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Abstract—Data communication in GPU systems exhibits
asymmetric patterns that create congestion hotspots. Due to
their large number of cores and big die sizes, GPUs also
demand highly scalable NoC designs. In this work, we pro-
pose hybrid NoC architectures that employ on-chip integrated
antennas to build overlaid wireless networks on top of con-
ventional metal/dielectric-based networks. We use low-power
high-bandwidth wireless links as express channels to transmit
long distance packets and use metal links to deliver local pack-
ets. The hybrid architecture can effectively alleviate congestion
near traffic hotspots and improve the throughput and scalability
of GPU NoCs. We propose solutions for design challenges in
such hybrid NoC architectures, such as MAC protocol, router
microarchitecture, load balancing and deadlock free routing.
To efficiently utilize on-chip wireless bandwidth, we also
propose a novel scheme that adaptively allocates bandwidth to
wireless channels based on their usage needs. Our evaluation
results show that for a GPU with 256 cores, the proposed
hybrid architecture can improve performance by 2.4 times on
average.

I. INTRODUCTION

Recently GPU accelerated heterogeneous computing is be-
coming an attractive addition to high performance computing
systems due to GPU’s ability to launch massive parallel threads
at same time. On-chip network need to be able to sustain high
data communication throughput in order to reduce the idle
time of GPU cores, in order to fully exploit GPU’s parallel
processing capability. However, compared with CMP based
NoCs, design of NoC for GPUs is still at its infancy except
for a handful of work [4], [6]–[10].

GPU data traffic has a very different pattern from the
CMPs. Many GPU cores send read or write requests to a few
memory controllers and receive reply messages from those
controllers. The traffic load is imbalanced with reply messages
taking up around 70% of total traffic. Hence, GPU NoC has
a many-to-few-to-many traffic pattern which generates traffic
bottlenecks around the memory controllers. If data generated
by memory is not quickly moved away from the memory
controllers, network throughput will severely suffer from the
resulted congestion hotspots. Another challenge in GPU NoC
design is network scalability. GPUs have much larger die

sizes compared with CMPs which demands highly scalable
network design. Conventional metal/dielectric-based networks
do not scale to thousands of cores in GPUs. For example,
mesh networks are widely applied to GPU on-chip networks,
due to their regular topology and simpler design in both router
architecture and routing algorithms. However, hop counts in
mesh networks increase significantly in large scale networks
which greatly compromises the GPU system performance.

Recent breakthroughs in semiconductor integration technol-
ogy have enabled new NoC design methods, such as nano-
photonic and wireless NoCs, which have the advantage of
high bandwidth, speed of light and low power consumption.
There have been plenty of research applying these enabling
technologies to design CMP based NoCs [11]–[16]. However,
only a few of prior works target on GPUs [21], [22].

In this work, we explore the design space by employing
wireless on-chip antennas to build hybrid NoC for GPUs. We
made the following contributions:
(1) We proposed hybrid NoC architectures that use wireless
links to build an overlaid network on top of the wired network.
Our proposed design method can not only alleviate con-
gestions near network bottlenecks but also improve network
scalability.
(2) We investigated critical design issues in building the hybrid
NoCs and propose solutions to address these issues, such as
MAC protocol, router micro-architecture and deadlock free
routing algorithms.
(3) By taking advantage of the reconfigurability of wire-
less networks, we developed a scheme to adaptively allocate
bandwidth to wireless channels. Our scheme can effectively
improve wireless bandwidth utilization.

II. MOTIVATION

GPU NoCs are usually implemented as two separate net-
works to avoid protocol deadlock. Request messages are sent
from many shader cores to a few memory controllers (MCs) in
the request network and MCs send reply messages to shader
cores using the reply network. Thus the request network ex-
hibits a many-to-few traffic pattern and the reply network has
a few-to-many traffic pattern. Traffic load of the two networks
is unbalanced, with the reply network carrying most of the
data packets. To quantitatively evaluate this load imbalance,
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Fig. 1: GPGPU packet type distribution.
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(a) Edge MC Placement
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(b) Distributed MC Placement

Fig. 2: Flit stall time in all routers for workload WP. Red colored bars represent
stall time for MC connected routers.

we analyzed the distribution of packet types in Figure 1. It can
be observed that about 75% of data is transmitted in the reply
network. For some benchmarks, such as BFS, MUM and PR,
the reply network accounts for more than 90% of all traffic.
This is because there are much more read messages than write
messages and read reply messages have much larger payload
than other types of messages. It is obvious that improving the
design of reply network will lead to more performance gains
in the overall NoC. This has already been demonstrated by
prior works [7], [10]. In this work, our target is to enhance
the reply network design.

Due to its few-to-many pattern, traffic inside the reply
network is also asymmetric. All packets are injected through
the few routers connected with MCs and these routers become
the network bottleneck. We evaluated the situation of router
congestions in the reply network using workload WP. We
use flit stall time, i.e., the total amount of time flits are
blocked in a router’s buffers as a measurement for congestion.
It has been shown that MC placements affects the memory-
processor traffic flow [4], so we experiment with two typical
MC placements: Edge placement and Distributed placement.
Edge placement has the advantage of simpler physical design
and manufacturing process because the irregular MC nodes
are placed at the border of the chip. Distributed placement
increases design and routing complexity but has less biased
access distance since MCs are located closer to the chip
center. As can be observed in Figure 2, the most congested
routers are those connected to MCs and their stall time can
be x100 times larger than other routers. Routers close to
MCs also tend to be congested and congestion gets alleviated
as a router’s distance from the MC increases. Those routers
connected to MCs create network bottlenecks and negatively
impact network performance much more than other routers.
This is because they block new packets from being injected
into the network, even though many other routers are not
congested at all. In this work, we propose a solution to reduce
network bottleneck by building an overlaid global network on
top of the baseline network. When packets are injected from
memory, global traffic is immediately directed into an overlaid
high speed network and local traffic still goes through the
relatively show baseline network.

Another critical challenge in designing GPU NoCs is the
network scalability. Compared with CMPs, GPUs have much
larger die size because they consists of thousands of processing
cores. For example, the die size of Intel Core i7 is 246 mm2,

while NVIDIA Pascal GPU has a die size of 610 mm2. It
is expected GPU chip sizes will keep growing as more cores
are integrated onto a chip. In conventional NoCs, routers are
connected with short metal wires and such design cannot
scale with large chip sizes because their performance degrades
significantly as hop counts get larger.

Concentration techniques have been proposed to use long
metal wires as express channels to connect far apart routers
[5]. However, speed of metal wire decreases exponentially
as wire length increases [14]. Recent breakthroughs in sili-
con integrated antennas has opened up new opportunities in
designing scalable NoCs. Wireless links have the advantage
of ultra-low power, long range communication without speed
degradation and reduced wiring overhead. There have been
several prior works that explore wireless NoC design for CMPs
[12]–[15], but designing wireless NoC for GPUs has yet been
well examined. In this work, we propose to build hybrid
wireless NoC to reduce GPU traffic bottlenecks and tackle
the scalability problem at the same time.

III. DESIGNING HYBRID WIRELSS NOC FOR GPGPUS

A. Hybrid Wireless NoC Architecture

Our proposed reply network consists two sub-networks: an
underlying wired network and an overlaid wireless network.
Figure 3 illustrated examples of the NoC architecture with
both Edge and Distributed MC placements. The underlying
network uses mesh topology and is divided into small clusters,
with one memory controller mapped to each cluster. Cluster
size is decided by the total number of routers and number
of MCs. For example, there are 64 routers and 8 MCs in
our example, so the cluster size is 8. The interleaved green
and white regions represent clusters and the nodes with blue
color represent MCs. Every MC is directly connected to a
wireless router and all these wireless routers are connected
as an overlaid mesh network. When a packet is injected from
a MC, we first decide which network to enter based on the
distance to destination. If the number of hops to the destination
is below a predefined threshold, the packet will enter the wired
network. Otherwise, the packet will be directed to the wireless
network and get transmitted to its destination cluster. Then the
packet will be ejected from the wireless network into the wired
network and continue to reach its destination. Our topology has
two differences from conventional concentrated mesh: firstly,
the upper level routers (i.e. wireless routers) are not placed at
the center of a cluster but MCs; secondly, conventional upper
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Fig. 3: Topology of the proposed hybrid wireless NoC with different
MC placements.
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Fig. 4: Major component of wired and wireless routers.

level routers are connected to all routers in the cluster and thus
have high radix and larger cost. Each of our wireless router is
connected to the MC node only. Our design incurs lower cost
by taking advantage of GPU traffic pattern.

All shader cores are connected with wired router only and
each MC is connected with both a wired and a wireless router.
Our wired routers employs conventional 5-port virtual channel
design which is illustrated in Figure 4(a). These routers use
look ahead routing and has two pipeline stages. Figure 4(b)
shows major components in one wireless channel which
has two stacks: physical layer and MAC layer. The phys-
ical layer consists of transceivers, modulator/demodulators
and buffers. Transceivers use oscillators to generate different
carrier frequencies for data modulation/demodulation. Power
amplifiers (PA) and low-noise amplifiers (LNA) are used to
amplify received or transmitted signals. The MAC layer con-
tains Medium Access Control (MAC) modules that determine
when data should be transmitted without causing collisions.
Interconnection between the wired and wireless routers is
implemented at each MC’s network interface. We design
control logics in the MC’s network interface to handle packet
injection/ejection as well as traffic flow coordination between
the two networks.

We employ wireless links as express channels to allevi-
ate congestion near memory controllers and reduce network
bottleneck. However, our experiments show if all packets
with long distant destination are sent to the wireless network,
the wireless network will get congested. We need admission
control to balance traffic between the two networks. We
employ two policies: (1) before a memory controller injects a
new packet to the wireless network, it first check the injecting
queue length of that router. If the length is above a preset
threshold (Lth), the packet will be injected to wired network
instead. (2) If a packet is blocked in a wireless router for
a time longer than a threshold value (Wth), the packet will
be ejected to the wired network. We use these policies to
balance the traffic between the two networks in order to fully
utilize the bandwidth of both networks. We use experiments
to retrieve these two threshold values and these values are
adjustable based on run time situation.

In wireless networks, channels are usually shared by mul-
tiple users to improve bandwidth usage. It is important to
have a Medium Access Control (MAC) mechanism to avoid
collisions. There are several types of MAC developed such as

Time Division Multiple Access (TDMA), Frequency Division
Multiple Access (FDMA) and Code Division Multi Access
(CDMA). We choose token passing as our MAC control
mechanism which is a type of TDMA protocol. This is
because token based MAC is simple to implement and does
not require central control which makes it a better choice for
on-chip networks. In this protocol, there is only one token flit
circulating among the routers that share one wireless channel.
All sharers of a wireless channel are connected by a token
ring and a router can transmit data on the shared channel only
when it processes the token. In our design, we use a separate
high speed control network to pass the token flits.

In our wired and wireless mesh networks, we employ
deadlock free routing algorithms to route packets. However,
we need to guarantee that there is no deadlock created when
packets traverse between these two networks. Deadlocks are
created when two packets hold resource (usually buffers)
needed by the other packet and are waiting for each other to
move forward in a loop. We enforce the following policy to
avoid deadlock: a packet can only move from wireless network
to wired network, but not in the opposite direction. Once a
packet travels on the wired network, it will never be directed to
the wireless network. Under this policy, a packet traveling on
the wireless network can be blocked by a packet traveling on
a wired network when it is ejected from the wireless network.
However, a packet traveling on the wired network will never
be blocked by a packet on the wireless network. Therefore, no
loop can be formed between the wireless and wired network
and our network is deadlock free. Our policy works similar to
the turn model that avoids formation of loops by forbidding
certain turns. Our network is also livelock free since all packets
will finally be injected to the underlying network (due to Wth)
and that network is livelock free.

Next we explain the power model for the proposed hybrid
network. The power of our proposed hybrid NoC can be
partitioned into two main contributions: wired network and
wireless network.

Etotal = Ewired + Ewireless (1)

Ewireless = Edynamic
wireless + Estatic

wireless (2)

Estatic
wireless = (P tx

static + P rx
static)× C × T (3)

Edynamic
wireless = (P tx

dynamic + P rx
dynamic)× b/R (4)
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Fig. 5: Wireless link usage for benchmark MUM and StreamCluster. Three most and least used links are measured in 20 epochs. X-axis
represents epochs and Y-axis represents link usage counts.
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Fig. 6: Adaptive Wireless Channel Sharing.

The hybrid network power consumption consists of both
wired and wireless contributions. We use the built-in power
model of GPGPU-Sim to evaluate wired network. Here we
explain the wireless power model which is described in the
Equation (1)-(4). The model is similar to the one developed
in [20] where C and T in equation 3 are the total number
of execution cycles and system clock period. In equation 4,
b and R are total bits transmitted and wireless channel data
rate. P tx

static and P rx
static are static values of transmitters and

receivers. Dynamic transceiver power is denoted by P tx
dynamic

and P rx
dynamic respectively. We retrieve these values using

NoXim [17] and use GPGPU-Sim to collect other statistics
such as simulation cycles.

B. Adaptive Wireless Bandwidth Allocation

One of the key advantages of wireless networks over point-
to-point networks (such as metal or nano-photonics) is their
reconfigurability. A single channel can be shared between
multiple users, greatly reducing wiring complexity, area over-
head and design cost. Routers can also make changes to their
channels at run time, by adjusting the transmitting frequency.
To efficiently utilize the available bandwidth, we propose a
novel scheme that adaptively allocate wireless bandwidth to
channels based on usage requirement.

We first analyzed the wireless link usage in our proposed
network using benchmark MUM and StreamCluster. In Fig-
ure 5, we plot usage of the three most heavily used and three
most lightly used links in 20 epochs. It can be observed that for
MUM, the ratio between the highest to lowest link usage is in
the range of 2.3-1.5 times. For StreamCluster, the ratio is about
2.8 to 1.4 times. Such imbalance leads to wasted bandwidth

because some links are allocated more resource than they need
while busy links do not have enough bandwidth.

Although there have been schemes about bandwidth allo-
cation in wireless communication, we cannot simply borrow
them into the on-chip networks. For example, we can propor-
tionally divide total bandwidth among all links based on their
usage and allocate the new bandwidth in next epoch. This
method may lead to optimal bandwidth usage, but it is not
suitable for the on-chip environment because it incurs huge
cost and design complexity.

We employ a light weight scheme called ”Borrow from
the Rich”. Instead of reallocating bandwidth to all links, our
scheme only involves part of the links. The idea is to assign
all links with equal bandwidth and allow a busy link to share
bandwidth with a less used link. At the end of each epoch,
we pick links with the highest usage and put them into a
”borrowing pool”. Similarly, we create a ”lending pool” using
least used links. Then we pick a link from each pool and build
a token ring between them to share bandwidth of the lending
link. The borrowing link now has its bandwith increased,
including its original bandwidth and part of the lending link’s
bandwidth.

Figure 6 illustrates how this scheme works. Initially link A
and link B are assigned same amount of wireless bandwidth.
However, link A is congested but link B is idle half of the
time. To fully utilize link B’s bandwidth, we allow link A
and B to share the same wireless bandwidth that is originally
allocated to link B. To avoid conflict, a token ring is formed
between link A and B. At the same time, link A still has its
private channel. So whenever link B has no packet to send, it
sends a token to link A’s router, then link A can send a packet
using their shared bandwidth. Note there is a small amount of
delay overhead that is caused by token passing in our scheme.

IV. EVALUATION

A. Methodology

We use GPGPU-Sim [1] to simulate our proposed hybrid
network. Table 1 shows the configuration used in our evalu-
ation. Our baseline network consists of a 8x8 2D mesh with
56 computing cores and 8 memory controllers. The overlaid
wireless network is implemented as 2x4 mesh. We choose
mesh topology for wireless network because it has low design
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Fig. 7: Normalized performance in a 64-node NoC.
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Fig. 8: Normalized energy consumption in a 64-node NoC.
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Fig. 9: Normalized network latency in a 64-node NoC.
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Fig. 10: Normalized performance in a 256-node NoC.
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Fig. 11: Normalized energy consumption in a 256-node Noc.
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Fig. 12: Normalized network latency in a 256-node NoC.

complexity and simple routing algorithms. We experimented
with two types of MC placements (edge and distributed) in
order to observe their impacts on the hybrid wireless network.
We used GPU workloads from ISPASS [1], Rodinia [2] and
Cuda SDK [3] to evaluate our design. To simulate the power
consumption, we collect parameters using NoXim [17]. The
wireless link delay is determined by flit size, channel data
rate and system clock frequency. We set flit size to 128 bits
and wireless channel data rate to be 20Gbps, so it takes 6.4
ns to transfer one flit. We simulate a GPU system similar to
NVIDIA GTX480 which has a clock frequency of 1.4 GHz.
Therefore the single hop wireless delay is 9 clock cycles.

Shader Core 56 cores, 1.4GHz, SIMT width=8
Warp Scheduler Greedy-Then-Oldest
Shared Memory 48 KB
Cache 2KB L1 I-Cache (4 sets/4 ways LRU), 16KB L1 D-

Cache (32 sets/4 ways LRU), 64KB L2 Cache per MC
(8 way LRU)

Memory Model 8 MCs, 924 MHz
Wired NoC 128-bit channel width, 2-stage pipeline, 16-byte flits,

1-cycle link latency, X-Y routing, vc buffer depth=4
Wireless NoC 128 bit flits, 4 flits per packet, X-Y routing, 9-cycle

link latency, transmit energy=0.5 pJ/bit, receive en-
ergy=0.7 pJ/bit, epoch interval=50000

subnet 2

TABLE I: System configuration.

B. Performance and Power Analysis

The performance evaluation of our proposed hybrid wireless
network architectures is shown in Figure 7. We compare

six sets of results with different MC placements and both
static and adaptive wireless bandwidth allocation schemes. The
results are normalized to a baseline 8x8 mesh network. In most
cases, Distributed MC placement has better performance than
Edge placement. The hybrid architecture greatly improved the
network performance. On average, the hybrid wireless network
improved performance by 61% for Edge MC placement and
72% for Distributed MC placement. The adaptive bandwidth
allocation scheme further improves performance for both MC
placements by about 81%and 94%. BFS and SCP achieve the
most performance gain and their IPC are increased by 3 times.
All benchmarks achieve more than 1.5 times performance gain
except BP.

Figure 8 shows the energy consumption of the six NoC
architectures under evaluation. Energy consumption of all
NoCs are normalized to base line with Edge MC placement.
It can be observed that Distributed MC placement consumes
less energy compared with Edge placement. This is because
MCs are located near the center of the network and reduced
average transmission distance. Comparing with baseline, static
bandwidth allocation scheme can save energy by 13% and
21% averagely for the two MC placements. With adaptive
bandwidth allocation, energy savings are improved by 17%
and 24% on average. This is because wireless links have
very low power consumption compared with metal wires
and the global network significantly reduced hop counts in
the network. We also evaluated network latency as show in
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Fig. 13: Flit stall time in routers of hybrid network for workload
WP.

Figure 9. The hybrid NoC reduce network latency by 50% on
average. BFS and SCP receive maximum decrease in network
latency which translates to largest performance gain.

To evaluate the impact of our hybrid NoC on network
scalability, we performed sensitivity analysis using a network
with 256 nodes. Figure 10, Figure 11 and Figure 12 show
the evaluation results for performance, energy and network
latency respectively. Our results show the GPU NoCs receive
even more benefit from our hybrid design as network size
increases. On average, our proposed NoC can improve IPC
by 2.47 times and reduce energy consumption by 37%. The
hybrid wireless NoC exhibits good scalability and provides a
promising solution in designing large GPU systems.

Figure 13 shows the flit stall time for workload WP in our
hybrid NoC. The flit block time is normalized to the longest
one, so the absolute value does not represent real time. Instead
the important information is the relative flit block time in all
routers. When we compare Figure 13 with Figure 2(b), we
can find the difference between MCs and other routers are
decreased. This means traffic is more evenly distributed among
the routers and our design can effectively alleviate congestion
in traffic bottlenecks.

Next we discuss the overhead of our hybrid NoCs. It is
estimated that wireless transceiver and digital part of a wireless
router is around 0.3 mm2 respectively [12]. The overall area of
a wireless router is estimated to be 0.8 mm2. If the network
consists 8 wireless routers, the overall area overhead is 5.6
mm2. Comparing with the size of NVDIA GTX480 GPU
which is 529 mm2, the area overhead of wireless routers is
negligible.

V. RELATED WORK

To reduce cost, a checkerboard architecture was proposed to
design GPGPU NoCS [6]. Through VC monopolization and
employing asymmetric request and reply networks, Jang et.
al. proposed a bandwidth efficient NoC design [4]. Kim et.al
proposed a conflict-free design for the reply network called
DA2mesh [10] which assigns each memory node a dedicated
channel-sliced network. There are other GPGPU NoC schemes
such as asymmetric cmesh [9] and ring-chain network [8].
However, these scheme treats MC connected routers same as
other router when allocating network bandwidth and hard-
ware resource, wasting resource on non-congesting routers.
Compared with those schemes, our design improves network
performance by removing network bottleneck and enhancing
NoC scalability.

VI. CONCLUSION

In this paper, we analyzed the network bottleneck of on-
chip communication within GPUs. We propose hybrid NoC
architectures to design the reply network and employ wireless
links to remove network bottlenecks. We also provided so-
lutions to critical challenges in designing such networks. Our
experiment results show that the proposed design can not only
achieve better power-performance efficiency but also improve
network scalability.
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