Fast Optimization of Nano-CMOS Mixed-Signal Circuits Through Accurate Metamodeling

Oleg Garitselov, Saraju P. Mohanty, Elias Kougianos NanoSystem Design Laboratory (http://nsdl.cse.unt.edu), Dept. of Computer Science and Engineering University of North Texas, USA. Email-ID: saraju.mohanty@unt.edu

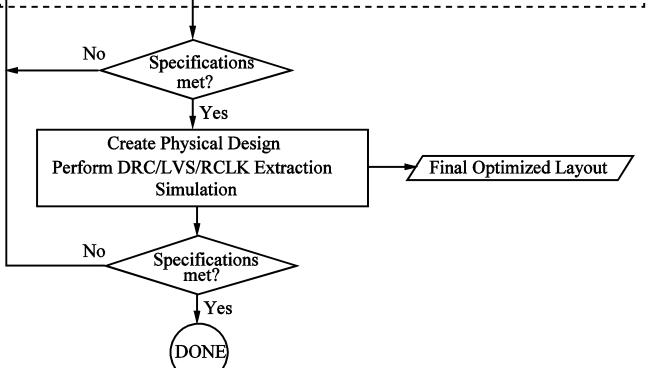
Abstract

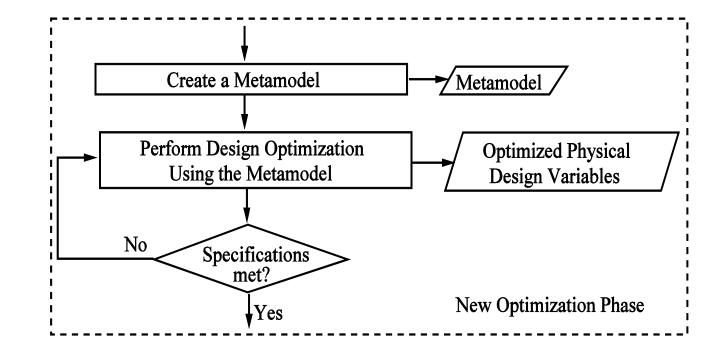
- Design optimization methodologies for AMS-SoCs with analog, digital and mixed-signal portions have not received significant attention due to their high *complexity.*
- Optimization and simulation make the design cycle longer.
- This paper presents a new approach to reduced design optimization time with use of metamodels.

Create Logical Design Schematic No Specifications met? Yes
Create Physical Layout Layout
Perform DRC/LVS/RCLK Extraction Netlist with Parasitics DONE Yes Specifications No
Parameterized Parasitic Netlist with Design Variables Parameterized Netlist
Perform Design Optimization Optimized Physical Design Variables
Optimization Phase

Input Specifications

Exhaustive Search Algorithm 1 Exhaustive Search Algorithm for W_n and W_p	Algorithm 3 Simulated Annealing Algorithm for W_n and W_p 1: Initialize iteration counter Counter = 0 2: Initialize first feasible solution S_i =F(mid(W_n),mid(W_p)) 3: Determine initial $Cost_i$ for the solution S_i 4: Initialize temperature T as T_i
1: Determine the step size $Step$ needed for each variable be- tween W_{nmax} , W_{nmin} and W_{pmax} , W_{pmin} for N amount of simulations 2: initialize the result counter $result_counter = 0$ 3: for $(i = W_{nmin}$ to W_{nmax} with $Step_{Wn})$ do 4: for $(j = W_{pmin}$ to W_{pmax} with $Step_{Wp})$ do 5: $S_{ij} = F(i, j)$ 6: calculate and record minimum (optional)	5: while (Cost is varying) do 6: Counter =Maximum number of iterations 7: while (Counter > 0) do 8: Generate random transition from S_i to S_i^* 9: if (S_i^* is acceptable solution) then 10: result = S_i^* 11: break both while loops 12: else 13: Calculate change in cost as: $A = -Cost$
 7: calculate and record maximum (optional) 8: calculate PFR (optional) 9: if (value is within the limit) then 	13: Calculate change in cost as: $\Delta_{Cost} = Cost_S - Cost_i^*$ 14: if $(\Delta_{Cost} < 0 \text{ random}(0,1) < e^{\frac{\Delta^{Cost}}{T}})$ then
10: $result[result_counter] = S_{ij}$ 11: $result_counter = resut_counter + 1$	15: Update the solution with new solution, $S \leftarrow S_i^2$ 16: end if


- Metamodels allow fast design space exploration and reduce the design cycle time.
- Three different optimization algorithms are compared: Exhaustive search, Tabu search, and Simulated Annealing. The algorithms are analysed to determine their stability for metamodeling-based optimization and are compared to simulation optimization based approaches.
- It is observed that the metamodel based annealing simulated optimization achieved $\sim 9000x$ speed-up over the actual circuit based optimization.


A metamodel is a mathematical formula that represents the circuit's behavior within a given range of parameters and is derived from sampling points.

The metamodel considered has the form:

 $y = \sum [a_{ii}x_1^i x_2^j]$

The optimization flow above is altered to include the metamodel. The section with dashed line is replaced by:

Case Study Circuit

The proposed approach has been used on a ring oscillator (RO) designed in 45 nm technology. The figure below shows the physical layout of the test circuit.

- end if 12: end for 13: 14: end for 15: Return *result*, minimum, maximum and PFR (optional) 10 GHz Frequency Contour **Tabu Search Algorithm 2** Tabu Search Algorithm for W_n and W_p 1: Initialize iteration counter Counter = 02: Conduct DOE analysis for W_n and W_p 3: Generate initial feasible solution S_i 4: while (*Counter* <Max_Counter) do Generate the next feasible solution S_i^* Counter = Counter + 1if $(S_i \text{ is not visited in the previous iterations})$ then if $(S_i^*$ is better solution than S_i) then if (result is found) then 9: break while loop 10: end if 11: $S_i = S_i^*$ 12: else 13:
- end if Counter = Counter - 1end while Decrease temperature as: $T = T * Cooling_Rate$ 20: 21: end while 22: return result

TABLE II EXHAUSTIVE SEARCH OPTIMIZATION FOR FREQUENCY OF 10 GHZ WITH 1% ACCURACY

	Points		Min	Max	Min	
Iterations	Found	Times	Power	Frequency	PFR	
	Parasitic Netlist Optimization					
10000	42	32 hours	$19.9 \mu W$	12.7 GHz	2.18e-15	
2500	13	8 hours	$19.9\mu W$	12.7GHz	2.18e-15	
625	2	2 hours	$19.9\mu W$	12.7GHz	2.18e-15	
	Metamodel Optimization					
1000000	4566	57.01 sec	19.9 μW	12.8 GHz	2.18e-15	
250000	1142	21.73 sec	$19.9\mu W$	12.8 GHz	2.18e-15	
10000	44	0.46 sec	$19.9\mu W$	12.7 GHz	2.18e-15	
2500	13	0.04 sec	$19.9\mu W$	12.7GHz	2.18e-15	
625	2	0.02 sec	$19.9\mu W$	12.7GHz	2.18e-15	

TABLE III TABU SEARCH OPTIMIZATION FOR FREQUENCY

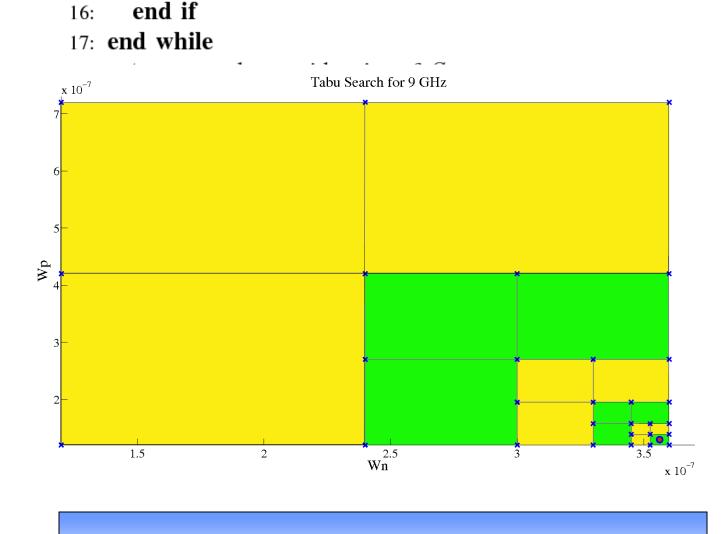
Number of	Results	Results			
Simulations	Needed	Found	Accuracy	Time	
Parasitic Netlist Optimization					
32	9 GHz	9.38 GHz	4.22%	6.25 min	
7	9.5 GHz	9.4 GHz	1.05%	1.37 min	
12	10 GHz	9.94 GHz	0.62%	2.34 min	
18	10.5 GHz	10.5 GHz	0.32%	3.52 min	
10	11 GHz	11.1 GHz	0.84%	1.95 min	
19	11.5 GHz	11.4 GHz	0.71%	3.71 min	
30	12 GHz	11.8 GHz	1.92%	5.86 min	
4	12.5 GHz	12.6 GHz	0.96%	0.78 min	
Metamodeling Optimization					
30	9 GHz	9.4 GHz	4.41%	8.6 ms	
7	9.5 GHz	9.41 GHz	0.94%	6.05 ms	
12	10 GHz	9.93 GHz	0.74%	7.18 ms	
24	10.5 GHz	10.5 GHz	0.32%	7.38 ms	
10	11 GHz	11.1 GHz	0.84%	6.41 ms	
19	11.5 GHz	11.4 GHz	0.71%	7.11 ms	
30	12 GHz	11.8 GHz	1.92%	9.3 ms	

i, j=0Where y is the response being modeled (e.g. frequency), $x = [W_n, W_p]$ is the vector of variables and a_{ii} are the coefficients. The multinomial regression is determined for k=4.

A metamodel is created on a full RCLK (resistance, capacitance, self and mutual inductance) parasitic extracted netlist, for each figure of merit.

This study is attempting to answer two main questions for mixed signal circuits:

•How fast can design space exploration be performed?


•How fast can layout generation and optimization be performed?

The Proposed Methodology for Metamodeling Optimization

The flowchart presents our parasitic design physical accurate aware optimization flow.

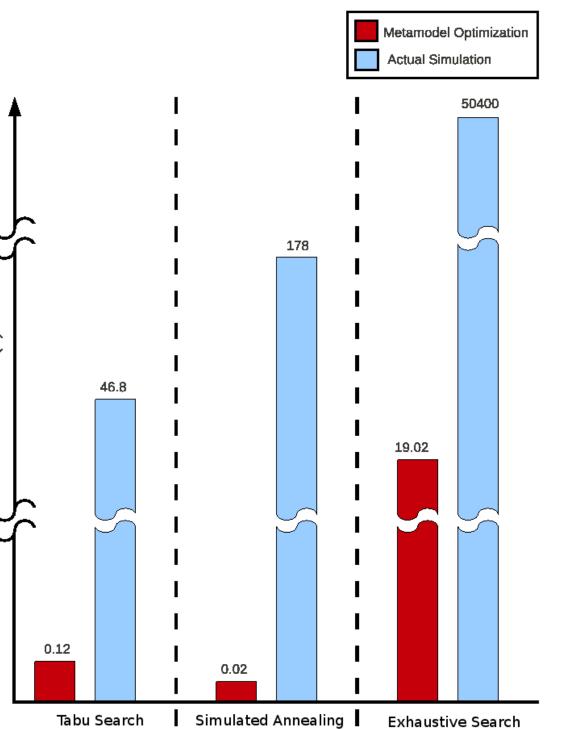
has been characterized for The RO frequency, power and power frequency ratio (PRF) with width of PMOS and NMOS (*Wn* and *Wp*) as design variables.

Simulated Annealing

Simulated Anneailing 10GHz Search

Discard the Solution S_i^*

14:


15:

end if

1.5

TABLE IV SIMULATED ANNEALING OPTIMIZATION FOR FREQUENCY

Loop	Results	Results		
Iterations	Needed	Found	Accuracy	Time
Parasitic Netlist Optimization				
35	9 GHz	8.97 GHz	0.33%	6.84 min
14	9.5 GHz	9.44 GHz	0.63%	2.73 min
15	10 GHz	10.07 GHz	0.31%	2.93 min
24	10.5 GHz	10.40 GHz	0.97%	4.69 min
16	11 GHz	10.96 GHz	0.36%	3.12 min
5	11.5 GHz	11.46 GHz	0.34%	0.98 min
3	12 GHz	11.99 GHz	0.08%	0.59 min
10	12.5 GHz	12.47 GHz	0.24%	1.95 min
Metamodeling Optimization				
32	9 GHz	8.96 GHz	0.48%	1.8 ms
18	9.5 GHz	9.41 GHz	0.94%	1.05 ms
10	10 GHz	10.05 GHz	0.48%	0.77 ms
19	10.5 GHz	10.40 GHz	0.96%	1.16 ms
13	11 GHz	10.95 GHz	0.49%	0.85 ms
4	11.5 GHz	11.48 GHz	0.22%	0.38 ms
2	12 GHz	11.98 GHz	0.16%	0.16 ms
12	12.5 GHz	12.42 GHz	0.63%	0.95 ms

This research is supported in part by

NSF awards CNS-0854182 and DUE-

0942629, and SRC contract P10883.

UNIVERSITY OF NORTH TEXAS

Discover the power of ideas

2.5 Wn

3.5 x 10⁻⁷