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Abstract—Epilepsy is a neurological disorder which has neg-
ative impact on human life quality. Epilepsy affects almost 1%
of the world population necessitating a unified system for fast
seizure detection as well as remote health monitoring to enhance
the daily lives of the epilepsy patients. We envision a smart
seizure detection framework in the edge of the Internet of Things
(IoT) which is capable of detecting seizures as well as monitoring
the patient’s healthcare activity remotely. Detection of seizure is
performed using the discrete wavelet transform, statistical feature
extraction, and a naive Bayes (NB) classifier. The proposed system
was implemented and validated using Simulink R© , ThingSpeak,
and off-the-shelf microcontrollers. Experimental results show
that the proposed system reduces latency by 44% compared to
a cloud-IoT based system and reports a classification accuracy
of 98.65%.

Index Terms—IoT, Electroencephalogram (EEG), Epilepsy,
Seizure Detection, Feature Extraction, Naive Bayes Classifier

I. INTRODUCTION

Traditional healthcare is unable to accommodate the needs
of the increasing population. Smart healthcare can be a
solution for traditional healthcare which utilizes available
resources in an efficient and intelligent way and fulfills
everyone’s healthcare needs [1]. One specific example of
smart healthcare is edge-IoT based epileptic seizure detec-
tion. Epilepsy is characterized by recurrent and spontaneous
seizures. A seizure is defined as an abnormal electrical activity
in the brain marked by loss of consciousness and convulsions.
People with epilepsy are more prone to sudden unexplained
death (SUDEP) than normal people [2]. Anti-epileptic drugs
cannot be an effective cure for refractory patients. Surgery is
not an alternative to anti-epileptic drugs if the seizure focus is
located on the eloquent area of the cortex. As a result, seizure
detection is of high importance, as early detection leads to
appropriate and timely treatment [3], [4]. The IoT is an integral
part of smart healthcare; it refers to a cyber-physical system
where all the real world components are connected together.
The IoT acts as a bridge between doctor and patient and en-
ables remote healthcare monitoring and consultations [5]. The
IoT helps researchers to design potential frameworks which
utilize limited resources to their maximum efficiency. The
EEG (Electroencephalogram) contains relevant information

related to different physiological states of the brain, which are
useful for understanding brain behavior. Abnormal activities
in epilepsy patients belong mainly in two types: the interictal
state (between seizures) and the ictal sate (seizure). In this
paper, we propose an EEG based epileptic seizure detection
system in the edge-IoT framework which utilizes the Discrete
Wavelet Transform (DWT), feature extraction, and a naive
Bayes (NB) classifier (Fig. 1). EEG signals are decomposed
using the DWT and statistical features are calculated from the
decomposed signals. The extracted features are then applied to
the naive Bayes classifier for classification. The EEG signal,
as well as the output of the classifier are connected to an open
data platform for remote healthcare monitoring.
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Fig. 1: Proposed seizure detection framework.

The remainder of this paper is organized as follows: Section
II discusses the main and novel contributions of this work. Sec-
tion III describes prior research on IoT-based seizure detection.
Section IV discusses the proposed system from the edge-IoT
perspective. Section V describes the architecture and design
of the proposed seizure detection method. The implementation
and validation of the proposed system is shown in Section VI.
The paper concludes in Section VII.

II. NOVEL CONTRIBUTIONS OF THIS PAPER

Smart healthcare requires a smart seizure detection system
which can provide accurate detection, fast responses and
universal connectivity to other healthcare applications. In this



paper, an edge-IoT based seizure detection system is proposed.
The main contributions of this paper are the following:

1) The proposed seizure detection method utilizes the DWT,
statistical features, and a naive Bayes classifier. DWT
provides time frequency (TF) localization of the EEG
signal. The statistical features show considerable potential
to distinguish seizure and non-seizure behavior and the
use of the naive Bayes classifier leads to an improved
classification accuracy.

2) Cloud computing offers high computational ability and
storage with slow response time, whereas edge computing
provides less computational capability and storage with
fast response time. Internet of Medical Things (IoMT)
applications demand fast response with tolerable compu-
tation capacity to deal with critical health conditions of
the patient. The proposed edge-IoT framework reduces
latency compared to cloud-IoT frameworks and provides
universal connectivity with ambient intelligence. In the
edge-IoT framework, the patient’s healthcare data can
be accessed from anywhere or at any time for remote
consultation.

III. RELATED PREVIOUS RESEARCH

The IoT is becoming an integral part of smart health care.
A significant portion of the biomedical research is focused on
addressing the new issues on the healthcare domain [5]. The
proposed IoT-based seizure detection system can be useful for
epileptic patients and enrich smart healthcare considerably.

Several methods have been proposed for seizure detection
such as: the κ-Nearest Neighbor (k-NN ) algorithm [6][7],
support vector machines (SVM) [8], [9], weighted permutation
entropy [10], surrogate data analysis, [11], neural networks
[12] and deep neural networks [13]. Most of these methods are
useful to enhance detection accuracy to a certain amount. As
traditional healthcare advances towards smart healthcare, faster
seizure detection as well as remote connectivity are becoming
more important. So far, few methods have been proposed
for seizure detection in the an IoT framework. In [14], an
efficient seizure detection has been proposed for portable IoT
devices, which eliminates unnecessary features and reduces
EEG channel data while maintaining accuracy. A deep learning
based seizure prediction has been proposed in the IoT [15],
which provides safe storage and large computational resources
for the large number of electrodes in the system. A seizure
detecting smartwatch [16] shows good potential to detect
epileptic seizure, and has been approved by the Food and Drug
Administration (FDA). A signal rejection algorithm (SRA) that
reduces false detection in is presented in [17]. An accurate
edge device has been proposed for seizure detection in the
IoT [18], which enables remote health monitoring for patients
with medically intractable epilepsy.

IV. EDGE COMPUTING : EDGE-IOT PERSPECTIVE

Fig. 2 shows the basic architecture of edge computing for
seizure detection, which is divided into the following units:
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Fig. 2: Architecture of the proposed system in the edge-IoT
perspective.

A. Sensor Unit

Millions of sensors and devices are scattered in the large IoT
network. The sensor unit is crucial for the IoT as it consumes
most of the resource requirements. Most cannot be fulfilled
at the sensor unit due to its limited capacity [19], [5]. EEG
data acquisition is carried out by the sensor unit. Once data
acquisition is complete, it is then sent to the edge server for
further processing.

B. Edge Server Unit

In the conventional cloud based IoT, most of the compu-
tations are done on the cloud. In edge computing, most of
the resource requirements such as EEG data analysis, data
processing, and temporary data storage are performed on the
edge servers, which enhances the performance of the data
computation and storage. EEG data is analyzed and processed
here and seizure detection is carried out using the proposed
algorithm. This unit also acts as temporary storage for the EEG
patient’s data [20]. Upon seizure detection, the information
corresponding to the patient’s seizure state is sent to the cloud.
The edge servers only allow necessary information to be sent
to the cloud [19].

C. Cloud Server Unit

In edge computing, the cloud servers are deployed far away
from the end devices and can provide high computation and
large data storage. In practical real time services, the compu-
tational requirements of the IoT devices can be satisfied by
edge nodes as IoT devices do not demand high computation.
Moreover, the power consumption has been significantly re-
duced through the offloading of computation tasks. The cloud
server stores the necessary information relating to seizure and
non-seizure states.

D. Access Unit

Health professionals can access the cloud data from any-
where and anytime, which provides universal connectivity to
the IoT devices and enables remote health services. In the
case of a health abnormality, the doctor will be notified by a
message. The doctor will then prescribe the required dosage
by analyzing the patient’s medication history [18].

The edge-IoT based seizure detection provides the following
advantages over cloud-IoT based seizure detection.

1) Millions of IoT devices create a large amount of data.
The transmission of these large data sets to the cloud



consumes huge network bandwidth and leads to a large
transmission delay. IoT gateways migrate pre-processing
and aggregation of the data into the edge which reduces
transmission delay and bandwidth requirements.

2) IoT devices generate vast amounts of data which need
to be stored in a storage server. In cloud computing, the
simultaneous storage of massive data in the cloud leads to
obstruction in the network. For instance, EEG produces
massive data which should be stored in the storage device
and processed within a time constraint. The performance
of the cloud computing based storage is not satisfactory
because of traffic in the network. In edge computing, the
traffic in the network can be mitigated by offloading the
storage demand to the different edge storage nodes.

V. THE PROPOSED SEIZURE DETECTION APPROACH

Initially EEG signals are decomposed using the DWT and
then the decomposed signals are applied to the feature extrac-
tion unit. Once feature extraction is complete, the extracted
features are given to the NB classifier for classification. The
architecture of the proposed seizure detection approach is
shown in Fig. 3.
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Fig. 3: Architecture of the proposed seizure detection ap-
proach.

A. Feature Extraction From Discrete Wavelet Transform
(DWT)

EEG signals are complex and non-stationary in nature.
The analysis of EEG signals requires time-frequency (TF)
decomposition to capture both low and high frequency infor-
mation. The DWT is useful in analyzing EEG signals and
provides TF localization by using both long and short timing
windows [21], [22]. The signal is decomposed through a
filter bank comprising of both low pass filters and high pass
filters. The Daubechies wavelet of order 4 has been used for
the decomposition. The decomposition is carried out in four
stages. In the first stage, the signal is decomposed to approx-
imate coefficient A1 and detail coefficient D1. In the second
stage the approximate coefficient A1 is further decomposed
to approximate coefficient A2 and detail coefficient D2. The
decomposition steps continue up to 4th stage. The subsequent
approximate and detail coefficients are denoted as A4, D3, and
D4 respectively. The sub-band frequency ranges are: D1 (43.4-
86.8Hz), D2 (21.7-43.4Hz), D3 (10.85-21.7Hz), D4 (5.43-
10.85Hz), and A4 (0-5.43Hz).

The following statistical parameters are extracted from the
decomposed EEG signals:

1) Variance and Standard Deviation: Variance and its
square root (standard deviation) refer to the dispersion of the
data from its main value.

2) Energy: The energy of the kth epoch is denoted by

Energy =

L∑
k=1

(Ak)
2, (1)

where Ak is the amplitude of the kth sample and L is the total
number of samples in an epoch.

B. Naive Bayes (NB) Classifier

The Naive Bayes classifier is based on Bayesian theory and
requires fewer data for the training [23]. The algorithm for the
NB classifier is:

Consider an attribute vector z of n features. The posterior
probability of the class Cp for the attribute z is calculated
from:

p(Cp|z) =
p(z|Cp) p(Cp)

p(z)
, (2)

where p(Cp) is the prior probability of the class, p(z) is the
prior probability of the attribute, and p(z|Cp) is the probability
of z for a given class. Naive Bayes models employ conditional
independence where zi is independent of zj for a given class
Cp. The above equation can be written as:

p(Cp|z) = p(Cp)

n∏
i=1

p(zi|Cp). (3)

A class label is given to the attribute based on highest posterior
probability, which is defined by the following equation:

p(C1)

n∏
i=1

p(zi|C1) > p(C2)

n∏
i=1

p(zi|C2). (4)

VI. IMPLEMENTATION AND VALIDATION OF THE
PROPOSED SYSTEM

The proposed system was implemented using Simulink R© ,
an ATmega328P microcontroller (Arduino) and ThingSpeak.
The DWT structure was created in Simulink R© as presented
in Fig. 4. EEG datasets were initially decomposed using
the DWT. DWT structure was created in Simulink R© . The
decomposed signals were divided to a training set and a
testing set. Both the training data set and the testing data set
were then fed to the feature extraction unit. A Simulink R©user
defined function was created to construct the feature extraction
unit. The statistical features which were extracted the from
feature extraction unit were then input to the naive Bayes (NB)
classifier. The structure of the NB classifier was constructed
using a Simulink R© function. The training data sets were used
to train the classifier. The detection was carried out based on
the highest posterior probability of the class.

ThingSpeak, an open data platform, was utilized to store
the data in the cloud. Upon seizure detection, a notification is
sent to ThingSpeak from Simulink R© . Medical professionals
including the doctor and other stake-holders can access health
care data using an API (Application Programming Interface)



Fig. 4: Simulink and Arduino based prototyping of the pro-
posed system.

via the Internet. The proposed Simulink R©model was run on
Arduino board.

EEG datasets were taken from the widely used Bonn
database [11], which contains five datasets denoted as A, B,
C, D and E. We analyzed datasets A, D, and E. Dataset A
was recorded from a healthy person whereas dataset D was
recorded during the interictal state. Dataset E was recorded
from the epileptegenic zone during seizure activity (ictal state).
Each dataset includes 100 EEG epochs and each epoch is
comprised of 4097 samples.The sampling rate for the EEG
data acquisition was 173.61 Hz. Fig. 5 shows an EEG epoch
from datasets A and E. The approximate coefficient A4 and
detail coefficients D1, D2, D3 and D4 for datasets A and E
are shown in Fig.6 and Fig. 7 . The statistical parameters were
then extracted from the sub-bands, and are shown in Tables I
and II. It is evident that the values of all statistical parameters
are higher for dataset E. The extracted feature values are
almost identical for dataset A and dataset D. In this work,
classification was tested for the following case: Dataset A, D
versus Dataset E.

Datasets A, D, and E contain altogether 300 EEG epochs.
85% of the EEG epochs from each dataset were utilized to
train the classifier and the remaining 15% of EEG epochs were
used for testing purposes. The lowest classification accuracy
was found as 96.58% for the individual feature SD (Standard
Deviation) and the highest accuracy of 98.65% was obtained
for the combined feature SD+VAR (Variance). Table IV shows
an accuracy comparison with existing methods. The latency
of the proposed system was measured using Simulink R© and
ThingSpeak. The latency for the cloud based IoT was mea-
sured as 2.5 seconds, whereas the edge based IoT offered a re-
duced latency of 1.4 seconds (Table III). The latency includes
both computation time as well as transmission delay. In real
world cloud based IoT applications, millions of devices are
connected to the cloud server and the unnecessary information
in the transmission line will cause higher transmission delays
as well as system latency. The edge based IoT provides 44%
reduction in latency which is highly important for critical
biomedical applications.

VII. CONCLUSIONS

We proposed a smart seizure detection system in the edge-
IoT framework which utilizes statistical feature extraction and
naive Bayes classification. The prototype of the system was
implemented using Simulink R© and ThingSpeak. It is evident
from the experimental results that the proposed edge-IoT
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Fig. 5: Sample EEG epoch from datasets A, D, and E.
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Fig. 6: DWT decomposed EEG epoch from set A.

framework reduces latency by a sizable portion while main-
taining high classification accuracy. Future research includes
implementing a drug delivery system with the proposed frame-
work for seizure detection and drug injection, simultaneously.
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Fig. 7: DWT decomposed EEG epoch from set E.



TABLE I: Extracted feature coefficients for dataset A

Coefficient Variance Standard Deviation Energy

D1 25.2164 5.0216 2.8564e+04
D2 587.553 24.2395 3.0435e+05
D3 5.3957e+03 73.4555 1.4426e+06
D4 9.9058e+03 99.5279 1.9874e+06
A4 1.5439e+04 124.2539 4.0502e+06

TABLE II: Extracted feature coefficients for dataset E

Coefficient Variance Standard Deviation Energy

D1 1.4426e+03 37.9819 1.8934e+06
D2 6.4382e+04 253.736 4.8707e+07
D3 7.0151e+05 837.560 3.0676e+08
D4 6.9684e+05 834.769 1.8874e+08
A4 1.7177e+06 1.310e+03 4.0854e+08

REFERENCES

[1] S. P. Mohanty, U. Choppali, and E. Kougianos, “Everything You wanted
to Know about Smart Cities,” IEEE Consumer Electronics Magazine,
vol. 6, no. 3, pp. 60–70, July 2016.

[2] L. A. Jones and R. H. Thomas, “Sudden Death in Epilepsy: Insights
from the last 25 years,” Seizure, vol. 44, pp. 232–236, Jan 2017.

[3] N. Verma, A. Shoeb, J. Bohorquez, J. Dawson, J. Guttag, and A. P.
Chandraksan, “A Micro-power EEG Acquisition SoC With Integrated
Feature Extraction Processor for a Chronic Seizure Detection System,”
IEEE J.Solid-State Circuits, vol. 45, no. 4, pp. 804–816, April 2010.

[4] P. Kwan and M. J. Brodie, “Early Identification of Refractory Epilepsy,”
N Engl J Med, vol. 342, no. 5, pp. 314–319, Feb 2000.

[5] P. Sundaravadivel, E. Kougianos, S. P. Mohanty, and M. Ganapathiraju,
“Everything you wanted to know about Smart Healthcare,” IEEE Con-
sumer Electronics Magazine, vol. 8, no. 1, pp. 18–28, January 2018.

[6] S. Supriya, S. Siuly, H. Wang, J. Cao, and Y. Zhang, “Weighted Visibility
Graph With Complex Network Features in the Detection of Epilepsy,”
IEEE Access, vol. 4, pp. 6554–6566, 2016.

[7] A. Sharmila and P. Geethanjali, “DWT Based Detection of Epileptic
Seizure From EEG Signals Using Naive Bayes and k-NN Classifiers,”
IEEE Access, vol. 4, pp. 7716–7727, 2016.

[8] T. Zhang and W. Chen, “LMD Based Features for the Automatic Seizure
Detection of EEG Signals Using SVM,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, vol. 25, no. 8, pp. 1100–1108,
Aug 2017.

[9] A. Shoeb, “Application of Machine Learning to Epileptic Seizure Onset
Detection and Treatment,” Ph.D. dissertation, Massachusetts Institute of
Technology, September 2009.

[10] N. S. Tawfik, S. M. Youssef, and M. Kholief, “A Hybrid Automated
Detection of Epileptic Seizures in EEG Records,” Comput. Electr. Eng.,
vol. 53, pp. 177–190, July 2016.

TABLE III: Cloud-IoT VS Edge-IoT.

System Details Latency

Cloud-IoT based Detection framework 2.5 sec
Edge-IoT based Detection framework 1.4 sec

TABLE IV: Accuracy Comparison With Existing Systems

Works Methods Accuracy (%)

Shoeb, et al. [9] Support Vector Machines 78.74
Kumar, et al. [12] Neural Network 95
Tawfiq, et al. [10] Weighted Permutation Entropy 96.5
Sharmila, et al. [7] Feature Extraction, k-NN classifier 97.08
Proposed System DWT and naive Bayes classifier 98.65

[11] R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, and C. E.
Elger, “Indications of Nonlinear Deterministic and Finite-dimensional
Structures in Time Series of Brain Electrical Activity: Dependence on
Recording Region and Brain State,” Phys. Rev. E, vol. 64, no. 6, p.
061907, Nov 2001.

[12] Y. Kumar, M. Dewal, and R. Anand, “Epileptic Seizures Detection in
EEG Using DWT-based ApEn and Artificial Neural Network,” Signal,
Image and Video Processing, vol. 8, no. 7, pp. 1323–1334, October
2014.

[13] H. G. Daoud, A. M. Abdelhameed, and M. Bayoumi, “Automatic Epilep-
tic Seizure Detection Based on Empirical Mode Decomposition And
Deep Neural Network,” in Proceedings of the IEEE 14th International
Colloquium on Signal Processing Its Applications, 2018, pp. 182–186.

[14] F. Samie, S. Paul, L. Bauer, and J. Henkel, “Highly Efficient And Ac-
curate Seizure Prediction on Constrained IoT Devices,” in Proceedings
of the Design, Automation Test in Europe Conference Exhibition, 2018,
pp. 955–960.

[15] M. P. Hosseini, D. Pompili, K. Elisevich, and H. Soltanian-Zadeh,
“Optimized Deep Learning for EEG Big Data and Seizure Prediction
BCI via Internet of Things,” IEEE Transactions on Big Data, vol. 3,
no. 4, pp. 392–404, Dec 2017.

[16] E. Dolgin, “This Seizure-Detecting Smartwatch Could Save Your
Life,” https://spectrum.ieee.org/the-human-os/biomedical/diagnostics/
this-seizuredetecting-smartwatch-could-save-your-life, February 2018,
online; accessed 19-February-2018.

[17] M. A. Sayeed, S. P. Mohanty, E. Kougianos, and H. Zaveri, “An
Energy Efficient Epileptic Seizure Detector,” in Proceedings of the IEEE
International Conference on Consumer Electronics (ICCE), 2018, pp.
1–4.

[18] M. A. Sayeed, S. P. Mohanty, E. Kougianos, and H. Zaveri, “A Fast and
Accurate Approach for Real-Time Seizure Detection in the IoMT,” in
Proceedings of the IEEE International Smart Cities Conference (ISC2),
2018.

[19] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang,
“A Survey on the Edge Computing for the Internet of Things,” IEEE
Access, vol. 6, pp. 6900–6919, 2018.

[20] D. Puthal, M. S. Obaidat, P. Nanda, M. Prasad, S. P. Mohanty, and A. Y.
Zomaya, “Secure and Sustainable Load Balancing of Edge Data Centers
in Fog Computing,” IEEE Communications Magazine, vol. 56, no. 5, pp.
60–65, May 2018.

[21] H. P. Zaveri, W. J. Williams, L. D. Iasemidis, and J. C. Sackellares,
“Time-frequency Representation of Electrocorticograms in Temporal
Lobe Epilepsy,” IEEE Transactions on Biomedical Engineering, vol. 39,
no. 5, pp. 502–509, MaY 1992.

[22] O. Salem, A. Naseem, and A. Mehaoua, “Epileptic Seizure Detection
from EEG Signal Using Discrete Wavelet Transform and Ant Colony
Classifier,” in Proceedings of the IEEE International Conference on
Communications, 2014, pp. 3529–3534.

[23] R. Bayindir, M. Yesilbudak, M. Colak, and N. Genc, “A Novel Ap-
plication of Naive Bayes Classifier in Photovoltaic Energy Prediction,”
in Proceedings of the 16th IEEE International Conference on Machine
Learning and Applications, 2017, pp. 523–527.


