BCH Code Based Multiple Bit Error Correction in GF Multiplier Circuits

P. Mahesh ${ }^{1}$ \& A. M . Jabir : Oxford Brookes University
J. Mathew ${ }^{2}$ \& D. K. Pradhan : Bristol University
S. P. Mohanty ${ }^{3}$: University of North Texas

E-mail: 09137484@brookes.ac.uk ${ }^{1}$, jimson@cs.bristol.ac.uk ${ }^{2}$, saraju.mohanty@unt.edu3 ${ }^{3}$

Presented by:
Oleg Garitselov: University of North Texas

r^{2}	R BRISTOL

Overview

- Motivation
- Background
- Galois Arithmetic Circuits
- BCH Code Based Error Correction

- Design Steps
- Experimental Results
- Conclusion \& Future Work

Motivation

\square Fault attacks on Crypto. Hardware

Laser on the AL-AH registers

Previous Work

Ref: M. Nicoliadis , "Carry checking/parity prediction adders and ALUs", IEEE Trans. VLSI Systems, vol. 11, Oct. 2003

Hardware Redundancy (TMR)

- Also called Galois Field, denoted by GF(N)
- $N=p^{k}, p$ is a prime number, and k is an integer
- Each element is a k-tuple
- There are exactly N elements in the field (0 , $1, \ldots, N-1$) or ($0,1, \alpha, \alpha^{2}, \alpha^{3}, \ldots, \alpha^{N-2}$) where , α is a primitive element
- Two operators
- '+’ called addition operation forming Abelian Group
- ' ' called multiplication operation forming Abelian group.
- Additive and multiplicative identities 0 and 1 respectively
- Additive and multiplicative inverse exists for each element

GF(4) Elements

$$
\left[0,1, \alpha, \alpha^{2}\right]=[0,1, \alpha, \beta]
$$

Elements can be represented in $\mathrm{GF}\left(2^{n}\right)$ as 2-tuples over GF(2).

Example GF(4)

$$
\begin{aligned}
& \text { Let } \alpha^{2}=\beta \\
& \text { Thus we have } 4 \text { elements } 0,1, \alpha \text { and } \beta
\end{aligned}
$$

GF(4)	2-tuple of GF(2)	Polynomial Representation	
0	a_{1}	a_{0}	$a_{1} x+a_{0}$

University of
32 24 BRISTOI

Addition and Multiplication

- Addition and Multiplication in GF(4)

$>\beta$ is multiplicative inverse of α, and vice versa.

Generation of GF(2m)

- Let us generate $\mathrm{GF}(8)$ with $\operatorname{PP} p(x)=x^{3}+x$ +1 .
- Let α be a root of $p(x)$, i.e. $p(\alpha)=0$.
- Then $\alpha^{3}+\alpha+1=0$, i.e. $\alpha^{3}=\alpha+1$.

α^{0}	$=$	1
α^{1}	$=$	α
α^{2}	$=$	α^{2}
α^{3}	$=$	$\alpha+1$
α^{4}	$=$	$\alpha^{2}+\alpha$
α^{5}	$=$	$\alpha^{3}+\alpha^{2}=\alpha^{2}+\alpha+1$
α^{6}	$=$	$\alpha^{2}+1$
0	$=$	0

0	\leftrightarrow	$[0,0,0]$
α	\leftrightarrow	$[0,1,0]$
α^{2}	\leftrightarrow	$[1,0,0]$
$\alpha^{3}=\alpha+1$	\leftrightarrow	$[0,1,1]$
$\alpha^{4}=\alpha^{2}+\alpha$	\leftrightarrow	$[1,1,0]$
$\alpha^{5}=\alpha^{2}+\alpha+1$	\leftrightarrow	$[1,1,1]$
$\alpha^{6}=\alpha^{2}+1$	\leftrightarrow	$[1,0,1]$
$\alpha^{7}=1$	\leftrightarrow	$[0,0,1]$

Discover the power of ideas.

Multiplication

Multiplication is done by using polynomial mod a primitive polynomial $P(x)$. i.e. $\alpha(x) \cdot \beta(x) \bmod P(x)$

Let $P(x)=x^{2}+x+1$
Thus $\alpha \cdot \beta=x(x+1)=x^{2}+x$
So $\left(x^{2}+x\right) \bmod x^{2}+x+1=1$

$$
\begin{gathered}
\alpha \cdot \beta=1 \\
\alpha^{-1}=\beta, \beta^{-1}=\alpha
\end{gathered}
$$ other

Example

Figure:2 GF(4) multiplier

Proposed Approach

Multiple Bit Error Correction Using BCH Codes

Multiple Bit Error Correction Using BCH Codes: Synd. Generator and BCH Decoder

Symposium 2011

Multiple Bit Error Correction Using BCH I'SQED Codes

BCH Algo:

$\mathrm{BCH}(n, k)$, where n, k are code length \& message length respectively

> Generate parity, $P(x)=x^{n-k} \bullet M(x) \bmod g(x)$ Codeword, $E(x)=x^{n-k} \bullet M(x)+P(x)$

Syndrome, $S_{i}(x)=\left.E(x)\right|_{i=1,2 \ldots \ldots \alpha^{2 t}}$ where ' t 'is \# bits to be corrected

Find the error bit location by efficient parallel Chien-search

Corrected bits at output

Experiments \& Results

Symposium 2011

Overhead Analysis

置追 University of 20 BRISTOL

Experiments \& Results

Property	$[12]$	$[10]$	Proposed	Proposed	Proposed
\#errors correction	single	single	3 Errors	4 Errors	5 Errors
Coding technique	Hamming	LDPC	BCH	BCH	BCH
Overhead	$>100 \%$	100%	150.4%	164.04%	170.4%

Area comparison with other techniques

Modelsim simulation results

[10] Fault Tolerant Bit Parallel Finite Field Multipliers Using LDPC Codes, J. Mathew, J. Singh, A. M .Jabir, M. Hosseinabady, D. K .Pradhan, IEEE 2008.
[12] Single Error Correctable Bit Parallel Multipliers Over GF(2^{\wedge} m), J. Mathew, A. M . Jabir, H. Rahaman, D. K .Pradhan, IET Computer Digital Tech., Vol. 3, Iss. 3, pp. $281-288$, 2009.

Conclusion \& Future Work

- Multiple bit error correction with compromise over slightly higher area
- For a fixed number of bits to be corrected, percent area overhead reduces with larger and more practical multipliers
- Highly parallel and efficient Chien-search block
- This scheme can be easily extendable to GF multiplier of any size

Questions?

 Discover the power of ideas.

