Novel FinFET based Physical Unclonable Functions for Efficient Security Integration in the IoT

V. P. Yanambaka1, S. P. Mohanty2, E. Kougianos3

NanoSystem Design Laboratory (NSDL, http://nsdl.cse.unt.edu)
University of North Texas, Denton, TX 76203, USA.1,2,3

Email: vy0017@unt.edu1, saraju.mohanty@unt.edu2, elias.kougianos@unt.edu3.
Outline of the talk

- Internet of Things
- Attacks on IoT Environment
- Novel Contributions
- Physical Unclonable Function
- Proposed Designs of Physical Unclonable Function
- Results and FoMs
- Conclusion and Future Research
Internet of Things

- All the devices will be communicating with each other in the near future.
- Human interaction will become very minimal.
Internet of Things – Problems?

IoT Environment Secured using PUF

Cloud Services
Health
Media Player
Tablet
Transportation
Electricity
Focus of Current Paper
Focus of Current Paper

• Many applications are implemented using IoT environment.
• Healthcare, Home automation and Smart-Cities connect various smart devices, sensors and connecting modules.
• All these require less chip area designs and low power consumption modules.
Focus of Current Paper

- If connected to same server, multiple different keys needed to be generated.
- It should also be fast.
- All devices need different encryption keys that need to change if necessary.
- This can be achieved using Physical Unclonable Function.
Physical Unclonable Function

- PUF uses variability of different devices in manufacturing phase.
- Transistors are subject to many process and mismatch variations affecting the device geometry.
- Physical Unclonable Function takes advantage of those variations to generate a key.
Physical Unclonable Function

- Security using hardware.
- Why Physical Unclonable Function (PUF)?
 - Key not stored anywhere in memory.
 - Not possible to generate on an other machine.
 - Robust and Low Power.
 - Can use different architectures with different designs.
Types of PUF

• Many different architectures of PUF
 • Static Random Access Memory PUF.
 • Ring Oscillator PUF.
 • Memristor Crossbar PUF.
 • Arbiter PUF.
 • XOR PUF, etc.,
Novel Contributions of This Paper

- Two Designs of Physical Unclonable Function are Proposed:
 - Power Optimized Hybrid Oscillator Arbiter PUF
 - Speed Optimized Hybrid Oscillator Arbiter PUF
- Each of the designs is specifically designed to be incorporated in the respective IoT application.
Process & Mismatch Variation

- Process Variation and Mismatch Variation is unavoidable while manufacturing any device.
- Especially geometry of the device being manufactured is greatly affected.
- Physical Unclonable Function takes advantage of those variations to generate an encryption key.
How PUF Works?

• Transistors are involved in most designs.
• Gate delay is the main focus.
• Gate delay produced in different transistors give distinct outputs in systems.
• Other architectures (for eg., Memristor) also take advantage of geometric variations in key generation.
Traditional Arbiter PUF
Traditional Ring Oscillator PUF
Speed Optimized Design

Enable

N/2 Oscillators

Enable

N/2 Flipflops

Enable

D

D-flipflop q

clk

Output 1/0

D

D-flipflop q

clk

Output 1/0
Circuit Level of One Cell
Figure of Merits

- Uniqueness
 - Hamming distance of keys generated should be 50% under ideal conditions.
 - Frequencies of different Ring Oscillators are also presented to show the uniqueness
Figure of Merits

• Reliability
 • Creating same key with no change in challenge bits.
 • But in this case, same key should not be generated.

• Average Power
 • Average Power of MKG PUF is the sum of all leakage powers and the dynamic power.
Oscillation Frequencies of ROs
Hamming Distance – Speed Optimized

Hamming Distance

Gaussian Fit
Hamming Distance – Power Optimized
Intra – PUF Hamming Distance
Traditional RO Average Power

![Histogram of Average Power](image)

- Average Power
- Gaussian Fit

Average Power (μW)

- Density

- 317
- 318
- 319
- 320
- 321
- 322
- 323
- 324
Speeds Optimized Design Average
Power Optimized Design Average Power

Average Power (μW)

Density

Average Power

Gaussian Fit
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional Ring Oscillator PUF</td>
<td></td>
</tr>
<tr>
<td>Average Power</td>
<td>310.8 µW</td>
</tr>
<tr>
<td>Hamming Distance</td>
<td>50 %</td>
</tr>
<tr>
<td>Average Time to Generate Key</td>
<td>150 ns</td>
</tr>
<tr>
<td>Speed Optimized Hybrid Oscillator Arbiter PUF</td>
<td></td>
</tr>
<tr>
<td>Average Power</td>
<td>320 µW</td>
</tr>
<tr>
<td>Hamming Distance</td>
<td>52 %</td>
</tr>
<tr>
<td>Average Time to Generate Key</td>
<td>50 ns</td>
</tr>
<tr>
<td>Power Optimized Hybrid Oscillator Arbiter PUF</td>
<td></td>
</tr>
<tr>
<td>Average Power</td>
<td>285.5 µW</td>
</tr>
<tr>
<td>Hamming Distance</td>
<td>50.9 %</td>
</tr>
<tr>
<td>Average Time to Generate Key</td>
<td>150 ns</td>
</tr>
</tbody>
</table>
Conclusion

• Two designs of PUF were proposed:
 • Power Optimized Hybrid Oscillator Arbiter PUF.
 • Speed Optimized Hybrid Oscillator Arbiter PUF.
• PUF for both low power devices and high performance devices.
• Can be integrated into the devices.
Future Research

- Design ultra low-power models of each.
- Speed optimized design generates one key per module.
- Designing Configurable Hybrid Oscillator Arbiter PUF.
- Incorporate more stable Ring Oscillator design.
THANK YOU