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Outline of the Talk

CMOS scaling –Trends and Effects
Power consumption redistribution due to scaling

Components of Power Dissipation
Components of Leakage

Gate leakage analysis
Gate leakage variation with process and design 
parameters
Gate leakage reduction
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CMOS Driven Applications

Almost the entire industry today is driven by CMOS
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Scaling Trend – Transistor Count

1967 2007

Increase in Transistor Count per chip

VLSI technology is the fastest growing 
technology in the human history.
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Scaling Trend – Frequency and Performance

• With scaling the transistors are becoming twice as fast as 
the previous generation.

• Applications are also being targeted for TIPS level 
performance.

Source: Pedram ASPDAC 2004



Saraju P. Mohanty 6

What is Physically Scaled ? 
(Gate Length and Gate thickness)

• Gate length of the transistor has been decreasing with 
technology scaling.

• All the other dimensions including gate oxide thickness have 
been scaled down to support this trend

Source: Pedram ASPDAC 2004, Osburn IBM JRD Mar2002
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Other Parameters Scaled?
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Scaling Trend – Power Dissipation

Power dissipated by the transistor has manifested itself 
most emphatically along with scaling.
The power density is increasing exponentially

Source: Intel
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Power Dissipation Components in CMOS

Source: Weste and Harris 2005

Total Power Dissipation

Static Dissipation Dynamic Dissipation

Sub-threshold current

Tunneling currentTunneling current

Reverse-biased diode Leakage

Capacitive Switching

Short circuit

Contention current

Tunneling currentTunneling current



Saraju P. Mohanty 10

Leakages in Nanoscale CMOS

P-Substrate

N+ N+

Source Drain
Gate

I1 : reverse bias pn junction (both ON & OFF)
I2 : subthreshold leakage (OFF )
I3 :oxide tunneling current (both ON & OFF)
I4 : gate current due to hot carrier injection (both ON & OFF)
I5 : gate induced drain leakage (OFF)
I6 : channel punch through current (OFF)

I3 , I4

I1

I2
I6

I5 Source: Roy Proceedings of IEEE Feb2003
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Power Dissipation : Redistribution

Source: Hansen 2004
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Scaling Trends and Effects : Summary
Scaling improves 

Transistor Density of chip
Functionality on a chip 
Speed and frequency of operation 
Higher performance

Scaling and power dissipation
Active power remains almost constant
Components of leakage power increase in number 
and in magnitude.
Gate leakage (tunneling) predominates for sub 65-
nm technology.
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Energy-Band Diagram Showing Tunneling
(Direct Tunneling Occurs when: VOX < ΦOX)

Source: AgarwalIEEPDTMay2005
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Gate Leakage Components

Gate oxide tunneling current components in BSIM4.4.0 model. 
• Igs, Igd: Components due to the overlap of gate and diffusions 
• Igcs, Igcd: Components due to tunneling from the gate to the 

diffusions via the channel and 
• Igb: Component due to tunneling from the gate to the bulk via 

the channel.

G

B
S D

Igs -Igd

Igcs
Igcd

Igb

Note: all the currents are with respect to gate.
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Gate Leakage for a MOS: Iox

Calculated by evaluating 
both the source and 
drain components

For a MOS,  Iox = (|Igs| 
+|Igd| +|Igcs| +|Igcd| +|Igb|)

Values of individual 
components depends on 
states, ON or OFF

BSIM4 ModelBSIM4 Model

Igb

Igcs
Igcd

Igs Igd
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NMOS: Gate Leakage Paths
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NMOS Gate Leakage Components in 
Different Phases of a Switching Cycle

Fig. 1

Fig. 2

Fig. 3
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PMOS: Gate Leakage Paths
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PMOS Gate Leakage Components in 
Different Phases of a Switching Cycle

Fig. 1

Fig. 2

Fig. 3
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NMOS Vs PMOS: 3 Mechanisms of Tunneling

Source: Roy Proceedings of IEEE Feb2003
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Three major mechanisms for direct tunneling:
1.electron tunneling from conduction band (ECB)
2.electron tunneling from valence band (EVB)
3.hole tunneling from valance band (HVB)

For NMOS:
•ECB controls gate-to-channel tunneling in inversion
•EVB controls gate-to-body tunneling in depletion-inversion
•ECB controls gate-to-body tunneling in accumulation

For PMOS:
•HVB controls the gate-to-channel tunneling in inversion
•EVB controls gate-to-body tunneling in depletion-inversion
•ECB controls gate-to-body tunneling in accumulation

PMOS < NMOS: ΦOX for HVB (4.5 eV) is higher than ΦOX
for ECB (3.1 eV), the tunneling current associated with 
HVB is less than that with ECB. 

JHVB

JEVB
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Gate Leakage: Effect of Parameter Variation
(NMOS)

Gate Leakage Vs Tox Gate Leakage Vs VDD

ON and OFF Gate Tunneling Current for NMOS
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Gate Leakage: Effect of Parameter Variation
(NMOS)

Source: Agarwal IEE Proc. CDT May 2005
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Inverter: Gate Leakage Paths 
(Putting NMOS and PMOS together)

High Input
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Inverter: Average Gate Leakage
• Low Input : Input supply feeds the tunneling current. 
• High Input : Gate supply feeds the tunneling current.

Vdd

Vin=VLow

Vout=VHigh

Vdd

Vout=VLow

OFF

OFF

ON

Vin=VHigh
ON

I0

I1

Low Input High Input
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Gate Leakage in 2-input NAND

input 00 input 01 input 10 input 11

I00 I01 I10 I11
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Gate Leakage in 2-input NAND: Transient Study
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Gate Leakage in 2-input NOR: Transient Study

Output 
Voltage

Input 
Voltages

Best Case Worst Case

I00 I01 I10 I11

G
at

e 
C

ur
re

nt
 in

 in
di

vi
du

al
 M

O
S



Saraju P. Mohanty 28

Gate Leakage in 2-input Logic Gates 
(Average Current’s Dependence on Parameters)

Gate Leakage Vs Gate Oxide Thickness for Logic Gates
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Gate Leakage Estimation
• What we have observed?

– Gate leakage is input state dependent
– Gate leakage is dependent on position of ON/OFF 

transistors
– Gate leakage is sensitive to process variation

• Gate leakage estimation methods for logic level 
description of the circuit:

– Pattern dependent estimation (R. M. Rao ISLPED 
2003)

– Pattern independent probabilistic estimation (R. M. 
Rao ISLPED 2003)
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Estimation: Pattern Dependent
• For an given input vector switch-level simulation is 

performed
• State of internal nodes is determined for the input vector
• Unit width gate leakage of a device is determined for 

different states
• The total gate leakage is computed by scaling the width 

of each device by unit-width leakage in that state and 
adding the individual leakages:

Iox = ΣMOS Iox,MOS(s(i)) * WMOS

Source: R. M. Rao ISLPED2003
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Estimation: Pattern Independent
• Probability analysis in conjunction with state-

dependent gate leakage estimation is used.
• The average gate leakage of the circuit is the 

probabilistic mean of the gate leakage of the 
circuit:

Iox,avg = E(ΣMOS Iox,MOS(s(i)) * WMOS)
= ΣMOS WMOS * ( Σj Iox,MOS(s(j)) * P(j) )

where P(j) is the probability of occurrence of 
state j.

Source: R. M. Rao ISLPED2003
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Estimation: Heuristic and Look-up Tables
• Interaction between gate leakage and subthreshold 

leakage are used to develop heuristic based estimation 
techniques for state-dependent total leakage current.

• Heuristics based on lookup tables are available to 
quickly estimate the state-dependent total leakage 
current for arbitrary circuit topologies.

Source: Lee ISQED2003, TVLSI2003 
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Estimation: Loading Effect on leakage
1. Represent circuit as graph: vertex 

logic gate and edge net
2. Sort vertices in topological order 

and initialize leakage values to zero
3. Propagate input vector and assign a 

logic state to each gate
4. Calculate total input and output 

loading current due to gate leakage
5. Calculate the leakage of the 

individual logic gates
6. Compute the leakage of the total 

circuit by adding leakage of 
individual gates.

Source: Mukhopadhyay DATE2005 and TCAD 2005 (to appear)
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Techniques for Gate Leakage Reduction

Research in Gate leakage is catching up and 
have not matured like that of dynamic or 
subthreshold power. Few methods: 

Dual TOX (Sultania DAC 2004, Sirisantana 
IEEE DTC Jan-Feb 2004)
Dual K (Mukherjee ICCD 2005)
Pin and Transistor Reordering (Sultania ICCD 
2004, Lee DAC 2003)
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Dual TOX Technique: Basis

• Gate oxide tunneling current Ioxide (k is a 
experimentally derived factors): 

Ioxideα (Vdd /Tgate)2 exp (– k Tgate/Vdd) 

• Options for reduction of tunneling current:
– Decreasing of supply voltage Vdd (will play its role)
– Increasing gate SiO2 thickness Toxide
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Dual TOX Technique: Basis

N+

P

N+

P

N+N+

High TgateLow Tgate
Larger Igate ,
Smaller delay

Smaller Igate ,
Larger delay
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Dual TOX Technique: Approach

Advantages:
• Reduces DIBL effect
• Constant Input Gate Capacitance for a given Weff,

Aspect Ratio = = constant 

• Our approach – scale channel length (L) as well 
as Tox; Tox is almost linearly scaled with Leff

effox

eff

T
L

,

effox

effox

T
L

,

∈
Cmicron =              = constant
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Critical path using STA

Dual TOX Technique: Algorithm

Assign all 
transistors to Tox-Hi

Compute cost =  
Leakage
Delay

Δ
Δ

Choose transistor with 
most negative cost

If 
no transistor chosen 
or Delay constraint 

met, then EXIT

Assign Tox-Lo to 
chosen transistor and 

update

(always negative)

Source: Sultania DAC 2004
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Dual TOX Technique: Results

• Iterative algorithm that
– Generates delay/leakage tradeoffs
– Meets delay constraint

• For same delay an average leakage reduction of 
83% compared to the case where all transistors 
are set to Tox-Lo.

• Minor changes in design rules and an extra 
fabrication step is required, extra mask required.

Source: Sultania DAC 2004
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Dual K Technique: Basis

N+

P P

N+N+N+
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Dual K Technique: Basis
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Dual K Technique: Basis
(Four Combinations of Kgate & Tgate)

P

PP

P
N+

(1) K1T1

(4) K2T2
(3) K2T1

(2) K1T2

N+

N+N+ N+N+

N+N+

Tunneling 
Current ↓
Delay ↑
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Dual K Technique: Basis
(Example: Four Types of Logic Gates)

AssumptionAssumption: : all transistors of a logic gate are of 
same Kgate and equal Tgate.

(1) K1T1 (2) K1T2 (3) K2T1 (4) K2T2
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Dual K Technique: Basis

Use of multiple dielectrics (denoted as Kgate)  of 
multiple thickness (denoted as Tgate) will reduce 
the gate tunneling current significantly while 
maintaining the performance. 

Source: Mukherjee ICCD 2005
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Dual K Technique: New Dielectrics

• Silicon Oxynitride (SiOxNy) (K=5.7 for SiON)
• Silicon Nitride  (Si3N4) (K=7)
• Oxides of :

– Aluminum (Al),  Titanium (Ti), Zirconium  (Zr), 
Hafnium (Hf), Lanthanum (La),  Yttrium (Y), 
Praseodymium (Pr), 

– their mixed oxides with SiO2 and Al2O3

• NOTE: Igate is still dependent on Tgate
irrespective of dielectric material.
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Dual K Technique: Strategy

• Observation: Tunneling current of logic gates 
increases and propagation delay decreases in 
the order K2T2, K2T1, K1T2, and K1T1 (where, K1
< K2 and T1 < T2).

• Strategy: Assign a higher order K and T to a 
logic gate under consideration
– To reduce tunneling current
– Provided increase in path-delay does not violate the 

target delay

Source: Mukherjee ICCD 2005
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Dual K Technique: Algorithm

Step 1: Represent the network as a directed 
acyclic graph G(V, E).

Step 2: Initialize each vertex v ∈ G(V, E) with the 
values of tunneling current and delay for K1T1
assignment.

Step 3: Find the set of all paths P{Πin} for all vertex 
in the set of primary inputs (Πin), leading to the 
primary outputs Πout .

Step 4: Compute the delay DP for each path p ∈
P{Πin}. Source: Mukherjee ICCD 2005
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Dual K Technique: Algorithm

Step 5: Find the critical path delay DCP for K1T1
assignment.

Step 6: Mark the critical path(s) PCP, where PCP is 
subset P{Πin}.

Step 7: Assign target delay DT = DCP.

Step 8: Traverse each node in the network and 
attempt to assign K-T in the order K2T2, K2T1, 
K1T2, and K1T1 to reduce tunneling while 
maintaining performance.

Source: Mukherjee ICCD 2005
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Dual K Technique: Characterization
(How to Model High-K?) 

• The effect of varying dielectric material was 
modeled by calculating an equivalent oxide 
thickness (T*

ox) according to the formula:
T*

ox = (Kgate / Kox) Tgate

• Here, Kgate is the dielectric constant of the gate 
dielectric material other than SiO2, (of thickness 
Tgate), while Kox is the dielectric constant of SiO2.
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Dual K Technique: Characterization

• The effect of varying oxide thickness Tox was 
incorporated by varying TOXE in SPICE model.

• Length of the device is proportionately changed 
to minimize the impact of higher dielectric 
thickness on the device performance :

L* = (T*
ox / Tox) L 

• Length and width of the transistors are chosen to 
maintain (W:L) ratio of (4:1) for NMOS and (8:1) 
for PMOS.
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Dual K Technique: Characterization

Igate Vs Thickness Igate Vs Dielectric Constant

Tpd Vs Thickness Tpd Vs Dielectric Constant
Source: Mukherjee ICCD 2005
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Dual K Technique: Experimental Setup

• DKDT algorithm integrated with SIS, and tested 
on the ISCAS'85 benchmarks.

• Used K1 = 3.9 (for SiO2),  K2 = 5.7 (for SiON), T1 = 
1.4nm, and T2 = 1.7nm for our experiments.

• T1 is chosen as the default value from the 
BSIM4.4.0 model card and value of T2 is 
intuitively chosen

Source: Mukherjee ICCD 2005
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Dual K Technique: Experimental Results
Comparision of K1T1 Vs DKDT Assignment with %Reduction

0
5

10
15
20
25
30
35
40

C432
 

C499
 

C880
 

C135
5

C190
8

C267
0

C354
0

C531
5

C628
8

C755
2

Benchmarks

Tu
nn

el
in

g 
C

ur
re

nt
 in

m
ic

ro
A

m
ps

82
84
86
88
90
92
94
96
98
100

%
R

ed
uc

tio
n

K1T1
DKDT
%Reduction

Tunneling Current  and % Reduction

Benchmark Circuits

Tu
nn

el
in

g 
C

ur
re

nt
 ( 
μA

)

%
 R

eduction

Source: Mukherjee ICCD 2005



Saraju P. Mohanty 54

Pin Reordering with Dual-Tox
A key difference between the state dependence of Isub and Igate
• Isub primarily depends on the number of OFF in stack
• Igate depends strongly on the position of ON/OFF transistors

Source: Sultania ICCD 2004

no transistor/
pin reordering

best possible 
pin reordering

best possible 
transistor reordering

best possible transistor
and pin reordering

• Results improve by 5-10% compared to dual-Tox approach.
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Conclusions and Future Research
• Gate leakage is an major component of power 

consumption in nano-scale CMOS circuits.
• Gate leakage is present in both ON and OFF 

state of a MOS device.
• Few research works so far have addressed its 

estimation in CMOS circuits.
• Few research works address its reduction in 

CMOS circuit.
• Use of high-K is expected to be a stable solution 

for the gate leakage problem, which is largely 
unaddressed from modeling and synthesis flow 
point of view. 
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Thank You
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