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Abstract—We propose an EEG-based seizure detection method
which uses the discrete wavelet transform (DWT), Hjorth pa-
rameters and a k-NN classifier. Seizure detection is performed in
three stages. In the first stage, EEG signals are decomposed by the
DWT into sub-bands and Hjorth parameters are extracted from
each of these sub-bands. In the second stage, a k-NN classifier
is used to classify the EEG data. The results demonstrate a
significant difference in Hjorth parameters between interictal and
ictal EEG with ictal EEG being less complex than interictal EEG.
We report an accuracy of 100% for a classification of normal vs.
ictal EEG and 97.9% for normal and interictal vs. ictal EEG.
We propose an Internet of Medical Things (IoMT) platform for
performing seizure detection. The proposed framework accom-
modates the proposed scheme for seizure detection and allows
communication of detection results. The IoMT framework also
allows the adjustment of seizure detection parameters in response
to updated performance evaluations, and possible changes in
seizure and signal characteristics as well as the incorporation
of other sensor signals to provide an adaptive, multi-modal
framework for detecting seizures.

Index Terms—IoT, Electroencephalogram (EEG), Epilepsy,
Seizure Detection, Feature Extraction, Hjorth Parameters

I. INTRODUCTION

Epilepsy is a neurological disorder characterized by recur-
rent spontaneous seizures. A seizure is a sudden and transient
interruption of brain function which may also be marked by
convulsions and a loss of consciousness [1]. Antiepileptic
drugs (AEDs) can be used to control seizures, though seizures
in more than 30% of patients remain intractable to AEDs [2].
Epilepsy has a considerable negative impact on the quality of
life of patients. There is also a high rate of sudden unexplained
death in epilepsy (SUDEP) in comparison to the general
population [3]. Brain implantable devices for the control of
seizures hold promise as a newly emerging modality for the
control of seizures. The prediction and detection of seizures
are both of considerable importance, as warning and early
detection can result in timely treatment [4]–[9].

The scalp electroencephalogram (EEG) and intracranial
EEG (icEEG) contain information on the physiological states
of the brain and are thus useful signals for understanding and

monitoring brain function and dysfunction. In epilepsy we are
primarily interested in two states: ictal (seizure) and interictal
(between seizure). Seizures can be identified by visual inspec-
tion of the EEG, though this takes considerable time and effort
[10]. Computer assisted detection of seizures can be valuable
if it can overcome these drawbacks. EEG signals can be well
characterized from extracted features which serve to capture
distinctive information and can be central to the accuracy of
classification [11], [12]. In this paper we propose an EEG-
based seizure detection method which uses the discrete wavelet
transform (DWT), Hjorth parameters and a k-NN classifier and
a framework built around the proposed scheme for seizure
detection which allows communication of detection results
through the Internet-of-Medical-Things (IoMT).

The remainder of this paper is organized as follows: Section
II discusses the novel contributions of this paper. Section III
describes research on seizure detection. Section IV presents
a design and architecture overview of the proposed solution.
Section V discusses the implementation of the proposed
design. Experimental results and validation procedures are
discussed in Section VI. Section VII presents conclusions and
future directions for the research.
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Fig. 1: Block diagram of the proposed seizure detection
paradigm.



II. NOVEL CONTRIBUTIONS OF THIS STUDY

We envision an IoMT device called “Neuro-Thing” which
performs fast and accurate seizure detection at the patient
end, and sends EEG data and information on the occurrence
of seizure to the IoMT cloud where this information can be
accessed by stakeholders.

We propose a seizure detection method using the discrete
wavelet transform (DWT), Hjorth parameters (HP) and a k-
nearest neighbor (k-NN) classifier. A block diagram of the
proposed system is shown in Fig. 1. We use the DWT to
decompose the EEG signal into five sub-bands, and provide
a time frequency representation of the EEG. We used a
Daubechies wavelet of order 4 to determine the sub-bands
(detail coefficients D1-D4 and approximation coefficient A4).
HPs (activity, signal complexity and signal mobility) are
derived from these detail and approximation coefficients. The
extracted features were then employed within a k-NN classifier
for classification.

III. RELATED PREVIOUS RESEARCH

Several methods have been proposed for epileptic seizure
detection. The approximate entropy (ApEn) based seizure
classification approach [13] found that ApEn drops signifi-
cantly within the epileptogenic zone during seizure activity.
Artificial neural network (ANN) based classifiers have been
proposed in seizure detection schemes [14], [15]. In [16],
a deep neural-network based method for seizure detection
has been presented. Wavelet transform based features have
been extracted and applied to ANN for the classification of
seizure and non-seizure activity [11]. In the short term Fourier
transform (STFT) based approach [17], features have been
extracted from the short term Fourier transform using the
smoothed-pseudo Wigner-Ville distribution and classification
is performed using an ANN classifier. The decomposition
of the EEG using wavelet transform and classification using
radial basis function network (RBF) and multilayer perception
network (MLP) has been investigated in [18]. Most of these
approaches use different combinations of features to improve
classification accuracy. In this paper, we investigate classi-
fication accuracy using HPs of the DWT decomposed EEG
signals. A comparison of the proposed approach with existing
methods is shown in Table I.

IV. THE PROPOSED SEIZURE DETECTION APPROACH

A. The Proposed Architecture of Neuro-Thing

The overall architecture and flowchart of the proposed
“Neuro-Thing are shown in Fig. 2 and Fig. 3, respectively. The
EEG is acquired and decomposed into several sub-bands using
DWT. HP values are extracted from the different sub-bands
to form a feature vector. The feature vectors are submitted
to the k-NN classier. The memory unit stores the patients
data, and is connected to a low power wireless module. The
wireless module enables data to be transferred to clinical care
staff through the Internet. The k-NN classifier is trained using
training datasets.

B. Discrete Wavelet Transform based Preprocessing Unit

The wavelet transform provides a TF decomposition of a
signal by capturing low frequency information using long
duration windows and high frequency information using short
duration windows. The decomposition step is achieved by
low pass and high pass filters as described by the following
equations [22]:

HPF (S) = A1m =
∑
n

S(k)h(2m− n), (1)

LPF (S) = D1m =
∑
n

S(k)g(2m− n), (2)

where S(k) is the input sampled signal and g and h are
the impulse responses of low-pass and high-pass filters, re-
spectively. The output of the low pass filter is called the
approximation coefficient (A1). The output of the high pass
filter is called the detail coefficient (D1). This decomposition
step is repeated for the approximation coefficient at every
level. The subsequent detail coefficients are denoted as D2,
D3, and D4. The last approximation coefficient is denoted
as A4. The filtering employed at each decomposition stage
doubles the frequency resolution and down-sampling halves
the time resolution. The Daubechies wavelet function of order
4 (db4), and the four level DWT, allowed an analysis of signals
in the range 0 to 86.8 Hz with the breakdown of sub-band
frequencies as shown in Table II.

C. Hjorth Parameter (HP) Extraction Unit

Hjorth parameters (activity, signal complexity, and signal
mobility ) have been shown to be highly effective for capturing
the complex dynamics of brain signals [23]. Signal complexity
and signal mobility quantify the level of variations along the
signal. First order variations of the signal are addressed using
signal mobility whereas second order variations are addressed
using signal complexity. The HP unit calculates the parameters
from the EEG signal and passes them to the k-NN classifier.

D. k-Nearest Neighbor Classifier

The k-nearest neighbor classifier [24] is both simple and
nonparametric. The k-NN algorithm has of two phases: the
training phase and the classification phase. The training set
consists of feature vectors with a class label. The class labels
and feature vector of the training sample are stored. In the
classification phase, the test or query points are assigned to
a label. The k-NN algorithm compares a library of reference
vectors with an input feature vector or query point and the
query point is assigned to a class based on the nearest reference
feature vectors. The nearness of the datasets was calculated
using the Euclidean distance metric. The algorithm classifies
data based on a majority vote from the k nearest neighbors as
opposed to the single nearest neighbor.

The training of the Neuro-Thing is critical for accurate
detection of seizures. There are several options for training
in a connected system. These include: (1) Slow updates: The
update is delivered from the cloud on a monthly or quarterly
basis. This training uses a large amount of data, and can be



TABLE I: Comparison to Existing Seizure Detection Methods.

Works Methods Cases CA (%)

Kumar, et al. 2014 [19] Discrete wavelet transform and neural network classifier A-E 100
A, D-E 95

Tawfik, et al. 2016 [20] Weighted permutation entropy (WPE) and support vector machine (SVM) A-E 98.5
A, D-E 96.5

Yavuz, et al. 2018 [21] Cepstral analysis and generalized regression neural network A-E 99
A, D-E 97.25

Current Paper 2018 DWT based Hjorth parameter and k-NN classifier A-E 100
A, D - E 97.85
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Fig. 2: Block diagram of the proposed novel IoMT-enabled seizure detector architecture.
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TABLE II: Frequency characterization of the proposed system

Parameters Value

Detectable seizure frequency 0-87 Hz
D1 43.4-86.8 Hz
D2 21.7- 43.4 Hz
D3 10.85-21.7 Hz
D4 5.43-10.85 Hz
A4 0-5.43 Hz

accurate as historic data are fully used. (2) Faster updates: The
update is delivered from the cloud on a more frequent basis, for
example, weekly. The training uses less than a comprehensive
amount of data. The solution can be moderately accurate as
historic data are used. (3) Real-time or near-real time training:
Updates are provided at a frequent rate, daily or even hourly.
The data is from on-chip memory. This is fast, but may be
less accurate.

V. IMPLEMENTATION OF THE PROPOSED SYSTEM

A system-level simulation of the proposed system was im-
plemented in Simulink R©Version 9.2 R2017A. The prototype
of the proposed system for a individual statistical feature,
signal mobility, is shown in Fig. 4. In the first level of
decomposition the signal is passed through high pass and low
pass filters. The same decomposition step is repeated up to
the 4th level. As indicated above, each decomposition halves
the time resolution and doubles the frequency resolution.
A Simulink R©user defined function was used to construct
the DWT algorithm. Subsequently, Hjorth parameters were
extracted from the decomposed signals. The HP values were
used as a feature for the k-NN classifier. Another Simulink R©

user defined function was created to build the k-NN classifier.
The classifier stores the feature vectors and class labels of
the different EEG datasets during the training phase. When
a new test point is applied to the system for classification,
the algorithm calculates its k nearest neighbors and a class is
assigned based on voting amongst those neighbors. The IoMT
implementation was carried out using ThingSpeak, an open
data platform for IoT applications, which was utilized to gather
and analyze data in the cloud. In the Simulink R© environment,



the information related to seizure detection was sent to the
cloud using the ThingSpeak Input block from the Simulink R©

Desktop Real-time library.

VI. EXPERIMENTAL RESULTS

The EEG datasets were from the widely used open source
database available from the University of Bonn [25]. This
database contains five datasets, denoted as A, B, C, D and
E. Each dataset contains 100 EEG segments and each data
segment (of 23.6s duration) consists of 4097 data points. In
this study we used datasets A, D and E. Dataset A consists
of scalp EEG recorded from five healthy subject when their
eyes were open. Datasets D and E consists of intracranial
EEG (icEEG) recorded from the epileptogenic zone of patients
during interictal and ictal states, respectively. That is, D
consists of seizure free intervals, whereas E contains seizure
activity. The EEG and icEEG were recorded using a 128-
channel amplifier system with an average shared reference.
The spectral bandwidth of the acquisition system was 0.53 to
40 Hz. Data was sampled at 173.61 Hz followed by 12 bit
analog to digital conversion.

Example EEG epochs from dataset A (scalp EEG from nor-
mal subjects), D (interictal icEEG from the epileptogenic zone)
and E (ictal icEEG from the epileptogenic zone) are shown
in Fig. 5. The DWT was used to decompose the EEG into
five sub-bands. The Hjorth parameters activity (AC), signal
complexity (SC), and signal mobility (SM) were calculated
for all sub-bands of the 300 EEG epochs.

TABLE III: Extracted feature coefficients for dataset A

Coefficient Activity Signal Complexity Signal Mobility

D1 18.44 0.9371 1.4586
D2 362.5 0.4688 1.8296
D3 3.88e+03 0.7145 1.7259
D4 7.33e+03 1.2315 1.1894
A4 1.91e+04 1.4909 0.7691

Table III shows the value of the approximation and detail
coefficient of the different sub-bands for dataset A. The
average signal complexity for datasets A, D, and E was 0.71,
0.65, and 0.48 . It is evident that signal complexity is higher
in normal EEG compared to ictal EEG, which corresponds to
the findings reported in [26]. On the other-hand, activity and
signal mobility is higher for data set E recorded during seizure.
Dataset D, which consists of seizure free icEEG, is almost
identical to dataset A (normal scalp EEG). Hjorth parameters
from different sub-bands were applied to a k-NN classifier. In
this study, the following cases were tested: (1) Case 1: Set A
versus Set E, and (2) Case 2: Set A and D versus Set E.

Table IV summarizes the results showing the classification
accuracy, sensitivity, and specificity with individual and com-
bined features. Fig. 6 illustrates a comparison with existing
competitive methods and demonstrates the superiority of the
proposed system.

VII. CONCLUSIONS

We have described an automated seizure detection method
which uses DWT based Hjorth parameter extraction and k-
NN based classification. A system level simulation of the
proposed system was performed in Simulink R© . The experi-
mental results show that DWT based Hjorth parameters are
highly effective in distinguishing EEG signals, leading to an
improved classification accuracy in comparison to existing
methods. We have also proposed an IoMT framework for
continuous monitoring of neurological symptoms. In addition
to the EEG which was explored here, this framework can be
expanded to include wireless icEEG sensors, biosensors, or
other body worn sensors such as limb worn accelerometers to
detect patient activity including seizures [27]–[29].
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