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Outline of the Talk

m CMOS scaling —Trends and Effects

m Power consumption redistribution due to scaling
m Components of Power Dissipation
m Components of Leakage

m Gate leakage analysis

m Gate leakage variation with process and design
parameters

m Gate leakage reduction
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Almost the entire industry today is driven by CMOS
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I Scaling Trend — Transistor Count
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VLSI technology is the fastest growing
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technology in the human history.
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‘ ( g Trend — Frequency and Performance
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* With scaling the transistors are becoming twice as fast as
the previous generation.

e Applications are also being targeted for TIPS level
performance.
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fun What is Physically Scaled ?
bl Gate Length and Gate thickness)
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 Gate length of the transistor has been decreasing with
technology scaling.

 All the other dimensions including gate oxide thickness have
been scaled down to support this trend
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Supply and Threshold Voltages (V)
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l Trend — Power Dissipation
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m Power dissipated by the transistor has manifested itself
most emphatically along with scaling.

m The power density is increasing exponentially

Source: Intel
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j er Dissipation Components in CMOS

Total Power Dissipation

Static Dissipation Dynamic Dissipation

— Sub-threshold current —>Capacitive Switching

>*Tunneling current
—Short circuit
—> Reverse-biased diode Leakage

— Tunneling current

— Contention current
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gl Leakages in Nanoscale CMOS

|, : reverse bias pn junction (both ON & OFF)
|, : subthreshold leakage (OFF )

l; :oxide tunneling current (both ON & OFF)

|, : gate current due to hot carrier injection (both ON & OFF)
5 : gate induced drain leakage (OFF)

| : channel punch through current (OFF)

P-Substrate
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ling Trends and Effects : Summary

m Scaling improves
m Transistor Density of chip
m Functionality on a chip
m Speed and frequency of operation
m Higher performance

m Scaling and power dissipation
m Active power remains almost constant

m Components of leakage power increase in number
and in magnitude.

m Gate leakage (tunneling) predominates for sub 65-
nm technology.
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5! y-Band Diagram Showing Tunneling
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NOTE: For short channel MOS FN tunneling is negligible.
Source: AgarwallEEPDTMay2005
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Gate oxide tunneling current components in BSIM4.4.0 model.

* |3, I5q- COmponents due to the overlap of gate and diffusions

* lyess lgegr COmponents due to tunneling from the gate to the

diffusions via the channel and

* l: Component due to tunneling from the gate to the bulk via
the channel.

Note: all the currents are with respect to gate.
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Gate Leakage for a MOS: |,

Calculated by evaluating
1 both the source and
drain components

For a MOS, | = (|l
+|Igd| +|Igcs| +|Igcd| +|Igb|)

Values of individual
BSIM4 Model components depends on
states, ON or OFF
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wa@V10S Gate Leakage Components in
e=Bliferent Phases of a Switching Cycle
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PMOS: Gate Leakage Paths
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s gOS Gate Leakage Components in
b=k ferent Phases of a Switching Cycle
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Vs PMOS: 3 Mechanisms of Tunneling

Three major mechanisms for direct tunneling:

1.electron tunneling from conduction band (ECB)
2.electron tunneling from valence band (EVB) +VOX‘ e o
3.hole tunneling from valance band (HVB) My T—-{ ox

ECB
For NMOS: [\EC
*ECB controls gate-to-channel tunneling in inversion Jeve c
*EVB controls gate-to-body tunneling in depletion-inversion e v

*ECB controls gate-to-body tunneling in accumulation

e

For PMQOS:

*HVB controls the gate-to-channel tunneling in inversion
*EVB controls gate-to-body tunneling in depletion-inversion
*ECB controls gate-to-body tunneling in accumulation

@

p-substrat

<
n* polygilico
()

mi| m

HVB

>

PMOS < NMOS: @, for HVB (4.5 eV) is higher than @
for ECB (3.1 eV), the tunneling current associated with

HVB is less than that with ECB.
Source: Roy Proceedings of IEEE Feb2003
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Leakage: Effect of Parameter Variation
(NMOS)
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Leakage: Effect of Parameter Variation
(NMOS)

Subthreshold
Leakage
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_Q-

300 320 340 360

Temperature (K)

Source: Agarwal IEE Proc. CDT May 2005
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Sumfll Inverter: Gate Leakage Paths
S Putting NMOS and PMOS together)
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Inverter: Average Gate Leakage

Qo

 Low Input : Input supply feeds the tunneling current.
 High Input : Gate supply feeds the tunneling current.

\Y%
Cow nput JRRCIRNRT 1 . SR

= (L::'Jr_fl.) —T—\_I

[ gate  — 7
E UNIVERSITY,,
NORTH [EXAs Saraju P. Mohanty 24




80 Gate Leakage in 2-input NAND
ity T —E—
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eakage in 2-input NAND: Transient Study
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eakage in 2-input NOR: Transient Study

Trarsient Response
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fiate Leakage in 2-input Logic Gates
sltage Current’s Dependence on Parameters)

o
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Gate Leakage Estimation

 What we have observed?
— Gate leakage Is input state dependent

— Gate leakage is dependent on position of ON/OFF
transistors

— Gate leakage Is sensitive to process variation

« Gate leakage estimation methods for logic level
description of the circulit:

— Pattern dependent estimation (R. M. Rao ISLPED
2003)

— Pattern independent probabilistic estimation (R. M.
Rao ISLPED 2003)

CSE UNIVERSITY,,
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R w"

#il | Estimation: Pattern Dependent

e For an given input vector switch-level simulation is
performed

o State of internal nodes is determined for the input vector

e Unit width gate leakage of a device Is determined for
different states

 The total gate leakage is computed by scaling the width
of each device by unit-width leakage In that state and
adding the individual leakages:

oX — Z|\/|os lox Mos(S(D) * Wyos

CS E UNIVERSITY,
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stimation: Pattern Independent

 Probablility analysis in conjunction with state-
dependent gate leakage estimation Is used.

« The average gate leakage of the circuit Is the
probabilistic mean of the gate leakage of the
circuit;

lox.avg = E(Zvos lox Mos(S(1)) * Wyos)

= Zpmos Whos * ( Zj lox mos(S()) * P() )
where P()) Is the probability of occurrence of
state |.
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g e

ation: Heuristic and Look-up Tables

—
oy
r

R, i
I'-"'-'.'..-

e Interaction between gate leakage and subthreshold
leakage are used to develop heuristic based estimation
technigues for state-dependent total leakage current.

 Heuristics based on lookup tables are available to
quickly estimate the state-dependent total leakage
current for arbitrary circuit topologies.
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imation: Loading Effect on leakage

INPUT:
Graph G representing the circuit,
Input pattern I,
leakage components
of different gate type, size, loading

v

Topelogically sort the nodes in G;
Initialize Isubth = 0, Igate = 0, Ibtbt =0

v

Propagate logic value from primary inputs
to primary outputs, for input pattern I

“,.

@r each gate g5 in topological c—rdD
v

Calculate total input loading current (I;)
m
I; = Z.Igam(gf,k)
k=l

Calculate total output loading current {0,)
OI = Z Ig-ru (gf+l,k)
-l

¥
Isul::n:l:lij =f{I,.0p): Igateij =f{I;. O.): I'hﬂ:)tij. =f{I,. 0 X
¥
Isubth += Isubthl.l. : Igate += Igate;; Ibtbt += ]btbtij;
]
h 4
OUTPUT:
Isubth, Igate, Ibtbt

CSE

1.

Represent circuit as graph: vertex
- logic gate and edge - net

. Sort vertices In topological order

and initialize leakage values to zero

Propagate input vector and assign a
logic state to each gate

. Calculate total Input and output

loading current due to gate leakage

. Calculate the leakage of the

Individual logic gates

. Compute the leakage of the total

circuit by adding leakage of
Individual gates.

Source: Mukhopadhyay DATE2005 and TCAD 2005 (to appear)

(§
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m! for Gate Leakage Reduction

Research in Gate leakage Is catching up and
have not matured like that of dynamic or
subthreshold power. Few methods:

mDual T,y (Sultania DAC 2004, Sirisantana
EEE DTC Jan-Feb 2004)

= Dual K (Mukherjee ICCD 2005)

mPin and Transistor Reordering (Sultania ICCD
2004, Lee DAC 2003)
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Dual T,y Technique: Basis

 Gate oxide tunneling current |4 (k Is a
experimentally derived factors):

onide a (Vdd ITgate)2 exp (_ K TgateNdd)

e Options for reduction of tunneling current:
— Decreasing of supply voltage V4 (will play its role)

—Increasing gate SiO, thickness T,

E UNIVERSITY,,
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Dual T,y Technique: Basis

Larger | _ Smaller Iy ,

LoW Toole™ Smaller delay 7'M Teae™ Larger delay
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Jl Dual T,, Technique: Approach

e Our approach — scale channel length (L) as well
as T.,; T,, IS almost linearly scaled with L

Leff

ox?

Aspect Ratio = = constant

ox,eff

Advantages:
* Reduces DIBL effect
e Constant Input Gate Capacitance for a given W,

e L

Cricron = T: = constant

E UNIVERSITY,
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Assign all
transistorsto T

ox-Hi

Assign T, ,t
chosen transistor and
update

ADelay

|f ‘
Compute COoSt = puuma——
Pu Al eakage

no transistor chosen
or Delay constraint , _
met, then EXIT Choose transistor with (always negative)
most negative cost

Source: Sultania DAC 2004

CSE (S



Dual T,y Technique: Results

 |terative algorithm that
— Generates delay/leakage tradeoffs
— Meets delay constraint

 For same delay an average leakage reduction of
83% compared to the case where all transistors

are setto T, .

 Minor changes In design rules and an extra
fabrication step Is required, extra mask required.

Source: Sultania DAC 2004
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Dual K Technique: Basis

Larger | . Smaller I, ,

gate 1
High Kgate Larger delay

Low Kgate Smaller delay
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Dual K Technique: Basis

Larger | Smaller | e

gate 1
High Tgate Larger delay

LOW Tgale™ Smaller delay
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Dual K Technique: Basis
our Combinations of K__,. & T

gate gate)

(1) K, T, (2) K,T, Tunneling
Current
| l | Delay T

(3) K,T, (4) K, T,

CSE UNIVERSITY,,
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Dual K Technique: Basis
“=%ample: Four Types of Logic Gates)

Assumption: all transistors of a logic gate are of
same K, and equal T .

K
r C

(1) KTy 2 KT, QB)KT, (4K,
CSE r( Uﬁgg{églyms Saraju P. Mohanty 43




Dual K Technique: Basis

Use of multiple dielectrics (denoted as K,,,) of
multiple thickness (denoted as T,,) will reduce
the gate tunneling current significantly while
maintaining the performance.

Source: Mukherjee ICCD 2005
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Dual K Technique: New Dielectrics

* Silicon Oxynitride (SIO,N,) (K=5.7 for SION)
 Silicon Nitride (Si;N,) (K=7)
e Oxides of :

— Aluminum (Al),  Titanium (Ti), Zirconium  (Zr),
Hafnium (Hf), Lanthanum (La), Yttrium (YY),
Praseodymium (Pr),

— their mixed oxides with SiO, and Al,O,

 NOTE: I, Is still dependent on T
Irrespective of dielectric material.

gate

CSE UNIVERSITY,,
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Dual K Technique: Strategy

 Observation: Tunneling current of logic gates
Increases and propagation delay decreases iIn
the order K,T,, K,T,, K;T,, and K;T,; (where, K,
<K,and T, <T,).

o Strategy: Assign a higher order K and T to a
logic gate under consideration
— To reduce tunneling current

— Provided increase in path-delay does not violate the
target delay

Source: Mukherjee ICCD 2005
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Dual K Technique: Algorithm

Step 1: Represent the network as a directed
acyclic graph G(V, E).

Step 2: Initialize each vertex v € G(V, E) with the
values of tunneling current and delay for K;T;
assignment.

Step 3: Find the set of all paths P{II;} for all vertex
In the set of pnmary inputs (IT;), nIeadlng to the
primary outputs IT .

Step 4: Compute the delay D for each path p €

P{Hln} Source: Mukherjee ICCD 2005
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Dual K Technique: Algorithm

Step 5: Find the critical path delay Dqp for K;T;
assignment.

Step 6: Mark the critical path(s) Pqp, Where Pp IS
subset P{IT,}.

Step 7: Assign target delay D; = D¢p.

Step 8: Traverse each node in the network and
attempt to assign K-T in the order K,T,, K
K.T,, and K;T; to reduce tunnelrng w?nle
maintaining performance

Source: Mukherjee ICCD 2005
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‘"”“'*" ual K Technique: Characterization
(How to Model High-K?)

e The effect of varying dielectric material was
modeled by calculating an equivalent oxide
thickness (T ,) according to the formula:

T oX = (Kgate / Kox) Tgate

 Here, K, IS the dielectric constant of the gate
dielectric material other than SiO,, (of thickness
Tate): While K, Is the dielectric constant of SIO,.

E UNIVERSITY,,
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== Wﬂ

ZMual K Technique: Characterization

 The effect of varying oxide thickness T, was
iIncorporated by varying TOXE in SPICE model.

 Length of the device Is proportionately changed
to minimize the Impact of higher dielectric
thickness on the device performance :

L* = (T'ox / Tox) L

* Length and width of the transistors are chosen to
maintain (W:L) ratio of (4:1) for NMOS and (8:1)
for PMOS.
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* K Technique: Experimental Setup

« DKDT algorithm integrated with SIS, and tested
on the ISCAS'85 benchmarks.

» Used K, =3.9 (for SIO,), K, =5.7 (for SION), T, =
1.4nm, and T, = 1.7nm for our experiments.

« T, IS chosen as the default value from the
BSIM4.4.0 model card and value of T, Is
Intuitively chosen

Source: Mukherjee ICCD 2005
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Benchmark Circuits
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Pin Reordering with Dual-Tox

A key difference between the state dependence of |, and |
Sub primarily depends on the number of OFF in stack
depends strongly on the position of ON/OFF transistors

gate

gate
i T T e i L e O 5 B T B S T
P T Py T T Py I Ty Py T T3
Prob.(1) = 0.1 M Prob.(1)y = 0.4 M Prob.(1)=0.1 M Prob.(1) = 0.4 M
- - - -
P i Ts Py i T, P, Hi_ T p3 —|. T
P?‘Ob.(l):20.2_||_ Prob.(1) = 0.3 || Prob.(1) =02 | Prob.(1) = A
P —|!_ Ts Py _“f: T3 P —{I_ Ty Py —|I_ T:
Prob.(1) = 0.3 M Prob.(1y =0.2 Prob.(1) =0.3 Prob.(1) = 0.2
_P4 —|I_ Ta Py —|I_ Ty Py —1I_ Ty P4 —|!_ Ty
Prob.(1) =0.4 l Prob.(1y =0.1 I‘ Prob.(1) =04 I | Prob.(1) =0.1 I |
Tgat g = 0.1x0.2x0.3x0.4x0.1 [Igate,avg = 0.4x0.3x0.2x0.1x0.1 Jgate.avg = 0.1x0.2x0.3x0.4x10 Tgate,avg = 0.4x0.3x0.2x0.1x10
+ 0.2x0.3x0.4x10 + 0.3x0.2x0.1x10 + 0.2x0.3x0.4x10 + 0.3x0.2x0.1x10
+ 0.3x% + 0.2 + 0 + 0.2 .
+ 0.4x + 0.1 + 0 + 0.1
1.480 n! 0.270 0.: 0.096

no transistor/ | best possible best possible best possible transistor
pin reordering | pin reordering | transistor reordering and pin reordering

* Results improve by 5-10% compared to dual-Tox approach.

Source: Sultania ICCD 2004
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ﬂ Conclusions and Future Research

. Gate leakage Is an major component of power
consumption in nano-scale CMOS circuits.

 Gate leakage is present in both ON and OFF
state of a MOS device.

e Few research works so far have addressed Its
estimation in CMOS circuits.

e Few research works address Its reduction In
CMOS circutt.

» Use of high-K is expected to be a stable solution
for the gate leakage problem, which is largely
unaddressed from modeling and synthesis flow
point of view.
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Thank You
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