

BCH Code Based Multiple Bit Error Correction in GF Multiplier Circuits

P. Mahesh¹ & A. M. Jabir : Oxford Brookes University
J. Mathew² & D. K. Pradhan : Bristol University
S. P. Mohanty³ : University of North Texas
E-mail: 09137484@brookes.ac.uk¹, jimson@cs.bristol.ac.uk², saraju.mohanty@unt.edu³

Presented by: Oleg Garitselov : University of North Texas

Overview

- Motivation
- Background
- Galois Arithmetic Circuits
- BCH Code Based Error Correction
- Design Steps
- Experimental Results
- Conclusion & Future Work

Motivation

Fault attacks on Crypto. Hardware Laser on the AL-AH registers

AL-AH registers

Targetted region

Previous Work

Ref: M. Nicoliadis , "Carry checking/parity prediction adders and ALUs ", IEEE Trans. VLSI Systems, vol. 11, Oct. 2003

Hardware Redundancy (TMR)

isQED

- Also called *Galois Field*, denoted by GF(*N*)
- $N = p^k$, p is a prime number, and k is an integer
- Each element is a *k*-tuple
- There are exactly *N* elements in the field (0, 1,..., *N*-1) or (0, 1, α , α^2 , α^3 ,..., α^{N-2}) where, α is a primitive element

Finite Field

- Two operators
 - '+' called addition operation forming Abelian Group
 - '.' called multiplication operation forming Abelian group.
- Additive and multiplicative identities 0 and 1 respectively
- Additive and multiplicative inverse exists for each element

$$[0, 1, \alpha, \alpha^2] = [0, 1, \alpha, \beta]$$

Elements can be represented in GF(2ⁿ) as 2-tuples over GF(2).

Let $\alpha^2 = \beta$ Thus we have 4 elements 0, 1, α and β

GF(4)	2-tuple	of GF(2)	Polynomial Representation		
	a ₁	a 0	<i>a</i> ₁ <i>x</i> + <i>a</i> ₀		
0	0	0	0		
1	0	1	1		
α	1	0	x		
β	1	1	(<i>x</i> +1)		

9

Addition and Multiplication

• Addition and Multiplication in GF(4)

> β is multiplicative inverse of α , and vice versa.

Generation of GF(2^m)

- Let us generate GF(8) with PP p(x) = x³ + x + 1.
- Let α be a root of p(x), i.e. $p(\alpha) = 0$.
- Then $\alpha^3 + \alpha + 1 = 0$, i.e. $\alpha^3 = \alpha + 1$.

α^{0}	=	1	0	\leftrightarrow	[0,0,0]
$lpha^1$	=	α	α	\leftrightarrow	[0,1,0]
α^{2}	=	$lpha^2$	α^2	\leftrightarrow	[1,0,0]
α^{3}	=	$\alpha + 1$	$\alpha^3 = \alpha + 1$	\leftrightarrow	[0,1,1]
$lpha^4$	=	$\alpha^2 + \alpha$	$\alpha^4 = \alpha^2 + \alpha$	\leftrightarrow	[1,1,0]
α^{5}	=	$\alpha^3 + \alpha^2 = \alpha^2 + \alpha + 1$	$\alpha^5 = \alpha^2 + \alpha + 1$	\leftrightarrow	[1,1,1]
α^{6}	=	$\alpha^2 + 1$	$\alpha^6 = \alpha^2 + 1$	\leftrightarrow	[1,0,1]
0	_		$\alpha^7 = 1$	\leftrightarrow	[0,0,1]

Multiplication is done by using polynomial mod a primitive polynomial P(x). i.e. $\alpha(x) \cdot \beta(x) \mod P(x)$

Let
$$P(x) = x^2 + x + 1$$

Thus $\alpha \cdot \beta = x (x + 1) = x^2 + x$

So
$$(x^2 + x) \mod x^2 + x + 1 = 1$$

 $\alpha \cdot \beta = 1$
 $\alpha^{-1} = \beta, \beta^{-1} = \alpha$
 $\alpha \operatorname{and} \beta \operatorname{are inverse of each}$
 $\alpha \operatorname{other}$

Figure:2 GF(4) multiplier

Multiple Bit Error Correction Using BCH Codes

Multiple Bit Error Correction Using BCH Codes: The Design Architecture

OXFORD BROOKES UNIVERSITY

Multiple Bit Error Correction Using BCH Codes: Synd. Generator and BCH Decoder

Multiple Bit Error Correction Using BCH

Experiments & Results

Experiments & Results

Property	[12]	[10]	Proposed	Proposed	Proposed]
#errors correction	single	single	3 Errors	4 Errors	5 Errors	←
Coding technique	Hamming	LDPC	BCH	BCH	BCH	1
Overhead	>100%	100%	150.4%	164.04%	170.4%]

Area comparison with other techniques

		Maga					
	/test_bch_top/b	0000000000001111	000000000000000000000000000000000000000	21111	Bits 1.2 & 16 are	erroneous	
	/test_bch_top/c_out	000000000000000000000000000000000000000	000000000000000000000000000000000000000		in the second		
	/iest_bch_top/luut1/a	000000000000000000000000000000000000000	000000000000000000000000000000000000000	20000	1-1		
	/test_bch_top/kut1/b	0000000000001111	000000000000000000000000000000000000000	21111			
	/test_bch_top/last1/c_out	000000000000000000000000000000000000000	000000000000000000000000000000000000000	200000000000000000000000000000000000000	100000000000000000000000000000000000000	000000000000000000000000000000000000000	
				110000000000000000000000000000000000000	2000000000011000	0111000000000000000	010100000000
	/best_bch_top/uut1/t_p	000000000000000000000000000000000000000	0.0000000000000000000000000000000000000	2000			
	/test_bch_top/uut1/t_s1	Gerrected	00000	10110	00101	110 100	111101
	//est_bch_top/uut1/t_s3	odioprected	66650	I11000	111000	201010	2000:10
	/best_bch_top/uut1/t_s5		uquu -	01000	10010	200100	200011
	/test_bch_top/uut1/sig1	00000	00000	10110	00101	10100	111101
	/test_bch_top/luut1/sig2num10	00000	90000	111001	110001	111101	10110
	//test_bch_top/wut1/tig2num11	00000	00000	11111	20001	01100	01001
	/test_bch_top/laut1/sig2num1	00000	00000	110111	110011	201090	201010
	/test_bch_top/ku/t1/sig2den10	00000	00000	10101	11111	11000	200111
	//test_bch_tsp//uut1/sig2den1	00000	00000	01101	200111	10010	200101
	/test_bch_top/Lut1/sig2den	00000	00000	01111	01100	2000.10	10111
Modelsim simulation 🔍	//test_bch_top/kut1/sig2	00000	00000	200011	201010	(10000	2000.10
	/test_bch_top/Lut1/sg3num1	00000	00000	huu	200111	20111	11111
1	/iest_bch_top;kut1/sig3	00000	00000	110010	20000	110101	111010
results	/test_bch_top;luut1/t_cor1	0		+			
	<pre>/test_bch_top/aut1/t_cor2</pre>	0					
	/test_bch_top(last1/t_cor3	0					Street, Street, Trans.
	<pre>/test_bch_top,luut1/t_cor4</pre>	0			Bit positions	corresponds to err	oneous bits
	/test_bch_top/Luit1/t_cor5	0					
	/test_bch_tsp,but1/t_cor6	č					
	/test_bch_top;laut1/t_cor7	ě					
	/htst_bch_top/kut1/t_cor8	0					

[10] Fault Tolerant Bit Parallel Finite Field Multipliers Using LDPC Codes, J. Mathew, J. Singh, A. M. Jabir, M. Hosseinabady, D. K. Pradhan, IEEE 2008.
 [12] Single Error Correctable Bit Parallel Multipliers Over GF(2ⁿ), J. Mathew, A. M. Jabir, H. Rahaman, D. K. Pradhan, IET Computer Digital Tech., Vol. 3, Iss. 3, pp. 281-288, 2009.

Conclusion & Future Work

- Multiple bit error correction with compromise over slightly higher area
- For a fixed number of bits to be corrected, percent area overhead reduces with larger and more practical multipliers
- Highly parallel and efficient Chien-search block
- This scheme can be easily extendable to GF multiplier of any size

Questions?

