DKDT: A Performance Aware Dual Dielectric Assignment for Tunneling Current Reduction

Saraju P. Mohanty
Dept of Computer Science and Engineering
University of North Texas
smohanty@cs.unt.edu
http://www.cs.unt.edu/~smohanty/
Outline of the Talk

- Introduction
- Why Dual-K and Dual-T
- Related Work
- DKDT Assignment Algorithm
- Cell Characterization for DKDT
- Conclusions
Why Low-Power?

Motivation: Extending battery life

Source: Power Integrations Inc
Why Low-Power? ……..

- Battery Lifetime
- Cooling and Energy Costs
- Environmental Concerns
- System Reliability
Power Dissipation in CMOS

Total Power Dissipation

Static Dissipation
- Sub-threshold current
- Tunneling current
- Reverse-biased diode Leakage
- Contention current

Dynamic Dissipation
- Capacitive Switching
- Short circuit

Source: Weste and Harris 2005
Leakages in Nanometer CMOS

I₁: reverse bias pn junction (both ON & OFF)
I₂: subthreshold leakage (OFF)
I₃: oxide tunneling current (both ON & OFF)
I₄: gate current due to hot carrier injection (both ON & OFF)
I₅: gate induced drain leakage (OFF)
I₆: channel punch through current (OFF)

Source: Roy 2003
Tunneling paths in an Inverter

- **Low Input**: Input supply feeds the tunneling current.
- **High Input**: Gate supply feeds the tunneling current.

\[
\begin{align*}
V_{\text{in}} &= V_{\text{Low}} \\
V_{\text{out}} &= V_{\text{High}} \\
V_{\text{dd}} &= \text{ON} \\
V_{\text{out}} &= V_{\text{Low}} \\
V_{\text{in}} &= V_{\text{High}} \\
V_{\text{dd}} &= \text{OFF}
\end{align*}
\]
Power Dissipation Trend

Source: Hansen 2004
Why Dual-K and Dual-T?

- Gate oxide tunneling current I_{gate} [Kim2003, Chandrakasan2001] (k is a experimentally derived factors):

$$I_{\text{gate}} \propto (V_{\text{dd}} / T_{\text{gate}})^2 \exp \left(-k \frac{T_{\text{gate}}}{V_{\text{dd}}} \right)$$

- Options for reduction of tunneling current:
 - Decreasing of supply voltage V_{dd} (will play its role)
 - Increasing gate SiO$_2$ thickness T_{gate} (opposed to the technology trend!!)
We believe that use of multiple dielectrics (denoted as K_{gate}) of multiple thickness (denoted as T_{gate}) will reduce the gate tunneling current significantly while maintaining the performance.
Why Dual-K and Dual-T?

(Low K_{gate} Vs High K_{gate})

Low K_{gate} → Larger I_{gate}, Smaller delay

High K_{gate} → Smaller I_{gate}, Larger delay
Why Dual-K and Dual-T? (Low T_{gate} Vs High T_{gate})

- Low T_{gate}: Larger I_{gate}, Smaller delay
- High T_{gate}: Smaller I_{gate}, Larger delay
Why Dual-K and Dual-T ?
(Four Combinations of K_{gate} & T_{gate})

(1) K_1T_1

(2) K_1T_2

(3) K_2T_1

(4) K_2T_2

Tunneling Current \downarrow
Delay \uparrow
Why Dual-K and Dual-T ?

(Example: Four Types of Inverter)

Assumption: all transistors of a logic gate are of same K_{gate} and equal T_{gate}.

(1) $K_1 T_1$
(2) $K_1 T_2$
(3) $K_2 T_1$
(4) $K_2 T_2$
Dielectrics for Replacement of SiO₂

- **Silicon Oxynitride** \((SiO_xN_y)\) \((K=5.7\) for SiON\)
- **Silicon Nitride** \((Si_3N_4)\) \((K=7)\)
- **Oxides of:**
 - Aluminum \((Al)\), Titanium \((Ti)\), Zirconium \((Zr)\), Hafnium \((Hf)\), Lanthanum \((La)\), Yttrium \((Y)\), Praseodymium \((Pr)\),
 - their mixed oxides with SiO₂ and Al₂O₃

NOTE: \(I_{gate}\) is still dependent on \(T_{gate}\) irrespective of dielectric material.
Related Works
(Tunneling Current Reduction)

- **Inukai et. al. in CICC2000:** Boosted Gate MOS (BGMOS) device using dual T_{ox} and dual V_{Th} for both gate and subthreshold standby leakage reduction.

- **Rao et. al. in ESSCIRC2003:** Sleep state assignment for MTCMOS circuits for reduction of both gate and subthreshold leakage.
Related Works (Tunneling Current Reduction)

- **Lee et. al. in DAC2003 and TVLSI2004Feb**: Pin reordering to minimize gate leakage during standby positions of NOR and NAND gates.

- **Sultania, et. al. in DAC2004 and ICCD2004**: Heuristic for dual T_{ox} assignment for tunneling current and delay tradeoff.
Related Works

- Developed methods that use oxide of different thicknesses for tunneling reduction.
- Do not handle emerging dielectrics that will replace SiO$_2$ to reduce the tunneling current.
- Either consider ON or OFF state, but do not account both.
- Degradation in performance due to dual thickness approach.
Key Contributions of this Work

- Introduces a new approach called dual dielectric assignment for tunneling current reduction.
- Considers dual thickness approach for both of the dielectrics.
- Explores a combined approach called DKDT (Dual-K of Dual Thickness) and proposes an assignment algorithm.
- Accounts the tunneling current for both ON and OFF state.
- Presents a methodology for logic gates characterization for worst-case tunneling considering non-SiO$_2$ dielectrics for low end nano-technology.
DKDT Based Logic Synthesis

Input Circuit

Technology Independent Optimization

Intermediate Circuit

Technology Mapping

Mapped Circuit

DKDT Assignment and Optimization

Tunneling Optimized Circuit

Placement and Routing

Placement Legalization and ECO Routing

Final Circuit Layout

Cell Library
(4 Types)

K_1T_1

K_1T_2

K_2T_1

K_2T_2
Observation: Tunneling current of logic gates increases and propagation delay decreases in the order $K_2T_2, K_2T_1, K_1T_2,$ and K_1T_1 (where, $K_1 < K_2$ and $T_1 < T_2$).

Strategy: Assign a higher order K and T to a logic gate under consideration to reduce tunneling current provided increase in path-delay does not violate the target delay.
DKDT Assignment : Algorithm

Step 1: Represent the network as a directed acyclic graph $G(V, E)$.

Step 2: Initialize each vertex $v \in G(V, E)$ with the values of tunneling current and delay for $K_1 T_1$ assignment.

Step 3: Find the set of all paths $P\{\Pi_{in}\}$ for all vertex in the set of primary inputs (Π_{in}), leading to the primary outputs Π_{out}.

Step 4: Compute the delay D_p for each path $p \in P\{\Pi_{in}\}$.
DKDT Assignment: Algorithm

Step 5: Find the critical path delay D_{CP} for K_1T_1 assignment.

Step 6: Mark the critical path(s) P_{CP}, where P_{CP} is subset $P\{\Pi_{in}\}$.

Step 7: Assign target delay $D_T = D_{CP}$.

Step 8: Traverse each node in the network and attempt to assign $K-T$ in the order K_2T_2, K_2T_1, K_1T_2, and K_1T_1 to reduce tunneling while maintaining performance.
DKDT Assignment : Algorithm

(1) FOR each vertex \(v \in G(V, E) \)

(2)

(1) Determine all paths \(P_v \) to which node \(v \) belongs;
(2) Assign \(K_2T_2 \) to \(v \);
(3) Calculate new critical delay \(D_{cp} \);
(4) Calculate slack in delay as \(\Delta D = D_T - D_{cp} \);
(5) IF (\(\Delta D < 0 \)) then

(6)

(1) Assign \(K_2T_1 \) to \(v \); Calculate \(D_{cp} \); Calculate \(\Delta D \);
(2) IF (\(\Delta D < 0 \)) then

(3)

(1) Assign \(K_1T_2 \) to \(v \); Calculate \(D_{cp} \); Calculate \(\Delta D \);
(2) IF (\(\Delta D < 0 \)) then

(3) reassign \(K_1T_1 \) to \(v \);

(4) } // end IF

(7) } // end IF

(3) } // end FOR
Assume that there are n number of gates in the original network representing any circuit.

The statements from Step-01 to Step-03 take $\Theta(n^2)$ time in worst case.

The run time for statements from Step-04 to Step-07 are of $\Theta(n^2)$ complexity.

The heuristic loop which assigns DKDT takes $\Theta(n^3)$ time.

Thus, the overall worst case time complexity of the DKDT assignment algorithm is $\Theta(n^3)$.
DKDT Algorithm : Demo

Original Network
DKDT Algorithm : Demo

NAND Network
DKDT Algorithm: Demo

Network with Node Delays
DKDT Algorithm : Demo

Network with Path Delays (Fix, $D_T = 2.64$)
DKDT Algorithm: Demo

Node1: K_2T_2?

$D_{CP} < D_T \rightarrow \text{Yes, } K_2T_2 \text{ for Node1}$
Node2 : K_2T_2?

$D_{CP} > D_T \rightarrow$ No for K_2T_2
DKDT Algorithm: Demo

Node2: K_2T_1?

$D_{CP} > D_T \Rightarrow$ No for K_2T_1
DKDT Algorithm: Demo

Node2: K_1T_2?

$D_{CP} > D_T \rightarrow$ No for K_1T_2
DKDT Algorithm: Demo

Node2: Reassign K_1T_1
DKDT Algorithm : Demo

Final Assignment
Logic Cell Characterization : Load

- The Berkeley Predictive Technology Model (BPTM) has been used.

- The first step in the characterization was the selection of an appropriate capacitive load \((C_{\text{Load}} = 10 \times C_{\text{g}_{\text{PMOS}}} \text{ used})\).

- The supply voltage is held at \(V_{\text{DD}} = 0.7\text{V}\).

- We define the delay as the time difference between the 50% level of input and output.
For worst-case scenarios in the development of the algorithm, we chose the maximum delay time \[\text{maximum} \left(t_{\text{pdr}}, t_{\text{pdf}} \right) \].

The effect of switching pulse rise time \(t_r \) was initially examined on the delay characteristics.

To eliminate an explicit dependence of the algorithm results on \(t_r \), we chose a value that is realistic yet does not affect the delay significantly.
Logic Cell Characterization : t_r

Delay Versus Rise Time

Rise Time (in log10 scale from 1ps to 1ns)

Selected, $t_r = 10$ps
Direct tunneling current is calculated by evaluating both the source and drain components.

For the logic gate, \(I_{\text{gate}} = \sum_{\text{MOS}} (|I_{gs}| + |I_{gd}|) \).

This accounts for tunneling current contributions from devices in both the ON and OFF state.
The effect of varying dielectric material was modeled by calculating an equivalent oxide thickness \(T_{ox}^* \) according to the formula:

\[
T_{ox}^* = \left(\frac{K_{gate}}{K_{ox}} \right) T_{gate}
\]

Here, \(K_{gate} \) is the dielectric constant of the gate dielectric material other than SiO\(_2\), (of thickness \(T_{gate} \)), while \(K_{ox} \) is the dielectric constant of SiO\(_2\).
Cell Characterization: T_{gate} Modeling

- The effect of varying oxide thickness T_{ox} was incorporated by varying TOXE in SPICE model.
- Length of the device is proportionately changed to minimize the impact of higher dielectric thickness on the device performance:
 \[L^* = \left(\frac{T_{\text{ox}}^*}{T_{\text{ox}}} \right) L \]
- Length and width of the transistors are chosen to maintain $(W:L)$ ratio of $(4:1)$ for NMOS and $(8:1)$ for PMOS.
Cell Characterization: I_{gate} Vs K_{gate}

Tunneling Current Vs Dielectric Constant

- Tunneling Current I_{gate} (nA)
- Gate Dielectric Constant (K_{gate})

Graph shows the relationship between tunneling current and gate dielectric constant for Inverter and NAND operations.
Cell Characterization: I_{gate} Vs T_{gate}

Tunneling Current Vs Dielectric Thickness

Tunneling Current I_{gate} (nA)

Gate Dielectric Thickness T_{gate} (nm)
Cell Characterization: \(T_{pd} \) Vs \(K_{gate} \)

Propagation Delay Vs Dielectric Constant

- **Inverter**
- **NAND**

![Graph showing propagation delay vs dielectric constant for Inverter and NAND circuits.](image-url)
Cell Characterization: T_{pd} Vs T_{gate}

Propagation Delay Vs Dielectric Thickness

Gate Dielectric Thickness T_{gate} (nm)

Propagation Delay T_{pd} (ps)

Inverter

NAND
Experimental Results: Setup

- DKDT algorithm was implemented in C and used along with SIS, and tested on the ISCAS'85 benchmarks.

- The library of gates consisting of four types of NAND and four types of inverters was characterized for the 45 nm technology using SPECTRE tool.

- We used $K_1 = 3.9$ (for SiO$_2$), $K_2 = 5.7$ (for SiON), $T_1 = 1.4$ nm, and $T_2 = 1.7$ nm to perform our experiments.

- The value of T_1 is chosen as the default value from the BSIM4.4.0 model card and value of T_2 is intuitively chosen based on the characterization process.
Experimental Results: Table

<table>
<thead>
<tr>
<th>CKTs</th>
<th>Gates</th>
<th>Critical Delay (ps)</th>
<th>Current for $K_1 T_1$ (nA)</th>
<th>Current for DKDT (nA)</th>
<th>%Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>C17</td>
<td>24</td>
<td>2.22</td>
<td>187.2</td>
<td>93.66</td>
<td>49.96</td>
</tr>
<tr>
<td>C432</td>
<td>160</td>
<td>6.67</td>
<td>4071.6</td>
<td>281.4</td>
<td>93.08</td>
</tr>
<tr>
<td>C499</td>
<td>202</td>
<td>3.56</td>
<td>5885.1</td>
<td>656.06</td>
<td>88.85</td>
</tr>
<tr>
<td>C880</td>
<td>383</td>
<td>10.68</td>
<td>6739.2</td>
<td>375.38</td>
<td>94.42</td>
</tr>
<tr>
<td>C1355</td>
<td>546</td>
<td>3.56</td>
<td>5885.1</td>
<td>305.16</td>
<td>94.81</td>
</tr>
<tr>
<td>C1908</td>
<td>880</td>
<td>11.57</td>
<td>10015.2</td>
<td>319.69</td>
<td>96.80</td>
</tr>
<tr>
<td>C2670</td>
<td>1193</td>
<td>42.71</td>
<td>18415.8</td>
<td>1734.08</td>
<td>90.85</td>
</tr>
<tr>
<td>C3540</td>
<td>1669</td>
<td>31.59</td>
<td>35708.4</td>
<td>2461.93</td>
<td>93.10</td>
</tr>
<tr>
<td>C5315</td>
<td>2406</td>
<td>40.04</td>
<td>29027.7</td>
<td>1220.89</td>
<td>95.79</td>
</tr>
<tr>
<td>C6288</td>
<td>2406</td>
<td>43.15</td>
<td>29355.3</td>
<td>413.96</td>
<td>98.59</td>
</tr>
<tr>
<td>C7552</td>
<td>3512</td>
<td>45.82</td>
<td>34947.9</td>
<td>695.38</td>
<td>98.01</td>
</tr>
</tbody>
</table>
DKDT Algorithm Results

Tunneling Current and % Reduction

Benchmark Circuits

Tunneling Current (μA)

% Reduction

C432, C499, C880, C1355, C1908, C2670, C3540, C5315, C6288, C7552

3/28/2005
Comparative View: Table

<table>
<thead>
<tr>
<th>Benchmark Circuits</th>
<th>Sultania (100 nm)</th>
<th>Lee (100 nm)</th>
<th>DKDT (45 nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%Reduction</td>
<td>%Penalty</td>
<td>%Reduction</td>
</tr>
<tr>
<td>C432</td>
<td>83.8</td>
<td>24.6</td>
<td>59.52</td>
</tr>
<tr>
<td>C499</td>
<td>70.2</td>
<td>25.4</td>
<td>28.25</td>
</tr>
<tr>
<td>C880</td>
<td>92.3</td>
<td>25.5</td>
<td>45.43</td>
</tr>
<tr>
<td>C1355</td>
<td>67.9</td>
<td>25.0</td>
<td>33.50</td>
</tr>
<tr>
<td>C1908</td>
<td>82.3</td>
<td>25.2</td>
<td>27.76</td>
</tr>
<tr>
<td>C2670</td>
<td>92.6</td>
<td>25.3</td>
<td>33.80</td>
</tr>
<tr>
<td>C3540</td>
<td>91.4</td>
<td>25.1</td>
<td>36.40</td>
</tr>
<tr>
<td>C5315</td>
<td>91.7</td>
<td>26.1</td>
<td>34.34</td>
</tr>
<tr>
<td>C6288</td>
<td>62.7</td>
<td>25.7</td>
<td>45.86</td>
</tr>
<tr>
<td>C7552</td>
<td>91.6</td>
<td>25.3</td>
<td>28.10</td>
</tr>
</tbody>
</table>
Comparative View: Chart

NOTE: DKDT has not time penalty.
Conclusions and Future Works

- **New approach DKDT** for tunneling current reduction accounting for both the ON and OFF states.
- **Polynomial time complexity heuristic algorithm** could carry out such DKDT assignment for benchmark circuits in reasonable amount of time.
- **Experiments prove significant reductions in tunneling current** without performance penalty.
Conclusions and Future Works

- **Modeling of other high-K dielectrics** is under progress.
- **Development of optimal assignment algorithm** can be considered.
- **Tradeoff of tunneling, area and performance** needs to be explored.
- **DKDT based design** may need more masks for the lithographic process during fabrication.
The Latest Chip Designed
(Claim: Lowest power consuming image watermarking chip available at present)
The Latest Chip: Statistics

- **Technology**: TSMC 0.25 µ
- **Total Area**: 16.2 sq mm
- **Dual Clocks**: 280 MHz and 70 MHz
- **Dual Voltages**: 2.5V and 1.5V
- **No. of Transistors**: 1.4 million
- **Avg. Power Consumption**: 0.3 mW
Thank You