Geostatistics Inspired Fast Layout Optimization of Nanoscale CMOS Phase Locked Loop

O. Okobiah¹, S. P. Mohanty² and E. Kougianos³
NanoSystem Design Laboratory (NSDL, http://nsdl.cse.unt.edu)
University of North Texas, Denton, TX 76203, USA.¹,²,³
Email: oo0032@unt.edu¹, saraju.mohanty@unt.edu² and eliask@unt.edu³

Acknowledgments: This research is supported in part by NSF awards CNS-0854182 and DUE-0942629 and SRC award P10883.

Presented By
Oghenekarho Okobiah
Outline of the talk

- Background and Motivation
- Related Prior Research
- Geostatistics Based Metamodelling
- Proposed Design Flow and GSA Optimization
- Case Study Circuit and Experimental Setup
- Results
- Conclusions
Background and Motivation

- Computer simulations are expensive
- Pronounced effects of process variations in deep nanometer regions
 - Increase in number of design parameters
 - Current modeling techniques not effective at capturing effects of process variation
- Complex and high density designs
- Designs for low power consumption
Novel Contributions

- Exploring Kriging for high dimensional metamodeling
- Design flow methodology
 - Kriging metamodeling and gravitational search algorithm optimization.
Prior Related Research

- Exploration of optimization algorithms for NanoCMOS designs
- Kriging Based Techniques
 - O. Okobiah --- simple and ordinary kriging metamodels
 - G. Yu --- re-iterative Pareto fronts
 - H. You --- kriging metamodeling
Fundamentals of Kriging

- Originally used in geostatistics for mining purposes.

 \[y(x_0) = \sum_{j=1}^{L} \lambda_j B_j(x) + z(x), \]

- Each point is predicted based on a set of unique weights (\(\lambda_j \)).

 \[\sum_{j=1}^{n} \lambda_j = 1. \]
Fundamentals of Kriging...

\[
\begin{pmatrix}
\lambda_1 \\
\vdots \\
\lambda_n \\
\mu
\end{pmatrix}
= \Gamma^{-1}
\begin{pmatrix}
\gamma(x_1, x_0) \\
\vdots \\
\gamma(x_n, x_0) \\
1
\end{pmatrix},
\] (3)

\[
\Gamma =
\begin{pmatrix}
\gamma(x_1, x_1) & \cdots & \gamma(x_1, x_n) & 1 \\
\vdots & \ddots & \vdots & \vdots \\
\gamma(x_n, x_1) & \cdots & \gamma(x_n, x_n) & 1 \\
1 & 1 & \gamma(x_n, x_n) & 0
\end{pmatrix},
\] (4)

\[
\widehat{P}_{PLL}(Wn_0) = \sum_{j=1}^{L} \lambda_j B_j(wn) + \varepsilon(wn),
\] (7)
Gravitational Search Algorithm

- Part of swarm Intelligence family
 - population based heuristic algorithms
- Based on gravitational laws of attraction and motion

\[
F_{ij}^d(t) = G(t) \frac{M_{pi}(t) \times M_{aj}(t)}{R_{ij}(t) + \epsilon} (x_j^d(t) - x_i^d(t)),
\]

where \(F_{ij}^d(t) \) is design objective, \(M \) is the quality of solution at search location \(i \) or \(j \), \(x_i \) is the set of design parameters at location \(i \).
Gravitational Search Algorithm

Design Space

- M_w
- F_{wy}
- F_{xy}
- a_y
- M_y
- New M_y
- F_{yz}
- F_{xz}
- M_x
- M_z
- Best solution so far
Gravitational Search Algorithm

Start

Generate initial search agent \((W_n, W_p)\)

Evaluate objective of interest (power)

Optimization or Termination criteria met?

Best Solution

End

Calculate velocity and update agent location (new \(W_n, W_p)\)

Rank quality of solution

Update gravity constant and calculate attraction

Update mass of each location
Case Study Circuit: 180nm PLL

Fig. 3. System level diagram of the PLL

Fig. 4. 180nm layout of the PLL
Proposed Design Flow

1. Input Specifications of PLL Design
2. Create Logical Design
 - Specifications met?
 - no: Create Layout of PLL
 - yes: PLL Design Schematic
3. Perform DRC/LVS/RLCK Extraction
 - Paraphitic-Aware PLL Netlist
4. Specifications met?
 - no: Parameterize the parasitic-aware netlist!
 - Parameterized Parasitic-Aware PLL Netlist
 - Perform LHS sampling of Design Space
 - Sample Points for Metamodel generation
 - Generate Kriging metamodels
 - Metamodels for PLL Design
 - Use GSA for optimization
 - Optimal design variables
 - Create New Layout for Final Design
 - Optimized PLL design
 - yes: Done
Design Flow Components

- Design and netlist optimization
 - Baseline design
 - (schematic and layout)
 - Extract parasitic netlist

Design Flow Diagram:

1. Input Specifications of PLL Design
2. Create Logical Design
3. Specifications met?
 - No: Continue
 - Yes: Create Layout of PLL
4. Perform DRC/LVS/RLCK Extraction
5. Specifications met?
 - No: Parameterize the parasitic-aware netlist
 - Yes: Parameterized Parasitic-Aware PLL Netlist
6. Perform LHS sampling of Design Space
7. Generate Kriging metamodels
8. Use GSA for optimization
9. Create New Layout for Final Design
10. Done
Design Flow Components

- **Sampling and Metamodel Generation**
 - Parameterize parasitic netlist
 - Identify performance objectives
 - LHS sampling
 - L, W as sampling corners
 - Process variation
 - Metamodel for each design objective is generated
 - Using mGstat (MATLAB Kriging tool)
 - Design objectives are functions of design parameters
 - e.g. $P_{PLL}(W_n) = \sum_{j=1}^{L} \lambda_j B_j(w_n) + z(w_n)$, (7)
Design Flow Components

- Design Optimization
 - Kriging metamodels optimized with GSA algorithm
 - Conflicting design objectives used as goal and constraint
 - Final physical design is drawn
Experimental Results

TABLE III
OPTIMIZED PARAMETER VARIABLES

<table>
<thead>
<tr>
<th>PLL Components</th>
<th>Parameter</th>
<th>Min (m)</th>
<th>Max (m)</th>
<th>Optimal (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W_{PD1}</td>
<td>400n</td>
<td>2µ</td>
<td>1.53µ</td>
</tr>
<tr>
<td></td>
<td>W_{PD1}</td>
<td>400n</td>
<td>2µ</td>
<td>0.95µ</td>
</tr>
<tr>
<td></td>
<td>W_{PD1}</td>
<td>400n</td>
<td>2µ</td>
<td>1.00µ</td>
</tr>
<tr>
<td></td>
<td>W_{PD1}</td>
<td>400n</td>
<td>2µ</td>
<td>1.16µ</td>
</tr>
<tr>
<td></td>
<td>W_{PD1}</td>
<td>400n</td>
<td>2µ</td>
<td>0.52µ</td>
</tr>
<tr>
<td></td>
<td>W_{PD1}</td>
<td>400n</td>
<td>2µ</td>
<td>1.58µ</td>
</tr>
<tr>
<td>Phase Detector</td>
<td>W_{CP1}</td>
<td>400n</td>
<td>2µ</td>
<td>1.12µ</td>
</tr>
<tr>
<td></td>
<td>W_{CP1}</td>
<td>400n</td>
<td>2µ</td>
<td>1.32µ</td>
</tr>
<tr>
<td></td>
<td>W_{CP2}</td>
<td>2µ</td>
<td>4µ</td>
<td>2.07µ</td>
</tr>
<tr>
<td></td>
<td>W_{CP2}</td>
<td>4µ</td>
<td>4µ</td>
<td>4.72µ</td>
</tr>
<tr>
<td>Charge Pump</td>
<td>W_{LC}</td>
<td>3µ</td>
<td>20µ</td>
<td>12.22µ</td>
</tr>
<tr>
<td></td>
<td>W_{LC}</td>
<td>6µ</td>
<td>40µ</td>
<td>14.83µ</td>
</tr>
<tr>
<td>LC-VCO</td>
<td>W_{DIV1}</td>
<td>400n</td>
<td>2µ</td>
<td>1.06µ</td>
</tr>
<tr>
<td></td>
<td>W_{DIV1}</td>
<td>400n</td>
<td>2µ</td>
<td>1.11µ</td>
</tr>
<tr>
<td></td>
<td>W_{DIV1}</td>
<td>400n</td>
<td>2µ</td>
<td>0.75µ</td>
</tr>
<tr>
<td></td>
<td>W_{DIV1}</td>
<td>400n</td>
<td>2µ</td>
<td>1.78µ</td>
</tr>
<tr>
<td></td>
<td>W_{DIV1}</td>
<td>400n</td>
<td>2µ</td>
<td>1.35µ</td>
</tr>
<tr>
<td></td>
<td>W_{DIV1}</td>
<td>400n</td>
<td>2µ</td>
<td>1.86µ</td>
</tr>
<tr>
<td></td>
<td>W_{DIV1}</td>
<td>400n</td>
<td>2µ</td>
<td>1.65µ</td>
</tr>
<tr>
<td></td>
<td>W_{DIV1}</td>
<td>400n</td>
<td>2µ</td>
<td>1.96µ</td>
</tr>
<tr>
<td></td>
<td>W_{DIV1}</td>
<td>400n</td>
<td>2µ</td>
<td>0.43µ</td>
</tr>
<tr>
<td>Divider</td>
<td>W_{DIV1}</td>
<td>400n</td>
<td>2µ</td>
<td>1.06µ</td>
</tr>
<tr>
<td></td>
<td>W_{DIV1}</td>
<td>400n</td>
<td>2µ</td>
<td>1.11µ</td>
</tr>
<tr>
<td></td>
<td>W_{DIV1}</td>
<td>400n</td>
<td>2µ</td>
<td>0.75µ</td>
</tr>
<tr>
<td></td>
<td>W_{DIV1}</td>
<td>400n</td>
<td>2µ</td>
<td>1.78µ</td>
</tr>
<tr>
<td></td>
<td>W_{DIV1}</td>
<td>400n</td>
<td>2µ</td>
<td>1.35µ</td>
</tr>
<tr>
<td></td>
<td>W_{DIV1}</td>
<td>400n</td>
<td>2µ</td>
<td>1.86µ</td>
</tr>
<tr>
<td></td>
<td>W_{DIV1}</td>
<td>400n</td>
<td>2µ</td>
<td>1.65µ</td>
</tr>
<tr>
<td></td>
<td>W_{DIV1}</td>
<td>400n</td>
<td>2µ</td>
<td>1.96µ</td>
</tr>
<tr>
<td></td>
<td>W_{DIV1}</td>
<td>400n</td>
<td>2µ</td>
<td>0.43µ</td>
</tr>
</tbody>
</table>

### Metric	Value
RMSE | 6.46×10^{-10}
R^2 | 0.9959

<table>
<thead>
<tr>
<th>Metric</th>
<th>Power (mW)</th>
<th>Locking Time (ns)</th>
<th>Area (µm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Design</td>
<td>8.27</td>
<td>2.74</td>
<td>525 x 326</td>
</tr>
<tr>
<td>Optimal Design</td>
<td>1.67</td>
<td>2.63</td>
<td>525 x 326</td>
</tr>
<tr>
<td>Reduction</td>
<td>79 %</td>
<td>4 %</td>
<td>0 %</td>
</tr>
</tbody>
</table>
Experimental Results

<table>
<thead>
<tr>
<th>Metric</th>
<th>Power (mW)</th>
<th>Locking Time (ns)</th>
<th>Area (µm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Design</td>
<td>8.27</td>
<td>2.74</td>
<td>525 x 326</td>
</tr>
<tr>
<td>Optimal Design</td>
<td>1.67</td>
<td>2.63</td>
<td>525 x 326</td>
</tr>
<tr>
<td>Reduction</td>
<td>79 %</td>
<td>4 %</td>
<td>0 %</td>
</tr>
</tbody>
</table>

Fig. 5. Optimization Steps of the PLL
Related Comparison

<table>
<thead>
<tr>
<th>Research</th>
<th>Test Circuits</th>
<th>Metamodeling Technique</th>
<th>Accuracy</th>
<th>Optimization Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>You</td>
<td>Integrated Op-Amp</td>
<td>Kriging</td>
<td>0.5658</td>
<td>-</td>
</tr>
<tr>
<td>Yu</td>
<td>Ring Oscillator</td>
<td>Kriging</td>
<td>0.5325% (MSE)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>LC-VCO</td>
<td></td>
<td>0.5563% (MSE)</td>
<td>-</td>
</tr>
<tr>
<td>Okobiah</td>
<td>Sense Amplifier</td>
<td>Kriging</td>
<td>3.2 x10^-9</td>
<td>ACO</td>
</tr>
<tr>
<td>Garitselov</td>
<td>PLL</td>
<td>Polynomial</td>
<td>0.5658</td>
<td>ABC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ANN</td>
<td>0.5658</td>
<td></td>
</tr>
<tr>
<td>This work</td>
<td>PLL</td>
<td>Kriging</td>
<td>6.46 x10^-9</td>
<td>GSA</td>
</tr>
</tbody>
</table>
Conclusions

- A novel design flow methodology was presented
 - Incorporating Kriging metamodeling
 - Demonstrating GSA algorithm based optimization
- Optimized PLL power by 79%
Thank you !!!