EXAMPLE A Performance Aware Dual Dielectric Assignment for Tunneling Current Reduction

Saraju P. Mohanty Dept of Computer Science and Engineering University of North Texas smohanty@cs.unt.edu <u>http://www.cs.unt.edu/~smohanty/</u>

Outline of the Talk

Introduction ■ Why Dual-K and Dual-T Related Work DKDT Assignment Algorithm Cell Characterization for DKDT Conclusions

Why Low-Power ?

Motivation: Extending battery life

Source: Power Integrations Inc

Battery Lifetime

Environmental Concerns

Cooling and Energy Costs

System Reliability

3/28/2005

Source: Weste and Harris 2005

Leakages in Nanometer CMOS

- I₁: reverse bias pn junction (both ON & OFF)
- I₂: subthreshold leakage (OFF)
- I₃: oxide tunneling current (both ON & OFF)
- I_4 : gate current due to hot carrier injection (both ON & OFF)
- I_5 : gate induced drain leakage (OFF)
- I₆: channel punch through current (OFF)

Engenneling paths in an Inverter

Low Input : Input supply feeds the tunneling current.

High Input : Gate supply feeds the tunneling current.

Source: Hansen 2004

Gate oxide tunneling current I_{gate} [Kim2003, Chandrakasan2001] (k is a experimentally derived factors):

 $I_{gate} \, \alpha \, (V_{dd} \, / T_{gate})^2 \exp \left(-\,k \, T_{gate} / V_{dd}\right)$

Options for reduction of tunneling current :
 Decreasing of supply voltage V_{dd} (will play its role)
 Increasing gate SiO₂ thickness T_{gate} (opposed to the technology trend !!)

We believe that use of multiple dielectrics (denoted as K_{gate}) of multiple thickness (denoted as T_{gate}) will reduce the gate tunneling current significantly while maintaining the performance.

Why Dual-K and Dual-T? (Low K_{gate} Vs High K_{gate})

Why Dual-K and Dual-T? (Low T_{gate} Vs High T_{gate})

Why Dual-K and Dual-T? **Four Combinations of K**gate & T_{gate})

(1) $K_1 T_1$

(3) $K_2 T_1$

(2)
$$K_1 T_2$$

(4) K_2T_2

Tunneling Current↓ Delay ↑

3/28/2005

Dielectrics for Replacement of SiO₂

- Silicon Oxynitride (SiO_xN_y) (K=5.7 for SiON)
- Silicon Nitride (Si_3N_4) (K=7)
- Oxides of :
 - Aluminum (Al), Titanium (Ti), Zirconium (Zr), Hafnium (Hf), Lanthanum (La), Yttrium (Y), Praseodymium (Pr),

• their mixed oxides with SiO_2 and Al_2O_3

■ **NOTE**: I_{gate} is still dependent on T_{gate} irrespective of dielectric material.

Related Works Current Reduction)

Inukai et. al. in CICC2000: Boosted Gate MOS (BGMOS) device using dual T_{ox} and dual V_{Th} for both gate and subthreshold standby leakage reduction.

Rao et. al. in ESSCIRC2003: Sleep state assignment for MTCMOS circuits for reduction of both gate and subthreshold leakage.

Related Works Commeling Current Reduction)

Lee et. al. in DAC2003 and TVLSI2004Feb : Pin reordering to minimize gate leakage during standby positions of NOR and NAND gates.

Sultania, et. al. in DAC2004 and ICCD2004: Heuristic for dual T_{ox} assignment for tunneling current and delay tradeoff.

Related Works

- Developed methods that use oxide of different thicknesses for tunneling reduction.
 Do not handle emerging dielectrics that will replace SiO₂ to reduce the tunneling current.
 Either consider ON or OFF state, but do not account both.
- Degradation in performance due to dual thickness approach.

Contributions of this Work

- Introduces a new approach called dual dielectric assignment for tunneling current reduction.
- Considers dual thickness approach for both of the dielectrics.
- Explores a combined approach called DKDT (Dual-K of Dual Thickness) and proposes an assignment algorithm.
- Accounts the tunneling current for both ON and OFF state.
- Presents a methodology for logic gates characterization for worst-case tunneling considering non-SiO₂ dielectrics for low end nano-technology.

Observation: Tunneling current of logic gates increases and propagation delay decreases in the order K_2T_2 , K_2T_1 , K_1T_2 , and K_1T_1 (where, $K_1 < K_2$ and $T_1 < T_2$).

Strategy: Assign a higher order K and T to a logic gate under consideration
 To reduce tunneling current
 Provided increase in path-delay does not violate the target delay

Example 1 Assignment : Algorithm

Step 1: Represent the network as a directed acyclic graph G(V, E).

Step 2: Initialize each vertex $v \in G(V, E)$ with the values of tunneling current and delay for K_1T_1 assignment.

Step 3: Find the set of all paths P{Π_{in}} for all vertex in the set of primary inputs (Π_{in}), leading to the primary outputs Π_{out}.

Step 4: Compute the delay D_P for each path $p \in P{\Pi_{in}}$.

Step 5: Find the critical path delay D_{CP} for K_1T_1 assignment.

Step 6: Mark the critical path(s) P_{CP} , where P_{CP} is subset $P{\Pi_{in}}$.

Step 7: Assign target delay $D_T = D_{CP}$.

Step 8: Traverse each node in the network and attempt to assign K-T in the order K_2T_2 , K_2T_1 , K_1T_2 , and K_1T_1 to reduce tunneling while maintaining performance.

DEADT Assignment : Algorithm

(1) FOR each vertex $v \in G(V, E)$

- (1) Determine all paths P_v to which node v belongs;
- (2) Assign K_2T_2 to v;
- (3) Calculate new critical delay D_{CP} ;
- (4) Calculate slack in delay as $\Delta D = D_T D_{CP}$;
- (5) IF ($\Delta D < 0$) then
- (6) {

(2)

- (1) Assign K_2T_1 to v; Calculate D_{CP} ; Calculate ΔD ;
- (2) IF ($\Delta D < 0$) then
- (3) {
- (1) Assign K_1T_2 to v; Calculate D_{CP} ; Calculate ΔD ; (2) IF ($\Delta D < 0$) then

(1) reassign K_1T_1 to v;

(4) } // end IF

(7) } // end IF (3) // end FOR 3/28/2005

KDT Assignment Algorithm (Time Complexity)

- Assume that there are n number of gates in the original network representing any circuit.
- The statements from Step-01 to Step-03 take Θ(n²) time in worst case.
- The run time for statements from Step-04 to Step-07 are of $\Theta(n^2)$ complexity.
- The heuristic loop which assigns DKDT takes Θ(n³) time.
- Thus, the overall worst case time complexity of the DKDT assignment algorithm is Θ(n³).

DKDT Algorithm : Demo

NAND Network

DKDT Algorithm : Demo

Network with Node Delays

Network with Path Delays (Fix, $D_T = 2.64$)

3/28/2005

Node1 : K_2T_2 ?

Node2 : K_2T_2 ?

$D_{CP} > D_T \rightarrow No \text{ for } K_2 T_2$

$D_{CP} > D_T \rightarrow No \text{ for } K_2 T_1$

$D_{CP} > D_T \rightarrow No \text{ for } K_1 T_2$

Node2 : Reassign K_1T_1

Final Assignment

- The Berkeley Predictive Technology Model (BPTM) has been used.
- The first step in the characterization was the selection of an appropriate capacitive load ($C_{Load} = 10 * C_{ggPMOS}$ used).
- The supply voltage is held at $V_{DD} = 0.7V$.
- We define the delay as the time difference between the 50% level of input and output.

Big Cell Characterization : tr

- For worst-case scenarios in the development of the algorithm, we chose the maximum delay time [i. e. maximum (t_{pdr}, t_{pdf})].
- The effect of switching pulse rise time t_r was initially examined on the delay characteristics.
- To eliminate an explicit dependence of the algorithm results on t_r, we chose a value that is realistic yet does not affect the delay significantly.

Delay Versus Rise Time

gic Cell Characterization : Igate

I gs I gcd I gcd I gb

BSIM4 Model

Direct tunneling current is calculated by evaluating both the source and drain components. \Box For the logic gate, $I_{gate} =$ $\Sigma_{\forall MOS} (|I_{gs}| + |I_{gd}|).$ This accounts for tunneling current contributions from devices in both the ON and OFF state.

The effect of varying dielectric material was modeled by calculating an equivalent oxide thickness (T^*_{ox}) according to the formula: $T^*_{ox} = (K_{gate} / K_{ox}) T_{gate}$ - Here, K_{gate} is the dielectric constant of the gate dielectric material other than SiO₂, (of thickness T_{pate} , while K_{ox} is the dielectric constant of SiO₂.

Characterization : Tgate Modeling

The effect of varying oxide thickness T_{ox} was incorporated by varying TOXE in SPICE model.
 Length of the device is proportionately changed to minimize the impact of higher dielectric thickness on the device performance :

 $L^* = (T^*_{ox} / T_{ox}) L$

Length and width of the transistors are chosen to maintain (W:L) ratio of (4:1) for NMOS and (8:1) for PMOS.

Tunneling Current Vs Dielectric Constant

Tunneling Current Vs Dielectric Thickness

Characterization : T_{pd} Vs K_{gate}

Propagation Delay Vs Dielectric Constant

Characterization : T_{pd} Vs T_{gate}

Propagation Delay Vs Dielectric Thickness

Experimental Results: Setup

- DKDT algorithm was implemented in C and used along with SIS, and tested on the ISCAS'85 benchmarks.
- The library of gates consisting of four types of NAND and four types of inverters was characterized for the 45 nm technology using SPECTRE tool.
- We used K₁ = 3.9 (for SiO₂), K₂ = 5.7 (for SiON), T₁ = 1.4 nm, and T₂ = 1.7 nm to perform our experiments.
 The value of T₁ is chosen as the default value from the BSIM4.4.0 model card and value of T₂ is intuitively chosen based on the characterization process.

Experimental Results : Table

CKTs	Gates	Critical Delay (ps)	Current for K ₁ T ₁ (nA)	Current for DKDT (nA)	%Redu ction
C17	24	2.22	187.2	93.66	49.96
C432	160	6.67	4071.6	281.4	93.08
C499	202	3.56	5885.1	656.06	88.85
C880	383	10.68	6739.2	375.38	94.42
C1355	546	3.56	5885.1	305.16	94.81
C1908	880	11.57	10015.2	319.69	96.80
C2670	1193	42.71	18415.8	1734.08	90.85
C3540	1669	31.59	35708.4	2461.93	93.10
C5315	2406	40.04	29027.7	1220.89	95.79
C6288	2406	43.15	29355.3	413.96	98.59
C7552	3512	45.82	34947.9	695.38	98.01

DKDT Algorithm Results

Tunneling Current and % Reduction

Benchmark Circuits

Comparative View : Table

Bench-	Sultania ((100 nm)	Lee (100 nm)		DKDT (45 nm)	
mark	%Reduc	%Pena	%Redu	%Pena	%Redu	%Pena
Circuits	tion	lty	ction	lty	ction	lty
C432	83.8	24.6	59.52	NA	93.08	0
C499	70.2	25.4	28.25	NA	88.85	0
C880	92.3	25.5	45.43	NA	94.42	0
C1355	67.9	25.0	33.50	NA	94.81	0
C1908	82.3	25.2	27.76	NA	96.80	0
C2670	92.6	25.3	33.80	NA	90.58	0
C3540	91.4	25.1	36.40	NA	93.10	0
C5315	91.7	26.1	34.34	NA	95.79	0
C6288	62.7	25.7	45.86	NA	98.59	0
C7552	91.6	25.3	28.10	NA	98.01	0

3/28/2005

- New approach DKDT for tunneling current reduction accounting for both the ON and OFF states.
- Polynomial time complexity heuristic algorithm could carry out such DKDT assignment for benchmark circuits in reasonable amount of time.
 Experiments prove significant reductions in tunneling current without performance penalty.

- Modeling of other high-K dielectrics is under progress.
- Development of optimal assignment algorithm can be considered.
- Tradeoff of tunneling, area and performance needs to be explored.
- DKDT based design may need more masks for the lithographic process during fabrication.

The Latest Chip Designed Ceaim: Lowest power consuming image watermarking chip available at present)

Technology : TSMC 0.25 µ Total Area : 16.2 sq mm Dual Clocks : 280 MHz and 70 MHz Dual Voltages : 2.5V and 1.5V No. of Transistors : 1.4 million Avg. Power Consumption : 0.3 mW

