Low Power Design and Synthesis using Voltage and Frequency Reduction

Saraju P. Mohanty
Dept. of CSE, University of South Florida
smohanty@csee.usf.edu
For more details visit research page at:
http://www.csee.usf.edu/~smohanty/
Outline of the Talk

• Introduction
• Related Work
• Power fluctuation minimization through datapath scheduling
• Design of a low power a chip
• Conclusions
Why Low-Power?

Major Motivation
Extending battery life for portable applications
Why Low-Power?

- Battery lifetime
- Cooling and energy costs
- Environmental concerns
- System reliability
Let $C_L =$ load capacitor, $V_{dd} =$ supply voltage, $N =$ average number of transitions/clock cycle $= E(sw) = \alpha$ and $f =$ clock frequency. The dynamic power consumption for CMOS:

$$P_{\text{dynamic}} = \frac{1}{2} C_L V_{dd}^2 N f$$

Veendrick Observation: In a well designed circuit, short-circuit power dissipation is less than 20% of the dynamic power dissipation.

Sylvester and Kaul: At larger switching activity the static power is negligible compared to the dynamic power.

We focus on dynamic power reduction !!
Dynamic Power Reduction

- Reduce Supply Voltage (V_{dd}): delay increases; performance degradation
- Reduce Clock Frequency (f): only power saving no energy savings; results in performance degradation
- Reduce Switching Activity (N or $E(sw)$): no switching no power loss !!! Not fully under designers control. Switching activity depends on the logic function and correlations are difficult to handle.
- Reduce Physical Capacitance: done by reducing device size reduces the current drive of the transistor making the circuit slow
Our approach?

Adjust the frequency and supply voltage in a coordinated manner to reduce various forms of dynamic power while maintaining performance.
Research Overview

Low Power Research

Behavioral Synthesis

Datapath Scheduling Algorithms

VLSI Design

Design of Low Power Chips
Datapath Scheduling to Minimize Power Fluctuation
McFarland (1990)

“HLS is conversion from an algorithmic level specification of the behavior of a digital system to a RT level structure that implements that behavior.”

NOTE: also known as Behavioral Synthesis.
Phases of Behavioral Synthesis

- HDL
 - Compilation
 - Transformation
 - Scheduling
 - Allocation / Binding
 - Output Generation
 - RTL Description
Datapath Scheduling

- **Assumption:** A datapath is represented as a data flow graph (DFG).
- **Scheduling** partitions the operations in a DFG into groups so that the operations in a same group can run concurrently.
- **Considers** the possible trade-offs between the total execution cost and hardware cost.
- **Scheduling output:**
 - total number of control steps needed to execute all operations
 - minimum number of FUs of each type to be used in the design
 - the lifetimes of the variables generated during the computation
Fluctuation Minimization ??

- **Aim**: to minimize the fluctuation in the power consumption profile of the DFG over all the control steps during its execution.

- **Two different design options**:
 - Multiple voltage with dynamic frequency clocking (MVDFC)
 - Multiple supply voltage with multicycling (MVMC)

- **Why power fluctuation minimization?**
 - to reduce power supply noise (L di/dt)
 - to reduce cross talk (M di/dt)
 - to increase battery efficiency (electrochemical efficiency)
 - to increase reliability (high current peak during short time)
Related work

Energy efficient scheduling using voltage reduction

- Chang and Pedram 1997 – Dynamic programming
- Johnson and Roy 1997 – ILP based MOVER algorithm using multiple supply voltages
- Lin, Hwang and Wu 1997 – ILP and heuristic for variable voltages (VV) and multicycling (MC)

Peak and transient power minimization

Raghunathan, Ravi and Raghunathan 2001 – data monitor operations in VHDL
Dynamic / Variable Frequency?

Design details:
- Ranganathan, et al.
- Byrnjolfson and Zilic

DCU uses clock divider strategy
Target Architecture

- Each FU has one register and one MUX and operate at same voltage level as that of FU.

- Operational delay:
 \[(d_{FU} + d_{Mux} + d_{Reg} + d_{Conv})\]

- Operating frequencies are calculated from the delays.

- Time for voltage conversion equals to time for frequency change.

- Controller has a storage unit to store cycle frequency indices.
Approach: Use ILP-based datapath scheduling to minimize power fluctuation.

Overall power fluctuation of the DFG is captured as mean power gradient (MPG).

MPG is a non-linear function due to presence of absolute function, but we use integer linear programming (ILP) for its minimization.
Background Material

- For a set of n observations, $x_1, x_2, x_3, \ldots, x_n$, from a given distribution, the sample mean is $m = \frac{1}{n} \sum x_i$.

- The observation-to-observation gradient can be defined as $\Delta x_i = |x_i - x_{i-1}|$.

- The mean gradient of the observations is given by $MG = \frac{1}{n} \sum |x_i - x_{i-1}|$.
• Power gradient for a cycle \(c\), \(PG_c\): defined as the absolute difference of a cycle power from previous cycle power.
\[PG_c = |P_c - P_{c-1}| \text{ (for any } c = 2 \text{ to } N) \]

• Peak of the power gradients \(PG_p\): Maximum of power gradients of all control steps.
\[PG_p = \max (PG_c) = \max (|P_c - P_{c-1}|) \quad (\forall \ c = 2 \rightarrow N) \]

• Mean power gradient \(MPG\): Mean of the power gradients of all control steps.
\[MPG = \frac{1}{N-1} \sum (\forall \ c = 2 \rightarrow N) PG_c = \frac{1}{N-1} \sum (\forall \ c = 2 \rightarrow N) |P_c - P_{c-1}| \]

NOTE: The complete description is obtained after inserting the parameters, such as, capacitance, switching, voltage, frequency etc.
MPG Minimization: ILP

Linear Modeling of Nonlinearity

- General form involving absolute nonlinearity:

 Minimize: \(\Sigma_i |y_i| \)
 Subject to: \(y_i + \Sigma_j a_{ij} x_j \leq b_i, \forall i \) and \(x_j \geq 0 \ \forall j \)

- Let \(y_i \) be expressed as, \(y_i = y^1_i - y^2_i \), difference of two non-negative variables.

- After algebraic manipulations,

 Minimize: \(\Sigma_i y^1_i + y^2_i \)
 Subject to: \(y^1_i - y^2_i + \Sigma_j a_{ij} x_j \leq b_i, \forall i \)
 \(x_j \geq 0 \ \forall j \) and \(y^1_i, y^2_i \geq 0 \ \forall i \)

- Summary: change difference in objective function to sum and introduce the difference as constraints.
MPG Minimization: ILP Notations

- $M_{k,v}$: max number of functional units of type $F_{k,v}$
- S_i : ASAP time stamp for the operation o_i
- E_i : ALAP time stamp for the operation o_i
- $P(C_{swi,v,f})$: power consumption of $F_{k,v}$ used by o_i
- $x_{i,c,v,f}$: decision variable, which takes the value of 1 if o_i is scheduled in control step c using $F_{k,v}$ and c has frequency f
- $y_{i,v,l,m}$: decision variable which takes the value of 1 if o_i is using $F_{k,v}$ and scheduled in control steps $l \rightarrow m$
- $L_{i,v}$: latency in terms of number of clock cycles for operation o_i using $F_{k,v}$

NOTE: C_{swi} is a measure of effective switching capacitance of FU_i.
(1) Objective Function: Minimize the MPG for the whole DFG over all the control steps.

Minimize: \(\frac{1}{N-1} \sum_{c=2}^{N} |P_c - P_{c-1}| \) \hspace{1cm} (1)

The absolute is replaced with sum and the appropriate constraints.

Minimize: \(\frac{1}{N-1} \sum_{c=2}^{N} P_c + P_{c-1} \) \hspace{1cm} (2)

Subject to: Power gradient constraints

After simplification,

Minimize: \(\frac{2}{N-1} \sum_{c=2}^{N-1} P_c + P_1 + P_N \) \hspace{1cm} (3)

Subject to: Power gradient constraints

Using decision variables,

Minimize: \(\frac{2}{N-1} \sum_c \sum_i \sum_v \sum_f x_{i,c,v,f} P(C_{swi,v,f}) + \sum_i \sum_v \sum_f x_{i,1,v,f} P(C_{swi,v,f}) + \sum_i \sum_v \sum_f x_{i,N,v,f} P(C_{swi,v,f}) \) \hspace{1cm} (4)

Subject to: Power gradient constraints
(2) Uniqueness Constraints: ensure that every operation o_i is scheduled to one unique control step and represented as, $\forall i, 1 \leq i \leq O, \sum_c \sum_v \sum_f x_{i,c,v,f} = 1$

(3) Precedence Constraints: guarantee that for an operation o_i, all its predecessors are scheduled in an earlier control step and successors are scheduled in an later control step; $\forall i,j$, any $o_i \in \text{Pred}(o_j), \sum_v \sum_f \sum_{d=S_i \rightarrow E_j} d \cdot x_{i,c,v,f} - \sum_v \sum_f \sum_{d=S_j \rightarrow E_j} e \cdot x_{j,c,v,f} \leq -1$

(4) Resource Constraints: make sure that no control step contains more than $F_{k,v}$ operations of type k operating at voltage v and are enforced as, $\forall c, 1 \leq c \leq N$ and $\forall v$, $\sum_{i \in F_{k,v}} \sum_f x_{i,c,v,f} \leq M_{k,v}$
(5) Frequency Constraints: lower operating voltage functional unit can not be scheduled in a higher frequency control step; these constraints are expressed as, \(\forall i, 1 \leq i \leq O, \forall c, 1 \leq c \leq N, \text{if } f < v, \text{ then } x_{i,c,v,f} = 0.\)

(6) Power Gradient Constraints: to eliminate the non-linearity introduced due to the absolute function introduced as, \(\forall c, 2 \leq c \leq N,\)

\[
\sum_i \sum_v \sum_f x_{i,c,v,f} P(C_{swi,v,f}) - \sum_i \sum_v \sum_f x_{i,c-1,v,f} P(C_{swi,v,f}) \leq PG_p
\]

NOTE: The unknown \(PG_p\) is added to the objective function and minimized alongwith it.
We followed similar steps as in the MVDFC case using the new decision variable $y_{i,v,l,m}$.

No frequency constraints involved in MVMC.

The following items are formulated:

1. Objective Function
2. Uniqueness Constraints
3. Precedence Constraints
4. Resource Constraints
5. Power Gradient Constraints

Calculations of subscripts for decision variables and limits of summations are more involved compared to MVDFC case due to the additional parameter $L_{i,v}$.

MPG Minimization: ILP (MVMC)
MPG Minimization: Scheduling

Step 1: Construct a look up table for (effective switching capacitance, average switching activity) pairs.
Step 2: Find ASAP and ALAP schedule for UDFG.
Step 3: Get the mobility graph.
Step 4: Use AMPL for ILP formulations of DFG.
Step 5: Solve the ILP formulations using LP-Solve.
Step 6: Find the scheduled DFG.
Step 7: Determine the cycle frequency indices and base frequency for MVDFC scheme.
Step 8: Estimate power consumptions of the scheduled DFG.
MPG Minimization: Results

1. Example circuit (EXP)
2. FIR filter
3. IIR filter
4. HAL differential eqn. solver
5. Auto-Regressive filter (ARF)

<table>
<thead>
<tr>
<th>Multipliers</th>
<th>ALUs</th>
<th>Serial</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4V 3.3V</td>
<td>2.4V 3.3V</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>RC1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>RC2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>RC3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>RC4</td>
</tr>
</tbody>
</table>
Percentage reduction using MVDFC or MVMC compared to SVSF

<table>
<thead>
<tr>
<th>Power</th>
<th>MVDFC</th>
<th>MVMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPG</td>
<td>73.42</td>
<td>47.10</td>
</tr>
<tr>
<td>Peak Power</td>
<td>72.50</td>
<td>27.41</td>
</tr>
<tr>
<td>Average Power</td>
<td>72.38</td>
<td>24.41</td>
</tr>
<tr>
<td>Energy (PDP)</td>
<td>54.13</td>
<td>0.0</td>
</tr>
</tbody>
</table>
MPG Minimization: Results …

Power Profile for RC1
MPG Minimization: Results ...

Power Profile for RC2
Low Power VLSI Design
(Dual Voltage Dual
Frequency Operating
Image Watermarking Chip)
Digital Watermarking

Digital watermarking is a process for embedding data (watermark) into a multimedia object for its copyright protection and authentication.

Types
- Visible and Invisible
- Spatial/DCT/Wavelet
- Robust and Fragile

Whose is this? How to know? What’s the solution of this ownership problem?

Solution “WATERMARKING”
Watermarking: General Framework

- **Encoder**: Inserts the watermark into the host image
- **Decoder**: Decodes or extracts the watermark from image
- **Comparator**: Verifies if extracted watermark matches with the inserted one

NOTE: We focus of design of encoders.
<table>
<thead>
<tr>
<th>Work</th>
<th>Type</th>
<th>Target Object</th>
<th>Domain</th>
<th>Technology</th>
<th>Chip Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strycker, 2000</td>
<td>Invisible</td>
<td>Video</td>
<td>Spatial</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Robust</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tsai and Lu 2001</td>
<td>Invisible</td>
<td>Video</td>
<td>DCT</td>
<td>0.35µ</td>
<td>62.8 mW</td>
</tr>
<tr>
<td></td>
<td>Robust</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathai, 2003</td>
<td>Invisible</td>
<td>Image</td>
<td>Wavelet</td>
<td>0.18µ</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Robust</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garimella, 2003</td>
<td>Invisible</td>
<td>Image</td>
<td>Spatial</td>
<td>0.13µ</td>
<td>37.6 µW</td>
</tr>
<tr>
<td></td>
<td>Fragile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Highlights of our Designed Chip

- DCT domain Implementation
- First to insert both visible and/or invisible watermark
- First Low Power Design for watermarking using dual voltage and dual frequency
- Uses Pipelined/Parallelization for better performance
Watermarking: JPEG Encoder (DCT Domain)
Watermarking: Digital Still Camera

Input Image Sensor → A/D Converter → DSP Processor

Watermarking Processor
- Watermarking Datapath
- Watermarking Controller

Controller and Interface
- Memory (Flash, SDRAM)

Output
Invisible Algorithm Implemented

1. Divide the original image into blocks.
2. Calculate the DCT coefficients of all the image blocks.
3. Generate random numbers to use as watermark.
4. Consider the three largest AC-DCT coefficients of an image block for watermark insertion.

Visible Algorithm Implemented

1. Divide Original and watermark image into blocks.
2. Calculate DCT coefficients of all the blocks.
3. Find the edge blocks in the original image.
4. Find the local and global statistics of original image using DC-DCT and AC-DCT coefficients.
5. The mean of DC-DCT coefficients and mean and the variance of AC-DCT coefficients are useful.
6. Calculate the Scaling and embedding factors.
7. Add the original image DCT coefficients and the watermark DCT coefficients block by block.

The Proposed Architecture

Invisible Watermarking

- Random Number Generator Module
- Invisible Insertion Module

Visible Watermarking

- Visible Insertion Module

Visible Watermarking

- DCT Module
- Edge Detection Module
- Perceptual Analyzer Module
- Scaling and Embedding Factor Module

Original Image

Watermark Image

Watermarked Image
Modules in Proposed Architecture

• DCT Module: Calculates the DCT coefficients.
• Edge Detection Module: Determines edge blocks.
• Perceptual Analyzer Module: Determines perceptually significant regions using original image statistics.
• Scaling and Embedding Factor Module: Determines the scaling and embedding factors for visible watermark insertion.
• Watermark Insertion Module: Inserts the watermark
• Random Number Generator Module: Generates random numbers.
Modules in Proposed Architecture

DCT Module
- From controller
- Input Image
 - DCT_X
 - DCT_Y

Buffers (constants)

Decoder
- Flip-Flop

Latch
- DC DCT

AC DCT

AC-DCT of a block
- Accumulator
- Threshold
 - Mean
 - Max

Comparator

Edge Detector
- Edge or Nonedge Block
 Modules in Proposed Architecture

Perceptual Analyzer Module

DC Mean

AC Mean

AC Variance

DC

DCT

AC

DCT

Scaling and Embedding Factor Module

Scaling Module

Scaling Module

Alpha-Beta Module

Block mean

Image mean

Block mean

Block variance

\(\alpha_k \)

\(\beta_k \)
Pipeline and Parallelism

stage 1

DCT DCT

Forwarding Logic

stage 2

Edge Detection Submodule1

Perceptual Analyzer Submodule1

Perceptual Analyzer Submodule3

stage 3

Edge Detection Submodule2

Perceptual Analyzer Submodule2

Watermarked DCT coefficient

3 largest AC coefficients

Invisible Insertion Module
Dual Voltage and Dual Frequency

Lower Voltage

DCT_X

DCT_Y

Slower Clock

Level Converter

Normal Voltage

Edge Detection Module

Perceptual Analyzer Module

Scaling and Embedding Factor Module

Visible Watermark Insertion

Invisible Watermark Insertion

Normal Clock
Prototype Chip Implementation

Tools used for the design

<table>
<thead>
<tr>
<th>Tools used</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadence NClaunch</td>
<td>VHDL simulator</td>
</tr>
<tr>
<td>Synopsys Design Analyzer</td>
<td>Verilog netlist generation</td>
</tr>
<tr>
<td>Cadence Silicon Ensemble</td>
<td>Layout, Placement and routing</td>
</tr>
<tr>
<td>Cadence Virtuose tool</td>
<td>Layout editing</td>
</tr>
<tr>
<td>Cadence Abstract Generator</td>
<td>Abstract generation</td>
</tr>
<tr>
<td>Synopsys Nanosim</td>
<td>Power and delay calculations</td>
</tr>
</tbody>
</table>

Standard Cells obtained from Virginia Tech. Technology: TSMC 0.25 µm
Overall Prototype Chip: Layout
Prototype Chip: Floor plan

- Image DCT_X Module
- Watermark DCT_X Module
- Visible Insertion Module
- Invisible Insertion Module
- Image DCT_Y Module
- Watermark DCT_Y Module
- Edge Detection Module
- Perceptual Analyzer Module
- Scaling and Embedding Factor Module
Prototype Chip: Pin diagram

Original Image
Watermark Image

Low Power Chip for Image Watermarking

Watermarked Image

vdd1
vdd2

enable
reset
clk1
clk2

alpha
I/V'
done
busy

Dept. of CSE
Prototype Chip: Statistics

Technology: TSMC 0.25 µ
Total Area: 16.2 sq mm
Dual Clocks: 280 MHz and 70 MHz
Dual Voltages: 2.5V and 1.5V
No. of Transistors: 1.4 million
Power (dual voltage and frequency): 0.3 mW
Power (single voltage and frequency): 1.9 mW
Conclusions

- We capture power fluctuation in MVDFC and MVMC design scenario using the function MPG and minimize it using ILP.

- The MVDFC approach is better alternative. It is observed that for the circuits with equal number of addition and multiplication operations in the critical path the savings are maximum with no time penalty.

- Polynomial time complexity heuristic algorithms can be developed to obtain suboptimal, but faster solutions.

- The scheduling schemes are useful for data intensive applications.

- It is observed that the designed chip consumes only one fifth of the power compared conventional design.
Thank you