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o Why Low-Power ?

otivation: Extending battery life .........

Chargers / Adapters

Source: Power Integrations Inc
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Cooling and Energy Costs
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4uliower Dissipation in CMOS

Total Power Dissipation
|

1 1

Static Dissipation Dynamic Dissipation

—> Sub-threshold current . o
— Capacitive Switching

— Tunneling current .
—>Short circuit

—> Reverse-biased diode Leakage

—> Contention current
Source: Weste and Harris 2005
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“’l;jlﬂhf‘f,eakages in Nanometer CMOS

I1 reverse bias pn junction (both ON & OFF)
I, : subthreshold leakage (OFF )

I; : oxide tunneling current (both ON & OFF)

I, : gate current due to hot carrier injection (both ON & OFF)
I; : gate induced drain leakage (OFF)
I6 channel punch through current (OFF)

. Gatei> 13 ’
I ource
I

!} | 5 Soutce: Roy 2003
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o Low Input Input supply feeds the tunneling current.
m High Input : Gate supply feeds the tunneling current.

Vaa Vaa
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Trajectory,
. if High-K

Physical Gate Length (nm)
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44 {Why Dual-K and Dual-T ?

= Gate oxide tunneling cutrent I, [Kim2003,

Chandrakasan2001] (k is a experimentally derived
factors):

Igate o (Vdd / 'I‘gate)2 EXp (_ k Tgate/ Vdd)

= Options for reduction of tunneling current :
® Decreasing of supply voltage V 44 (will play its role)

m Increasing gate SiO, thickness T, . (opposed to the

gate
technology trend !)
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<4:2:f{Why Dual-K and Dual-T ?

""
* o oj[d[a] ollo]\" 4
191 ®ig 1}

We believe that use of multiple dielectrics
(denoted as of multiple thickness
(denoted as T, .) will reduce the gate
tunneling  current  significantly  while
maintaining the performance.

gate)
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hy Dual-K and Dual-T ?

(LOW gate VS ngh gate)

L LELLL

= P

Larger Loste s High K Smaller Loste s

Low K
o Smaller delay

gate

ate Larger delay
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hy Dual-K and Dual-T ?

(Low T, Vs High T, )

UL L

= P

Larger I, High T Smaﬂer Loste »

Low Tgate Smaller delay

gatc Larger delay
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¥ Why Dual-K and Dual-T ?

= A e B
(= - KeS=pas

A¥our Combinations of K, . & T,

L1

[ ] [ ] [ ] [ ]

N* N* N* N*
P P

1) K, T, (2) KT, Tunneling
l l l Current ¥
Delay T

(3 ) KZTl (4) Ksz

3/28/2005 13




% Why Dual-K and Dual-T ?

“{xample: Four Types of Inverter)

Assumption: all transistors of a logic gate are of

a B

same K and equal T

gate gate’

B - -
OKT, KT, OKLI, @K,
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m Silicon Oxynitride (SiOXNy) (K=5.7 for
SiON)

m Silicon Nitride (S1;N,) (IK=7)

B Oxides of :

® Aluminum (Al), Titanium (T1), Zircontum (Zr),
Hatnium (Hf), Lanthanum (La), Yttrium (Y),
Praseodymium (Pr),

m their mixed oxides with Si0, and Al,O;
s NOTE: I is still dependent on T

gate

] . . ] . gate
irrespective of dielectric material.
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e Related Works
o= lunneling Current Reduction)

m Inukai et. al. in CICC2000: Boosted Gate
MOS (BGMOS) device using dual T _ and dual
V., for both gate and subthreshold standby

leakage reduction.

m Rao et. al. in ESSCIRC2003: Sleep state

assignment for MTCMOS circuits for reduction
of both gate and subthreshold leakage.
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Wiy & Related Works
= Iunneling Current Reduction)
m ILee et. al. in DAC2003 and TVISI2004Feb :

Pin reordering to minimize gate leakage during

standby positions of NOR and NAND gates.

m Sultania, et. al. in DAC2004 and ICCD2004:

Heuristic for dual T__ assignment for tunneling
current and delay tradeoft.
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Related Works

m Developed methods that use oxide of different
thicknesses for tunneling reduction.

m Do not handle emerging dielectrics that will
replace 510, to reduce the tunneling current.

m Fither consider ON or OFF state, but do not
account both.

m Degradation in performance due to dual
thickness approach.
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4Key Contributions of this Work

B Introduces a new approach called dual dielectric
assignment for tunneling current reduction.

B Considers dual thickness approach for both of the
dielectrics.

m Explores a combined approach called DKDT (Dual-K

of Dual Thickness) and proposes an assignment
algorithm.

B Accounts the tunneling current for both ON and OFF
state.

B Presents a methodology for logic gates characterization
for worst-case tunneling considering non-SiO,
dielectrics for low end nano-technology.
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Input ‘Cn‘cult

Technology IndeFendent Optimization

Cell Intermediate Circuit
Library \ .
(4 Types) > Technol(zgy Mapping
K, T, Mappeil Circuit
K,T, —~DKDT Assignment and Optimization
K,T, \
K,T, Tunneling Optimized Circuit

v
Placemena and Routing

Placement Legalizsiltion and ECO Routing
Final Circuit Layout
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4 DKDT Assignment : Basis

m Observation: Tunneling current of logic gates

increases and propagation delay decreases in the
order KT, K, T,, K,/T,, and K, T, (where, K, <
K,and T, <T)).

m Strategy: Assign a higher order K and T to a
logic gate under consideration
B To reduce tunneling current
® Provided increase in path-delay does not violate the
target delay
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T Assignment : Algorithm

Step 1: Represent the network as a directed acyclic

ograph G(V, |

—
)
W

Step 2: Initialize each vertex v € G(V, |
values of tunneling current and delay for K, T,

assignment.

%) with the

Step 3: Find the set of all paths P{IL_} for all
vertex in the set of primary inputs (IL ), leading

to the primary outputs [ 1

out °

Step 4: Compute the delay D, for each path p €

PUT;, 5
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T Assignment : Algorithm

Step 5: Find the critical path delay D, for K, T,

assignment.

Step 6: Mark the critical path(s) P.p, where P 1S
subset P{IL_}.

Step 7: Assign target delay D = D .

Step 8: Traverse each node in the network and
attempt to assign K-T in the order KT, KT,

K/T,, and KT, to reduce tunneling while
maintaining performance.
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ADKDT Assignment : Algorithm

(1) FOR each vertex » € G(V, E)
@ 1

(1) Determine all paths P, to which node » belongs ;
2) Assign KT, to v ;
3) Calculate new critical delay Dp ;
4) Calculate slack in delay as AD = D — Dp;
G IF (AD < 0) then
©) {
1) Assign KT, to v ; Calculate D ; Calculate AD ;
@ IF (AD < 0) then
3 {
(1) Assign KT, to v ; Calculate D ; Calculate AD ;
@ IF (AD < 0) then
(1) reassign KT, to v;
@ } // end IF
@ } // end IF
@) // end FOR
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FHDKDT Assignment Algorithm
(Time Complexity)

B Assume that there are n number of gates in the original
network representing any circuit.

m The statements from Step-01 to Step-03 take O(n?) time
1N WOrst case.

B The run time for statements from Step-04 to Step-07 are
of O(n?) complexity.
B The heuristic loop which assigns DKDT takes ®(n°)

time.

B Thus, the overall worst case time complexity of the

DKDT assignment algorithm is ©(n”).
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4:5] DKDT Algorithm : Demo

0.44 0.44 0.44 0.88
0-0
0.44 0.44 0.44 1.32 0.44 l 1.76 2.64
Q__.@ .n_nqm
S (i 0.44 1.32 04 odn
¢ - 0 —
0.44 0.44 l | 044 (»44 044 044
\
Q-G  o-a-a e
1.32 1.76 2.2 264
0.44 044 044 088 T

Network with Path Delays (Fix, D= 2.64)
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r DKDT Algorithm : Demo

Nodel : K, T,?

0-0
0.44 l 1.58

0.70 0.70 0.44 1.14

= 0—0_@
0.44

l v0.44 0.44 044"
0-0 @*@~@~@

I 158 202 246
Dcp < D; 2 Yes, K, T, for Nodel
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KDT Algorithm : Demo

Node2: K,T,?

G_" 1

0.70 0.70

0.44 1.14 ‘ 2.02 2.46 2.90

Dp > Dy 2 No for K, T,
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KDT Algorithm : Demo

Node2: K, T,?
0-0

0.70 0.70

0.44 1.08 I 1.96 2.40 2.84

Dp > D; = No for K, T,
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KDT Algorithm : Demo

Node2: K/T,?
0-0

0.70 0.70

0.44 1.04 I 1.92 2.36 2.80

Dcp > Dy = No for KT,
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Algorithm : Demo

Node2 : Reassign K, T,

0-0
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Final Assignment
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Jpgic Cell Characterization : Load
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m The Berkeley Predictive Technology Model
(BPTM) has been used.

m The first step in the characterization was the
selection of an appropriate capacitive load (C, __;

= 10 * €, ppos used).
m The supply voltage is held at V55 = 0.7V.

m We define the delay as the time difference
between the 50% level of input and output.
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-4dsogic Cell Characterization : t

m For worst-case scenarios in the development of
the algorithm, we chose the maximum delay time

[ 1. e. maximum (t, 4, t,q0) |-

m The effect of switching pulse rise time t was
initially examined on the delay characteristics.

m To eliminate an explicit dependence of the
algorithm results on t , we chose a value that is
realistic yet does not affect the delay significantly.
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0.5 1

Rise Time (in log10 scale from 1ps to 1ns) >

Selected, t, = 10ps
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Jsegic Cell Characterization : I
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gate

dDirect tunneling current
is calculated by evaluating
both the source and drain

components.

JFor the logic gate, e S
Svaos (1| + [La]):

1 This accounts for
tunneling current
contributions from

devices in both the ON
and OFF state.

39
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sell Characterization : K Modeling

m The effect of varying dielectric material was
modeled by calculating an equivalent oxide

thickness (I”_,) according to the formula:
T (0.4 = (Kg / KOX) T
m Here, K . 1s the dielectric constant of the gate

dielectric material other than SiO,, (of thickness

T,.), while K is the dielectric constant of
S10,,.

ate gate
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| Characterization : T oate Modeling

14

m The effect of varying oxide thickness T _ was
incorporated by varying TOXE in SPICE model.

m [ ength of the device 1s proportionately changed
to minimize the impact of higher dielectric
thickness on the device performance :

L*¥= (T, /T,)L
m [ ength and width of the transistors are chosen to

maintain (W:L) ratio of (4:1) for NMOS and (8:1)
for PMOS.
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Characterization : Igate Vs Kgate

Tunneling Current Vs Dielectric Constant
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Gell Characterization : I oate VS Tgate

Tunneling Current Vs Dielectric Thickness

—&— [nverter
—8— NAND
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% o=l Characterization : T ; Vs K.

Propagation Delay Vs Dielectric Constant

—&— Inverter
—8— NAND

4.4 4.9 5.4

Gate Dielectric Constant (K,

) =2

ate
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1 Characterization : T,qVsT

g ate

Propagation Delay Vs Dielectric Thickness

—&— [nverter
—0—NAND

14 1.45 1.5 1.55 16 1.65 1.7
Gate Dielectric Thickness T (nm) =

gate
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sullxperimental Results: Setup
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m DKDT algorithm was implemented in C and used along
with SIS, and tested on the ISCAS'85 benchmarks.

B The library of gates consisting of four types of NAND
and four types of inverters was characterized for the 45
nm technology using SPECTRE tool.

m We used K, = 3.9 (for SiO,), K, = 5.7 (for SiON), T, =

1.4 nm, and T, = 1.7 nm to perform our experiments.

B The value of T, is chosen as the default value from the
BSIM4.4.0 model card and value of T, is intuitively
chosen based on the characterization process.
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FHExperimental Results : Table

Critical Current for | Current for | %Redu
Delay (ps) | K, T, (nA) | DKDT (nA)| ction

C17 24 2.22 187.2 93.66 49.96
C432 160 6.67 4071.6 281.4 93.08
C499 202 3.56 5885.1 656.06 88.85
C880 383 10.68 6739.2 375.38 94.42
C1355 546 3.56 5885.1 305.16 94.81
C1908 880 11.57 10015.2 319.69 96.80
C2670 1193 42.71 18415.8 1734.08 90.85
C3540 | 1669 31.59 35708.4 2461.93 93.10
C5315 | 2406 40.04 29027.7 1220.89 95.79
C6288 | 2406 43.15 29355.3 413.96 98.59
C7552 | 3512 45.82 34947.9 695.38 98.01
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“IComparative View : Table

DKDT (45 nm)

_____ Lee (100 nm)

volRenAny/oRed My ol2ena)
. - - o -

C432 83.8 24.6 59.52 NA 93.08 0
C499 70.2 25.4 PAWAS NA 88.85 0
C880 92.3 25.5 45.43 NA 94.42 0
C1355 67.9 AN 33.50 NA 94.81 0
C1908 82.3 25.2 27.76 NA 96.80 0
C2670 92.6 25.3 33.80 NA 90.58 0
C3540 91.4 25.1 36.40 NA 93.10 0
C5315 91.7 26.1 34.34 NA 95.79 0
C6288 62.7 AN 45.86 NA 98.59 0
C7552 91.6 25.3 28.10 NA 98.01 0
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O Lee 2004
B Sultania 2004

% Reduction

Benchmark Circuits

NOTE: DKDT has not time penalty.
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-4Gonclusions and Future Works

m New approach DKDT for tunneling current
reduction accounting for both the ON and OFF

states.

m Polynomial time complexity heuristic algorithm
could carry out such DKDT assignment for
benchmark circuits in reasonable amount of time.

m HExperiments prove significant reductions in
tunneling current without performance penalty.
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-4Gonclusions and Future Works

m Modeling of other high-K dielectrics 1s under
progress.

m Development of optimal assignment algorithm
can be considered.

m Tradeoff of tunneling, area and performance
needs to be explored.

m DKDT based design may need more masks for
the lithographic process during fabrication.
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{€laim: Lowest power consuming image

watermarking chip available at present)

{11 *—1|
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Technology : TSMC 0.25 p

Total Area: 16.2 sq mm

Dual Clocks : 280 MHz and 70 MHz
Dual Voltages : 2.5V and 1.5V

No. of Transistors : 1.4 million

Avg. Power Consumption : 0.3 mW
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Thank You
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