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Abstract—To best of the authors’ knowledge, this is the first
work that uses Kriging for early detection of seizure. The threat
of an epileptic seizure to the life of a patient is both social
and physical. Seizure detection research has been developing
over the years. Most efforts in the literature concentrate largely
on accuracy and would often take computation to the cloud.
However, there is a very short window between the onset of an
epileptic seizure and a potentially fatal incidence that could lead
to injury or loss of life. Hence, there is need for a more time-
sensitive approach to seizure detection. Here, we propose a real
time seizure detection model in an edge computing paradigm
using signals collected through the electroencephalogram (EEG)
from the brain of both healthy and epileptic patients. The
fractal dimensions of the signals were taken after de-noising
with the Discrete Wavelet Transform (DWT), and then classified
using the Ordinary Kriging method which gives a training
accuracy of 99.4% and a perfect sensitivity. The proposed model
was validated with a hardware implementation using an edge
computing device and the results show a comparable classification
accuracy and a lower mean detection latency of 0.85 sec.

Index Terms—Smart Healthcare, Seizure Detection, Epilepsy,
Edge Computing, Kriging Method, EEG

I. INTRODUCTION

A seizure is an eccentric activity of firing neurons in

the central nervous system which results in the irregular

functioning of the brain’s circuitry. Approximately 10% of the

world population will have at least one experience of seizure

in their lifetime [1]. Not all seizures are epileptic. A seizure is

said to be epileptic when it is unprovoked and recurrent [2].

Timely epileptic seizure detection is an important first step

towards effectively managing the disorder and its attendant

comorbidities. Real-time seizure detection will ensure that the

subject receives the needed help as quickly as possible at the

onset of a seizure crisis without the patient being restricted

to a locked-in state. EEG signals are captured from the brain

using portable devices while patients lead their normal lives,

and are immediately analyzed for the presence of seizure.

Recent advances in the Internet of Things (IoT) and Artifi-

cial Intelligence (AI) technologies have increased the chances

of success in this endeavor. As depicted in Fig. 1, real-

time data processing is much more feasible at the edge of

the IoT network which is closer to the user elements. For

example, a smart wearable (Fig. 1, left) which senses the

level of sweat and humidity during sleep in a smart home

communicates to an edge device, such as a wrist watch (Fig.

1, center) which performs a computation to compare the

measured values to some given threshold and decides if a

cooling system is needed. Although the cloud (Fig. 1, right)

has higher computational power, it takes a longer time to reach

the cloud thereby causing an increased latency which may not

be acceptable for a real-time application. Edge computing also

enhances user mobility and location awareness [3].
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Fig. 1: Edge computing paradigm in a smart home.

The rest of the paper is organized as follows: Section II

discusses related research works. Section III states the problem

and novel contributions. Section IV presents the proposed

edge computing paradigm for seizure detection. Section V is a

presentation of the proposed real-time seizure detection model.

Experimental validation of the proposed model and results are

given in Section VI, while Section VII presents conclusions.

II. RELATED RESEARCH WORK

Neuro-Detect was proposed in [4] as a consumer electronic

device where a combination of discrete wavelet transforms

and Hjorth parameters were used to preprocess the EEG sig-

nals and extract important features such as activity, mobility,

complexity and standard deviation.

iSeiz was proposed as a real-time seizure detection system

built on body motion sensors such as an accelerometer and a

gyroscope to detect unusual movements of the body during the

onset of a seizure [5]. In iSeiz, information from the wearable

has to go through the iSeiz gateway to the cloud from where

messages will then be sent to the concerned individuals. This

may lead to a substantial delay in providing assistance to the

suffering patient.

The use of a signal rejection algorithm for seizure detection

using EEG was proposed in [6]. The approach called eSeiz,



extracts hyper-synchronous pulses from the EEG as target

feature and compares with a given threshold to determine the

presence of seizure. However, the proposed Kriging [7] and

edge computing based seizure detection model in this work

outperforms the eSeiz in terms of both sensitivity and latency.

Several machine learning algorithms have been used for

differentiating seizure signals from normal ones. Support Vec-

tor Machines (SVM) with radial basis function (RBF) kernels

were used in [8]. Other machine learning algorithms which

have also been used include κ-NN classifier [4], Artificial

Neural Networks (ANN) [9], Decision Trees [10] and Deep

Neural Networks [4]. The emphasis in most of these cases is

performance in terms of accuracy and not suitability for edge

computation. In this paper, we propose a novel application of

Ordinary Kriging as a classifier for seizure detection.

III. CONTRIBUTIONS OF THIS CURRENT PAPER TO THE

STATE-OF-ART

A. Problem Definition

The literature is replete with seizure detection models whose

focal point is accuracy. While this is important, the response

time required to assist a subject in distress is equally as

important, if not even more. A perfect accuracy score is of little

value if the epilepsy patient cannot receive the needed help

when due. This problem arises because most seizure detection

computations are pushed to the cloud due to their heavy com-

plexity. Is it possible to run a seizure detection algorithm on the

edge rather than the cloud, without significant compromise on

accuracy? How can seizure detection be accomplished in real

time? These research questions are addressed in the different

sections of this paper.
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Fig. 2: Seizure detection latencies on an ictal EEG signal.

As shown in Fig. 2, the typical seizure detection latency

indicated by region A ranges from 4 to around 6 secs. This

is usually the result of cloud processing. However, early

detection of seizures (region B) with a latency range of about

1 to 2 secs can be achieved with edge computation. Region C

denotes seizure prediction which happens at least 6 secs prior

to the onset of seizure. The goal of this work is to achieve

early detection with as little latency as possible.

B. Proposed Solution of this Paper

This paper proposes an edge computing solution to the

seizure detection problem with a real-time detection model us-

ing Ordinary Kriging and the fractal dimension as an efficient

mix of a light classification algorithm and a simple feature that

is fitted for edge computation. This makes seizure detection

much quicker, with minimal latency thereby reducing the risk

of death that is often associated with epilepsy.

Why Kriging? Whereas machine learning algorithms

like artificial neural networks require large datasets for good

performance, the Kriging method [7] performs very well even

on a relatively small dataset [11]. This becomes very important

given the fact that biomedical datasets are not quite ubiquitous

as compared to other fields. Also, prediction from a Kriging

model comes with a variance estimate which gives the level

of confidence of the model in a given prediction. This makes

the Kriging model very reliable without requiring the use of

many hyperparameters [11].

C. Novelty of the Proposed Solution

The following are the novel contributions of this work to

the state of the art in epileptic seizure detection research:

• A novel synthesis of a feature extraction method and a

classification algorithm that is suitable for edge compu-

tation with respect to seizure detection, using the fractal

dimensions of the EEG signals as a feature vector and

Ordinary Kriging classifier.

• A novel application of a soft thresholding Discrete

Wavelet Transform (DWT) de-noising technique to re-

move noise in an epileptic seizure detection model.

• A novel achievement of an epileptic seizure detection

latency of less than 1 second while maintaining a compa-

rable accuracy with existing models and O(1) time and

space complexity for edge computation.

IV. PROPOSED EDGE COMPUTING PARADIGM FOR

SEIZURE DETECTION

By bringing the execution of the seizure detection algorithm

to the edge, faster detection can be achieved. We propose a

paradigm shift from seizure detection in the cloud to seizure

detection on the edge. Fig. 3 shows a schematic architecture of

our proposed edge computing paradigm for real-time seizure

detection.
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Fig. 3: Proposed edge computing model for seizure detection

The EEG signal is transmitted directly to the portable

smart edge device. The three main functions of the edge



hardware are as follows: It carries out local processing of

the EEG signal to extract some specific features, it performs

real-time seizure detection using the extracted features and

it triggers a seizure crisis alarm in the event of a seizure.

The generated seizure detection alert is disseminated to some

designated caregivers which can include close relatives, the

physician and an emergency service provider. Unlike the iSeiz

[5] approach where messages are initiated from the cloud,

messages here are initiated directly from the edge, enhancing

faster communication of the seizure state of the patient to the

concerned individuals. The medical database shown in Fig. 3 is

used as a means of persistent storage of continuous EEG data

from the subject for future use. Although an edge IoT seizure

detector was proposed in [6], only the physician who is far

away was notified of the patient’s seizure status. However, a

patient under a seizure attack needs immediate help to prevent

injury or death. This explains the reason for notifying multiple

care givers, including those who are in close proximity to

the patient most of the time in our proposed edge computing

seizure detection model.

V. THE PROPOSED REAL TIME SEIZURE DETECTION

MODEL

The proposed real-time seizure detection model in this

paper consists of three major sections apart from the input

and output. They are signal de-noising, feature extraction and

seizure state classification. The input to the model is the EEG

signal from the patient while the output is the actual seizure

status of the patient. The process flows for the three phases

of the proposed real-time seizure detection are shown in Fig.

4 and Fig. 5.

A. Signal De-noising

Despite the prevalence of EEG in seizure detection, it is also

susceptible to noise as a result of motion artifacts and phys-

iological activities, such as respiration. Wavelet Transforms

have been identified as the most effective method of EEG

signal pre-processing and de-noising for seizure detection as

compared to other methods such as Fourier Transforms and

Wiener filtering [12]. It was further observed that the Discrete

Wavelet Transform (DWT) performs better than the Contin-

uous Wavelet Transform (CWT). One major disadvantage of

wavelet methods is having to select a specific mother wavelet

[12] as there are over a dozen different mother wavelets.

However, the Daubechies Wavelet of the fourth order (db4)

has been identified in the literature as the most suitable mother

wavelet for EEG-based seizure detection feature extraction

having been noted for the best performance [12]. Wavelet de-

noising is achieved by first performing a multi-level wavelet

decomposition of the signal followed by a thresholding oper-

ation on the coefficients before an inverse wavelet transform

to recover the de-noised signal.

B. Feature Extraction

While coefficients from Wavelet Transforms can be used

directly as features for seizure detection, there exist other
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Fig. 4: Real-time seizure detection flow process in segments.

Start

Data Splitting into Training 
and Testing Feature Vectors 

Trained Kriging 
Model

Real Time 
Seizure Detection

Petrosian Fractal
Dimensions

Kriging Model Training

Testing Feature 
Vector

Training Feature 
Vector

Classification with Trained 
Kriging Model

Seizure 
Detected ?

Notification Dispatch 
to Caregivers

Yes

No

Fig. 5: Model training and seizure detection flow process

features which have also been used including energy, entropy,

Hjorth parameters, variance, fractal dimension, and correlation

[4, 12]. It is remarked in [13] that signal complexity is a

very good feature for classifying EEG signals since healthy

biomedical signals tend to be more complex than their un-

healthy counterparts. Entropy and Fractal Dimensions are good



measures of signal complexity [13]. While there are different

algorithms for fractal dimensions [14], Petrosian’s Fractal Di-

mensions is used in this paper due to its fast computation [14],

[15], which is desirable for an edge computing application

such as this. The Petrosian’s Fractal Dimension is given by

the following expression [14, 15]:

FDPetrosian =
ln(n)

ln(n) + ln

(
n

n+ 0.4Nδ

) , (1)

where n is number of data points in the EEG sequence, or

the length of the sequence, and Nδ represents the number of

alternating pairs of signs in the inherent binary sequence.

C. Ordinary Kriging and its Computational Complexity

Kriging is a Gaussian or stochastic process that is governed

by a mean value and the relative co-variances of known

data points with respect to an unknown [7]. It was originally

developed as a geo-statistical model for spatial prediction but

is increasingly gaining relevance in other fields over the years

[16–18]. The brain is envisioned as a spatial map on which

spatial data processing methods can be applied [19].

Given the following set of observations x1,x2, ...,xn as

inputs, and y(x1), y(x2), ..., y(xn) as outputs, the input-output

relationship based on Kriging is given by [20]:

y(xi) = μ+ Z(xi), (2)

where i is the data point index, μ is a mean constant and

Z(xi) is a Gaussian process of mean zero and σ2 variance.

A linear estimator for an unknown is formulated as [20]:

y(xo) =

n∑
i=1

λiZ(xi) + (1−
n∑

i=1

λi)μz, (3)

where xi and xo represent the known data points and the

unknown, respectively. λi represents the weights associated

with each data point and μz represents the global mean. Eqn.

3 can be derived by simplifying the following residual:

y(xo)− μz(xo) =
n∑

i=1

λi(Z(xi)− μz(xi). (4)

The residual is defined as the difference between some value

and a given reference. If we let y = Z∗ and represent a vector

of residuals with R, then Eqn. 4 can be reduced to:

R∗(xo) =

n∑
i=1

λiR(xi). (5)

The estimation variance of Kriging’s prediction is given by:

σ2
est. = E{[R∗(xo)−R(xo)]

2}. (6)

E{.} is the expectation. By expanding eqn. 6 and substituting

Eqn. 5 into it, we have:

σ2
est. =

n∑
i=1

n∑
j=1

λiλjC(xi,xj)− 2

n∑
i=1

λiC(xo,xi) + C(0).

(7)

C(xi,xj) = Covariance between data points at indices i and

j, C(xi,xo) = Covariance between each data point and the

unknown, and C(0) = Variance.

The Kriging technique works by finding the weights that

minimize the estimation variance in order to produce the best

linear unbiased estimator (BLUE) [20]. Hence, the partial

derivative of eqn. 7 with respect to λi results in:

∂σ2
est.

∂λi
=

n∑
j=1

λjC(xi,xi)− 2C(xo,xi), (8)

where i = 1, 2, 3, ..., n. By setting Eqn. 8 to zero, we have a

system of n equations and n unknown weights as follows:

n∑
j=1

λjC(xi,xi) = 2C(xo,xi). (9)

The weights can then finally be obtained by solving Eqn. 9.

The major limitation of Kriging is its time complexity.

The asymptotic complexity in time for Kriging is O(n3d)
[16], where n is the number of samples and d represents the

feature dimension. However, this applies only to training. After

training the Kriging classifier, the asymptotic time complexity

for applying the model to the whole test set is given by

O(nd) [16] which is approximately linear for a small d. In

this work, our Kriging model is pre-trained on a workstation

and then installed on an edge device for real time seizure

detection in which a single sample is passed to the model

at a time and a corresponding output is generated, that is

n = 1 for each detection check. Also, d = 1 in the proposed

model. This implies that the asymptotic time complexity of

the proposed edge-based seizure detection model in this paper

is O(1), which is a constant time complexity. The asymptotic

space complexity of the proposed model is also O(1). This is

because a single variable is repeatedly used for all the signals

without storing it on the edge device. It just receives the signal,

processes it in real time and dispatches the output accordingly.

VI. EXPERIMENTAL VALIDATION OF THE MODELS

A. Dataset

The datasets used in this paper were originally collected

from five healthy volunteers and five epilepsy patients by the

University of Bonn in Germany [21].

Five different sets of data were collected as sets A, B, C,

D and E. Sets A and B were collected non-invasively from

the five healthy subjects in a relaxed but alert state with eyes

opened and eyes closed for set A and set B, respectively. Sets

C and D are intracranial EEGs collected during the period in-

between seizures (inter-ictal state) from the epilepsy patients

while set E is the only set collected during the actual seizure

(ictal state). Each of the sets comprises 100 EEG segments.

Fig. 6 shows some examples of EEG segments from sets A,

C and D, representing the healthy, inter-ictal and ictal states,

respectively.



Fig. 6: EEG signals at healthy, inter-ictal and ictal states

B. DWT De-noising, Feature Vector and Model Training

The Daubechies Wavelet of order four (db4) was used for

the discrete wavelet decomposition of the EEG signals into

five different levels. At each level, there is a pair of approx-

imation coefficients (Ai) and detail coefficients (Di), where

i represents the present level of the decomposition. After

decomposition, a soft thresholding technique is applied to each

of the coefficients in order to remove noise. Afterwards, an

inverse DWT operation is performed on the coefficients to

produce a single de-noised EEG signal.

After de-noising, the fractal dimension feature is obtained

for each EEG segment using Eqn. 1. Table I shows some of

the values of the Petrosian fractal dimension (pfd) for Sets A,

C and E. A simple sanity check confirms the effectiveness of

pfd in detecting the onset of seizure based on the assumption

that a healthy biological signal is often more complex than the

unhealthy ones [13]. Since fractal dimension is a measure of

signal complexity [13], higher values of pfd are tantamount

to higher complexity. Therefore, as observed from Table I,

the values of pfd for Set E (ictal signals) are generally lower

compared to Set A (healthy signals), confirming the superior

complexity of Set A signals over those of Set E.

TABLE I: Sample feature vectors for sets A, C and E
Count pfd SetA pfd SetC pfd SetE

1 1.010204 1.008332 1.007853
2 1.010808 1.008588 1.008811
3 1.010182 1.010534 1.008522
4 1.015926 1.009299 1.007091
5 1.014859 1.011967 1.006821

The Ordinary Kriging model training is done in two cat-

egories, which are Category I (Set A versus Set E), that is

detecting seizure from a pool of healthy signals and seizure

signals; and Category II (Set C versus Set E), that is detecting

an ictal signal from a stream of ictal and inter-ictal signals.

C. Kriging Classifier Testing

For each category of our proposed Kriging model (that is,

Category I and Category II), there are a total of 200 EEG

samples, with 100 samples of each class. The 200-sample

dataset is randomly divided into two with 80% of the dataset

used for training while 20% is used for testing.

TABLE II: Performance of the proposed kriging model on the

testing set compared to other algorithms
Dataset Performance Naive Bayes kNN Kriging

(Set A/Set E)
Accuracy 97.50% 100.00% 100.00%
Sensitivity 97.00% 100.00% 100.00%
Precision 98.00% 100.00% 100.00%

(Set C/Set E)
Accuracy 85.00% 82.50% 87.50%
Sensitivity 85.00% 82.00% 88.00%
Precision 89.00% 85.00% 88.00%

The testing performance is a measure of how the model

performs. It is an indication of how well the model fits the

data with respect to unknown examples. The metrics used for

scoring the testing performance are testing accuracy, sensitivity

and precision. Table II shows the performance of the proposed

model on the testing set with respect to other machine learning

algorithms used on the same dataset.

D. Real Time Edge Seizure Detection Model Validation

As a representative edge device, a single-board computer

(Raspberry Pi 3B+) with limited resources with WiFi and

bluetooth connectivity has been used. It has a 1-GB Random

Access Memory (RAM), 1.4 GHz 64-bit Quad-Core Arm

Processor and a 32-GB microSD storage on which runs a

lightweight version of the Linux operating system. Its small

form factor of dimensions 85mm×56mm×17mm and weight

of about 42g (1.48oz) compared to its computational power

makes it very attractive as an edge device in many applications.

The trained Kriging model was ported to the Raspberry

Pi through object serialization. The de-noising and feature

selection algorithms were also run directly on the Raspberry Pi

for each of the EEG segments to be processed. The validation

setup consists of two major components, the server unit and

the client unit. Using socket programming techniques, a stream

of EEG segments was passed from the server unit to the client

unit without any physical connection between them.

1) Server Unit: A conventional personal computer worksta-

tion is used as the server unit in this work. It mimics the brain

of an epilepsy patient by ceaselessly transmitting EEG signals

to the client unit for seizure detection. The server unit first

initiates a connection to the Internet Protocol (IP) address of

the client. Once connection is established, data transfer begins.

2) Client Unit: The Raspberry Pi which is the edge device

serves as the client unit. It receives the EEG signals from the

server unit and processes each EEG segment immediately in

real time to determine the presence of an epileptic seizure.

The mean seizure detection latency recorded in this work is

0.85 second. Table III compares the latency of the proposed

model to some previous seizure detection systems.

VII. CONCLUSIONS

This paper presentes a novel real-time seizure detection

model in an edge computing paradigm using the Ordinary

Kriging method. As demonstrated here, it is important to

bring seizure detection closer to the subject by running the

algorithm on an edge device. The Ordinary Kriging method

proved very effective in classifying the seizure signals with a



TABLE III: Comparing latency of the proposed edge seizure detection model with existing works in the literature.
Published Works Extracted Features Classification Algorithm Sensitivity Latency

Shoeb, et al. 2010 [22] Spectral, temporal and spatial features. Support Vector Machine (SVM) 96.00% 4.2 sec.

Zandi, et al. 2012 [23] Regularity, energy & combined seizure indices Cummulative Sum (CUSUM) thresholding 91.00% 9 sec.

Altaf, et al. 2015 [24] Digital hysteresis Linear Support Vector Machine (LSVM) 95.70% 1 sec.

Vidyaratne, et al. 2017 [25] Fractal dimension, spatial/temporal features Relevance Vector Machine (RVM) 96.00% 1.89 sec.

Sayeed, et al. 2019 [6] Hyper-synchronous pulses Signal Rejection Algorithm (SRA) 96.90% 3.6 sec.

Current Paper Petrosian fractal dimension Kriging Classifier 100.00% 0.85 sec.

training accuracy of 99.4% and a perfect score of 100% for

accuracy, sensitivity, precision and specificity on the test set.

The detection of seizure onset takes place in real time with

an average detection latency of 0.85 second. We will consider

different and bigger datasets in future research.

In future work, we will investigate seizure prediction, which

means having prior knowledge that a seizure will occur before

it actually does. Another future research is to have unified

systems that detects seizure before happens, and then injects

drug or performs other control measures right after that [26].

We also intend to add security and privacy features to the

overall system as it is IoMT enabled and always connected

to Internet [27]. We will explore blockchain enabled system

that will store the EEG data of individuals with security and

privacy preserved and only authorized personnel have access to

these. At the same tine only authorized personnel can program

the drug-delivery system to release right amount of fluid.
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