,

(ili) to reduce cooling and energy costs,
(iv) to reduce use of natural resources and
(v) to increase system reliability
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Related work
(Energy efficient scheduling using voltage reduction)

Chang and Pedram [3], 1997 — Dynamic
programming

Johnson and Roy [4], 1997 — ILP based MOVER
algorithm using multiple supply voltages

Lin, Hwang and Wu [6], 1997 — ILP and heuristic
for variable voltages (VV) and multicycling (MC)

Mohanty and Ranganathan [10], 2003 — Heuiristic
based using multiple voltage and dynamic clocking
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Related work
(Peak Power efficient scheduling)

m Martin and Knight [7,8,9], 1996 — Simultaneous assignment
and scheduling

m Raghunathan, Ravi and Raghunathan [10], 2001 — data
monitor operations in VHDL

m Mohanty, Ranganathan & Chappidi [12], 2003 — ILP based
using multiple voltages, dynamic clocking & multicycling

m Shiue [15], 2000 — ILP based and modified force direct
scheduling for peak power minimization

m Shiue and Chakrabarti [16], 2000 - ILP model to minimize
peak power and area for single voltage
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Voltage, Frequency and Power Trade-ofts

(1) voltage reduction | > iIncrease
in delay
(i1) frequency reduction | »reduction in

power not energy (and increase in delay)

“Beyond of (i) and (ii) reduction of switching
capacitance can be considered.”
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What is our approach ?
Adjust the frequency and reduce the supply

voltage for peak and average power
reduction during datapath scheduling.

University of
4/25/2003 Souwuth Florida

10



" A
Target architecture

FLI, 3.3¥
- Mo
Level Level
| Converter Converter
FLU, 5.0V FLI, 2.4¥Y

a Each functional unit has one register and one multiplexor.

a The register and the multiplexor operate at the same
voltage level as that of the functional units.

0 Level converters are used when a low-voltage functional
unit is driving a high-voltage functional unit.

a Operational delay of a FU : (dg; + dyyx + dreg + deony)-
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Power model : Notations

For a DFG let us assume :

c = any control step or clock cycle in DFG

N = total number of control steps in the DFG

R. = number of resources active in step c

f. = cycle frequency for control step ¢

0; . = switching at resource I active in step ¢

C, . = load capacitance of resource i active in step c
V. = operating voltage of resource i active in step ¢
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Cycle power (P,)

The power consumption for any control
step c is given by,

Pc = Zi={1—>Rc} ai,c Ci,c V2i,c fc
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Peak power (P )

The peak power consumption of the DFG is the
maximum power consumption over all the
control steps,

P, = maximum( P )1

Using the above two equations the peak power
consumption of the DFG is described as,

Pp = maximum ( Zi={1—>Rc} 0; C V i,C fc )c ={1—N}
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Average power (P,)

Characterized as mean of the cycle power (P,) :

Pa = 1/N (Zc={1—>N} PC)
- 1/N (Zc={1—)N} ZI={1—>RC} ai,c Ci,C Vzi,c fC )
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Objective ?

To minimize :

Peak power (P,) + Average power (P,)
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ILP formulations for MVDFC : notations
O : total number of operations in the DFG
o, : any operationi, 1 <= i1<=0
F\., : functional unit of type k operating at voltage level v

M, , :maximum number of functional units of type k operating
at voltage level v

S, : as soon as possible time stamp for the operation o,
E. :as late as possible time stamp for the operation o,

P(i,v,f) : power consumption due to operation o, using
resource F ,, which is operating at frequency f

Xi .y - decision variable which takes the value of 1 if operation
0; is scheduled in control step c using the functional unit
Fk,V and c has frequency f
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ILP formulations for MVDFC ....
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(i) Objective Function

(i) Uniqueness Constraints
(ili) Precedence Constraints
(iv) Resource Constraints
(v) Frequency Constraints
(vi) Peak Power Constraints
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ILP formulations for MVDFC ....

Objective Function :

Minimize (P, + 1/N 2, X, %, 2 X, o o ¢ * P(i,v,f) )

I,c,v,f

Uniqueness Constraints :

ensure that every operation o, is scheduled to
one unigue control step and represented as,
i, 1<1<0, 2.5, % X oy =

icv,f
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ILP formulations for MVDFC ....

Precedence Constraints :

guarantee that for an operation o, , all its
predecessors are scheduled in an earlier control
step and successors are scheduled in an later

control step ; [i,j, o, belong to Pred(o)),
Xy X Xyg=s; — £ O X|cvf 2y 2 2g=s; - ) © Xjovf S -]

Resource Constraints :

make sure that no control step contains more
than F, , operations of type k operating at voltage
v and are enforced as, [Ic,1 <c <N and L,

z{leFk,V} 2f i,c,v,f — I\/Ik,v
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ILP formulations for MVDFC ....

Frequency Constraints :

lower operating voltage functional unit can not
be scheduled in a higher frequency control step;
these constraints are expressed as, Ui, 1<i<0O,
e, 1<c=<N,iff<v,thenx.,;=0.

Peak Power Constraints :

ensure that the maximum power consumption of
the DFG does not exceed P, for any control step
and we enforce these constraints as follows, LIc,
1<c<Nand [v,

LiicFi b 2 Xicv,f P(',V,f) <P,
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ILP formulations for MVMC : notations

O : total number of operations in the DFG

o, : any operationi, 1 <= i<=0

F\, : functional unit of type k operating at voltage level v

M, , :maximum number of functional unit F, ,

S, : as soon as possible time stamp for the operation o,

E, :as late as possible time stamp for the operation o,

P(i,v,f,) : power consumption due to operation o; using resource F,

Yivim - decision variable which takes value of 1 if operation o, is
using F, , and scheduled in control steps I—m

L;, : latency for operation o; using F, ,
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ILP formulations for MVMC ....
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(i) Objective Function

(i) Uniqueness Constraints
(iii) Precedence Constraints
(iv) Resource Constraints
(v) Peak Power Constraints

University of
Sowuth Florida

23



"
ILP formulations for MVMC ....

Objective Function :
Minimize (P, +1/N Z,ZZ, Yy g+ 1) )

Uniqueness Constraints :

ensure that every operation o, is scheduled
to appropriate control steps within the range
(S;, E;) and represented as, 01,1 <1< 0,

ZyX=8j —(SHEH-Liv) Vil (#Liy-1) = 1
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ILP formulations for MVMC ....

Precedence Constraints :

guarantee that for an operation o, , all its
predecessors are scheduled in an earlier
control step and its successors are scheduled
in an later control step and are; 00 1,], 0, belong
to Pred(o)),

ZVZ{|=Si — Ei}(l'l'l—i,v'1 )yi,v,l,(I+Li,v-1 )

- Zv2{|=sj S Ej}l Yivl(+Ljy-1) = -
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ILP formulations for MVMC ....

Resource Constraints :

make sure that no control step contains more

than F, , operations of type k operating at voltage
v and are enforced as, X g, 1 Z Viy oL 1) S Miy

Peak Power Constraints :

ensure that the maximum power consumption of
the DFG does not exceed P, for any control

step and we enforce these constraints as follows,
forallc,1<c< N and forallv,

Z{ist,\,}Zv Yiv.L(+Li y-1) P@i,v.fo) < P,
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Scheduling algorithm

Input :
(1) unscheduled DFG

(i) resource constraints
(i) number of voltage levels
(iv) number of frequencies

(v) delay of resources
Output :

scheduled DFG, frequency, power
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Scheduling algorithm ....

Step 1:
Step 2:
Step 3:
Step 4.
Step 5:
Step 6:
Step 7
Step 8:
Step 9:

4/25/2003

Find ASAP schedule of the UDFG.

Find ALAP schedule of the UDFG.

Determine the mobility graphs for each node.

Modify the mobility graph for multicycling.

Calculate operating frequency of a FU using delay model.
Construct the ILP formulations of the DFG.

Solve the ILP formulations using LP-Solve.

Obtain the scheduled DFG.

Determine cycle frequency, power.
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Example Data Flow Graph

ASAP schedule
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ALAP schedule
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Scheduling for MVDFC

Mobility Graph Scheduled DFG (for RC3)
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Scheduling for MVMC

2 3
1 ____________________________________________________
d ___________________________________________________
d ___________________________________________________
M ___________________________________________________
Mobility Graph Scheduled DFG (for RC3)
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Experimental results : benchmarks

Example circuit (EXP) (8 nodes, 3%, 3+, 9 edges)

F
|l

R filter (11 nodes, 5%, 4+, 19 edges)
R filter (11 nodes, 5%, 4+, 19 edges)

I_

AL solver (13 nodes, 6%, 2+, 2-, 1 <, 16 edges)

Auto-Regressive filter (ARF) (15 nodes, 5%, 8+, 19

edges )
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Experimental results : resource constraints

Multipliers ALUs Serial No
2.4V 3.3V 2.4V 3.3V

2 1 1 1 RC1

3 0 1 1 RC2

2 0 0 2 RC3

1 1 0 1 RC4
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Experimental results : notations

S : single supply voltage and single frequency operation

D : multiple supply voltages and dynamic frequency clocking operation
M : multiple supply voltages and multicycling operation
P,s, Ppp @and Py, : peak power in mW

P.s., P, and P, : average power in mW

PDPg , PDP, and PDP,, : power delay product in nJ

AP 5 = (P,s-Pop) /Pys™ 100 : % peak power reduction
AP = (Pps - Pow) / Pos ™ 100 @ % peak power reduction
AP, 5= (P,s-P,) /P, ™ 100 : % average power reduction
AP_y = (P,s-P.u) / P,s™ 100 : % average power reduction
APDP, = (PDPg - PDPye.) / PDP¢* 100 : % PDP reduction
APDP,, = (PDPg - PDP,,;) / PDPg * 100 : % PDP reduction
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Experimental results : (% reduction)

RCs | AP | AP,y | AP, | AP,y | APDPy, | APDP,,
E [ 1 74 49 73 26 55 0
X| 2 74 21 73 21 55 0
Pl 3 74 47 71 37 56 0
F 1 74 49 74 18 53 0
| 2 74 21 73 13 52 0
RT3 74 21 72 25 53 0
| 1 66 32 68 19 53 0
| 2 74 47 73 30 60 0
R 3 74 47 72 41 59 5
H 1 75 24 73 33 53 0
/C > | 75 | 22 | 73 30 53 0

3 73 47 72 40 54 0
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Reductions using different schedulers

DFC Shiue Martin | Raghuna-| Mohanty
[14] 9] than[13] [11]

Bench- APpD AP APpD AP APpD AP APpD AP APpD AP
marks

EXP 73|72 - | - | - | -|-]-]-] -

FIR | 71|72 63 [INA|40 | NO|23|38|71]| 53

R 6969 - | -] -]-1]-]-1]-]-

AAL | /1|71 28 |[NA| - | - | - | - [73]70

ARF | 73|71 |50 |INA| - | - | - | - |68] 67
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Conclusions

U This paper describes peak and average power reduction schemes at
behavioral level through datapath scheduling.

U The scheduling schemes use ILP based minimization for MVDFC and
MVMC mode of circuit design.

UFor both the modes the scheduler could achieve significant peak and
average power reduction.

U The scheduling schemes are useful for data intensive DSP
applications.

U The applicability of the scheduling schemes for pipelining is to be
iInvestigated.

U The effect of switching activity is to be taken into account.

U The effect on clocking network is to be studied.
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Thank you
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