LOW POWER NANOSCALE BUFFER MANAGEMENT FOR NETWORK ON CHIP ROUTERS

- Suman K. Mandal, Texas A&M University
- Ron Denton, Texas A&M University
- Saraju P. Mohanty, University of North Texas
- Rabi N. Mahapatra, Texas A&M University

Contact: skmandal@cse.tamu.edu

Acknowledgement: This research is supported in part by NSF award number 0509483 and 0854182.
Talk Outline

- Introduction and Motivation
- Contributions
- Related Prior Research
- Router Architecture
- Block-Level Power Management
- Low Power SRAM Buffer
- Flit-Level Power Management
- Conclusions
Introduction and Motivation
Introduction: Why NoC?

- Network on Chip
 - Next Gen Interconnect
 - GALS Approach
- Advantages
 - High Bandwidth
 - Scalable
 - Extensible
- Disadvantages
 - Power Hungry
NoC: Structure

- NoC consists of routers, links and core-network interfaces (CNI).
- Routers are responsible for routing communication between the different parts.
- The CNI provides an interface for the IP cores to the NoC.
NoC: Salient Features

- Buffer size, type and allocation policy play an important role in the performance and efficiency of a NoC router.
- Buffers can consume as much as up to 79% of NoC router power.
- Buffer utilization in NoC router is dependent on network congestion.
- Depending on communication pattern of an application a buffer utilization of a router varies over time.
Chip Power Breakdown

Cores 65%

Other 35%

Clock 12%

Buffer 8%

Crossbar 5%

Links 6%

Other 4%

NoC Consumes about 35%
Out of which 22% is buffer
Traffic and Buffer Utilization

Traffic Types By Volume

- Random: 14%
- Short Burst: 29%
- Long Burst: 57%

Buffer Utilization by Position

Although Peak utilization is high, Average utilization is much lower.
Types of NoC Buffers

- First-In-First-Out (FIFO) registers.
- Static random access memory (SRAM) based buffers.
Nanoscale SRAM buffers are suitable for NoC router design because of their speed, density and reliability.
Motivation for this Research

- Efficient buffer management is necessary to ensure high performance and low power.
- Power dissipation characteristics of nanoscale SRAMs are unique and hence traditional low power design techniques are not sufficient to ensure minimum power operation.
Contributions of this paper
Idea!

- Can the knowledge of traffic be utilized to minimize the buffer requirement?
 - Yes, because burst modes can be detected easily.

- How to minimize the buffer requirement?
 - By dynamically resizing the buffers to required size.
A feedback controlled block-level buffer management is proposed for power management.

An adaptive controller for efficient flit-level power management is proposed.

Both power management techniques are thoroughly evaluated for performance.

Results outperform static allocation by 21% increase in throughput and 20% reduction in energy consumption.
Related Prior Research
Prior Research

- There have been significant research on router buffer power management for low power.
- Both circuit level and system level techniques have been proposed for NoC power management.
- Detail discussion on existing research is available in Simunic-DATE2002, Banerjee-NoC-Symposium2007, Ogras-CODES2005.
Prior Research ...

- Zhang et al. GLSVLSI 2009:
 - A centralized buffer management to achieve enhanced buffer utilization.
 - Demonstrated a 50% decrease in total buffer requirement in their router.
 - Did not provide an active power management strategy.
Wang et al. DATE 2008:

- Proposed a zero-efficient design for router buffers that optimizes the circuit level design of router buffer.
- Basis of their research is predominance of zeros in the NoC traffic.
- This is primarily a circuit level work under the assumption of high zero density and does not necessarily fare well when there is majority of one.
- They do not consider any system-level information or active power management technique to adapt to the dynamic nature of the traffic.
Router Architecture
The proposed buffer design is suitable for routers with centralized buffer management.

To effectively utilize the central buffer design, a concept of virtual buffer is introduced.

Queue management is performed in the physical buffer.

A concept of set and line is introduced for allocating buffer.
The virtual buffers allow independent management of the central buffer structure.

The physical buffer is managed centrally and each virtual buffer may or may not be mapped to a physical buffer.

To be able to effectively perform power management using power gating the buffer is grouped in blocks.
Central Buffer Router Architecture
Dynamic Buffer Management
Block-Level Power Management

- Traffic flow is modeled as a feedback loop.
- The buffer size is controlled by a threshold function.

\[f(n) \]

\[\lambda = \text{Buffer Allocation Rate} \]
\[\mu = \text{Buffer Free Rate} \]
\[\lambda' = \text{observed traffic} \]
\[f = \text{back pressure} \]

Block-Level Feedback System
Controller FSM

- Update FlowDensity
- timeout?
 - No
 - New buffer - Old buffer > threshold
 - Yes
 - requirement
- No
How to Resize Buffer

Solution

- Organize Buffer in blocks
- Turn off un-used blocks

Challenge

- Central Buffer Router is needed
Performance Results

Latency Comparison

Throughput Comparison

21% Throughput Improvement at negligible loss of latency
Energy Savings

10% Energy Savings Compared to Static Buffer
Low Power SRAM Buffer
7-Transistor Low Leakage SRAM

(A)

(B)

- dynamic current
- gate leakage current
- subthreshold leakage current
SRAM Power Model

0 and 1 does not require same energy!

Table: Static and Dynamic Power Dissipation of SRAM.

<table>
<thead>
<tr>
<th>Power</th>
<th>Operation</th>
<th>Mean (µ)</th>
<th>Standard Deviation (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Power (7T – 45nm)</td>
<td>Total</td>
<td>100.5 nW</td>
<td></td>
</tr>
<tr>
<td>Static Noise Margin</td>
<td>303.3 mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate Leakage</td>
<td>Write 1</td>
<td>21.2 nW</td>
<td>9.4 nW</td>
</tr>
<tr>
<td></td>
<td>Write 0</td>
<td>21.9 nW</td>
<td>9.5 nW</td>
</tr>
<tr>
<td></td>
<td>Read 1</td>
<td>12.9 nW</td>
<td>5.4 nW</td>
</tr>
<tr>
<td></td>
<td>Read 0</td>
<td>7.8 nW</td>
<td>3.2 nW</td>
</tr>
<tr>
<td></td>
<td>Store 1</td>
<td>2.8 nW</td>
<td>1.8 nW</td>
</tr>
<tr>
<td></td>
<td>Store 0</td>
<td>1.0 nW</td>
<td>0.5 nW</td>
</tr>
<tr>
<td>Subthreshold Leakage</td>
<td>Write 1</td>
<td>38.2 nW</td>
<td>21.1 nW</td>
</tr>
<tr>
<td></td>
<td>Write 0</td>
<td>7.8 nW</td>
<td>19.0 nW</td>
</tr>
<tr>
<td></td>
<td>Read 1</td>
<td>12.3 nW</td>
<td>27.0 nW</td>
</tr>
<tr>
<td></td>
<td>Read 0</td>
<td>13.5 nW</td>
<td>32.1 nW</td>
</tr>
<tr>
<td></td>
<td>Store 1</td>
<td>10.8 nW</td>
<td>21.0 nW</td>
</tr>
<tr>
<td></td>
<td>Store 0</td>
<td>16.2 nW</td>
<td>2.3 nW</td>
</tr>
<tr>
<td>Dynamic Power</td>
<td>Write 1</td>
<td>39.2 nW</td>
<td>22.1 nW</td>
</tr>
<tr>
<td></td>
<td>Write 0</td>
<td>5.1 nW</td>
<td>20.0 nW</td>
</tr>
<tr>
<td></td>
<td>Read 1</td>
<td>14.3 nW</td>
<td>30.0 nW</td>
</tr>
<tr>
<td></td>
<td>Read 0</td>
<td>15.5 nW</td>
<td>32.1 nW</td>
</tr>
<tr>
<td></td>
<td>Store 1</td>
<td>12.8 nW</td>
<td>22.0 nW</td>
</tr>
<tr>
<td></td>
<td>Store 0</td>
<td>17.2 nW</td>
<td>2.9 nW</td>
</tr>
</tbody>
</table>
Idea!

- Encode flits so that the storage is least energy consuming
- Done by utilizing system level information about flit content
Flit-Level Power Management
Flit-Level Power Management: Approach

- A dynamic encoding technique is applied per flit to for further energy efficiency.
- Invert flits before writing to buffer if resulting energy consumption is less.
- Use an adaptive controller to trigger inversion.
The Adaptive Controller

- Any flit can be stored in one of the three states: Active 0, Active 1 or Sleep.
- A linear adaptive control mechanism is designed to assign the flit storage states dynamically.

- A simple estimator is designed for low overhead.
- Flits are marked to be ‘1-dense’ by adding a bit to header.
- A simple estimate is the frequency of this bit being set.
The Adaptive Controller

Controller FSM

Flip = 0

Flip = 1

C0 = Cost w/o Inversion

C1 = Cost w/ Inversion

Update Estimate

t % T = 0

No

Yes

No

Yes
Energy Savings

20% Energy Savings Compared to Generic Design
Conclusions
Conclusions

- A novel low power nano-CMOS buffer design was presented.
- Combined block and flit level power management is performed for throughput and power efficiency.
- Proposed technique utilizes system level information for effective power management of router buffer.
- Experimental evaluation have demonstrated the proposed design to be outperforming static buffer allocation by 21% in terms of throughput while consuming up to 20% less power.
Thank You!