A Dual Oxide CMOS Universal Voltage Converter for Power Management in Multi-V_{DD} SoCs

Dhruba Ghai, Saraju P. Mohanty and Elias Kougianos
University of North Texas, Denton, TX 76203.
Email: dgv0010@unt.edu, smohanty@unt.edu and eliask@unt.edu

Introduction and Motivation

• Major components of total power dissipation are:
 1. Switching power dissipation.
 2. Short-circuit power dissipation.
 3. Leakage power dissipation.
 • Each power dissipation source is dependent on supply voltage (V_{dd}), some linearly and some quadratically.
 • Level-down conversion is used for reducing switching power dissipation in a circuit where the non-critical blocks are operated at lower supply voltage.
 • Level-up conversion is used as an interface where low V_{dd} cells (V_{dd}) drive high V_{dd} cells (V_{dd}), thereby reducing short-circuit power dissipation.
 • Blocking is used to shut down unused blocks in standby mode.
 • The proposed circuit performs all three functions, namely: level-up/down conversion and blocking of input signal.
 • It is called a Universal Level Converter (ULC).

Abstract

• Level Converters are becoming overhead for the circuits they are employed in. If their power consumption continues to grow, they will fail to serve their purpose.
 • We propose the application of a dual-tox (DOXCMOS) technique for power-delay optimization of a DC-DC voltage level converter. 83% power savings and 60% delay savings are achieved over existing designs. The proposed converter performs level-up/down conversion and blocking of input signal.
 • The design is robust, producing stable output for voltages as low as 0.6V and loads varying from 10fF to 200fF. The entire design cycle has been carried out up to physical design, including parasitic re-simulation at 90nm technology. To the best of the authors’ knowledge, this is the first ULC subjected to DOXCMOS technology for power-delay optimization.

ULC Transistor Level Design

The ULC consists of input voltage signal (Vin), control signals (S1 and S0), supply voltages (Vddl and Vddh) and output voltage signal (Vout).

ULC = Vddl, Vddh

1. Switching power dissipation. 2. Short-circuit power dissipation.
3. Leakage power dissipation.

Area optimal physical design of the ULC for 90nm technology.

Conclusions and Future Work

• We propose a DOXCMOS approach along with transistor geometry variations to reduce power-delay overhead of Universal Level Converter.
 • Robustness of ULC is tested using parametric, load and power analysis. The design is area optimal. The physical design is also presented.
 • This design will be re-implemented at 45nm node. Layout rules will be scaled from 90nm to 45nm. Efforts are also going on to include the block functionality in the level converter design itself.