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Abstract—The Deep Neural Network (DNN) model is known
for its high accuracy in classification tasks due to its intrinsic
ability to learn the underlying patterns existing in a set of data.
Hence it has gained momentum in seizure detection research, as
in many other fields. However, its high performance is at the
expense of an extensive training time. This is not appropriate for
a real-time application such as seizure detection in which a swift
reaction is required to save the life of the patient. This paper
presents a novel Kriging-Bootstrapped Deep Neural Network
hierarchical model for early seizure detection in which Kriging
is first used to generate a well-correlated intermediate data set
from the original input. The correlated data is then fed into
the DNN for the final training. Experiments were carried out
using electroencephalogram (EEG) data from both normal and
epileptic patients. Results show that, with the same architecture
and data size, the cumulative training time of the Krigging-
Bootstrapped DNN is about 75% lower than that of the ordinary
DNN without a compromise in performance as the proposed
hybrid model shows a slightly better accuracy than the baseline
DNN model.

Index Terms—Smart Healthcare, Brain, Seizure Detection,
Epilepsy, Edge Computing, Kriging Methods, EEG

I. INTRODUCTION

Epileptic seizure is a neurological disorder with incidence
rate of over 100 in every 100,000 [1]. It is more prevalent
in low-income countries [2] where there is minimal access to
standard medical facilities and patients would most often resort
to self-help for their medical needs. Such regions of the world
will benefit immensely from a simple but fast, accurate and
inexpensive seizure detection solution. Delayed attention to a
suffering patient in a seizure crisis may cause severe injuries
or even death in the worst cases.

Deep Neural Networks (DNN) are quite accurate when
trained with sufficient data but are highly computationally
expensive in time. This is because the DNN learns slowly
the latent relationship between the input and output within the
dataset via a complex optimization mechanism [3]. Kriging
methods, on the other hand, are popularly used in geostatistics
to estimate quantitative values using the principles of spatial
continuity to establish correlation between locations in a
geographical space [4], [5]. Recent studies have also shown
that the brain is similar to a spatial map [6], [7]. A hierarchical
blend of Kriging and DNN is therefore promising for seizure
detection tasks. Since Kriging is suitably matched for the brain

as a spatial map, it easily generates correlated data for the
DNN, hence making the actual training by the DNN less
laborious. Fig. 1 presents the concept of the proposed Kriging-
Bootstrapped DNN model.
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Fig. 1: Conceptual diagram of Kriging-Bootstrapped DNN.

The rest of this paper is organized as follows: Section
II reviews related works in seizure detection. Section III
highlights the novel contributions of this paper. The proposed
novel Kriging-Bootstrapped DNN model for real-time seizure
detection is described in section IV. Section V discusses
the experimental validation of the proposed model while the
conclusion and future works are stated in Section VI.

II. RELATED WORKS IN EEG-BASED SEIZURE DETECTION

DNNs have been previously used for EEG-based seizure
detection but without much attention to the training time [8],
[9]. Gaussian process modeling was proposed for neonatal
seizures in [10], although it was not in real-time. However,
the ordinary Kriging method, which is also known as Gaussian
process modeling, was proposed for real-time seizure detection
using edge computing by the authors of this paper in a previous
work [11]. They also explored different types of Kriging for
seizure detection in another related work [12].

A variety of other methods apart from DNN and Krig-
ing have been proposed in the current literature for seizure
detection with EEG signals. These include Artificial Neural
Network (ANN) [13], Support Vector Machines (SVM) [14],
κ-Nearest Neighbors (κ-NN) [15] and Naive Bayes classifier
[16] among others. This paper is however, to the best of
the authors’ knowledge, the first work that uses Kriging-
Bootstrapped DNN for EEG-based seizure detection. The
Kriging-Bootstrapped Neural Network was originally pro-
posed in [17] and [18] for process variation analysis and design



of mixed signal integrated circuits. [19] and [20] are seizure
detection systems which are not based on EEG.

III. NOVEL CONTRIBUTIONS OF THE CURRENT PAPER

A. Research Question

A DNN is somewhat accurate for classifying seizure signals
[9]. However, it takes too long to train, which may limit
its usefulness for real time seizure detection applications.
Although training is not done in real time, a quick turn-
around is needed to consistently update the already trained
model that is used in a real time seizure detection system.
How can the training time for a DNN be reduced in seizure
detection applications without a compromise in performance?
Since Kriging methods can estimate from the known data
highly-correlated values which are previously unknown, will
intermediate output from a Kriging model improve DNN
training time? This paper aims to provide answers to these
research questions.

B. Proposed Solution

This paper proposes a novel Kriging-Bootstrapped DNN
hierarchical model for fast and accurate seizure detection
where the Kriging model generates a correlated intermediate
output that is used to train the DNN for the final output.
Extensive experiments were carried out using a specific DNN
model as a base line for comparing our proposed hierarchical
Kriging-Bootstrapped DNN model.

C. The Novelty of the Proposed Solution

While there have been seizure detection models that pro-
posed either a DNN or a Kriging solution in the literature,
there was not found a seizure detection that combines both
into a single model. This is the first Krigging-Bootstrapped
hierarchical model for real-time seizure detection to the best
of the authors’ knowledge. Furthermore, the proposed hybrid
model achieved a 75% reduction in training time and also
improves the performance of the DNN by at least 2.5% after
training on the same data size and the same DNN architecture.

IV. A NOVEL KRIGING-BOOTSTRAPPED DNN MODEL
FOR REAL-TIME SEIZURE DETECTION

A DNN is adept at learning a pattern in a body of data if
any exists and then establishes a suitable relationship between
the input and the corresponding output. It performs especially
well where there is sufficient data that is commensurate with
the complexity of its architecture [3]. Experience shows that
some patterns are easier to learn than others. The more difficult
it is for the DNN to find a pattern, the longer the training
time it takes to build a model. Kriging on the other hand has
been very effective in geostatistics for finding spatial estimates
based on the spatial correlation that exists between different
locations in the region of interest [5]. Given some data samples
in different locations with some degree of spatial continuity,
Kriging can be used to generate accurate estimates at other
locations, thereby increasing the correlation within the data
samples. Kriging has since found application in other fields

for estimating values based on the correlation within the data
samples. Kriging has been successfully applied to the seizure
detection problem by modeling the brain as a spatial map.

Our proposed hierarchical model generates a highly cor-
related intermediate data set from a Kriging model. The
intermediate data serves as an input to the DNN. Since the
intermediate data is more correlated than the original dataset,
it is expected that the DNN will spend less time in identifying
a coherent pattern within the dataset from which an input-
output relationship can be built, hence reducing the training
time. The proposed Kriging-Bootstrapped DNN hierarchical
model for real-time seizure detection is shown in Fig. 2. The
collected EEG signals from the patient are first preprocessed
to obtain relevant features. The intermediate Kriging model is
then created from the extracted features to generate a highly
correlated input for the DNN.

A. The Bootstrapped Kriging Model

The term “Bootstrap” as used in this work was borrowed
from Bootstrap sampling which refers to a method of esti-
mating the true statistical value of a population from some
given samples [21]. It involves sampling from the available
samples with replacement to create multiple sets of samples.
The statistical value of interest is evaluated for each set to
create a single sample set from which the final estimation of
the population statistical value can be made. The number of
sample sets that is created from the original samples is called
Bootstrap Size. The higher the Bootstrap Size, the closer the
statistical value is to the true population value. In other words,
Bootstrap Sampling involves increasing the size of a sample
set via Monte Carlo simulation in order to bootstrap to the
true statistical value of the population.

In the context of this work, Bootstrapping refers to the
process of increasing the correlation between data points in the
sample field by increasing the number of data points per unit
area via Kriging. Hence it is called a Kriging-Bootstrapped
model. Fig. 3 is a schematic illustration of our proposed
Kriging Bootstrap method where the red points represent the
initial samples, the blue points represent the newly Kriged data
points and the dashed lines signify the correlation between data
points. Shorter dashed lines imply stronger correlation between
the points while the longer dashed lines mean otherwise.
Hence, higher correlation exists between points on the right
than on the left.

A variety of Kriging methods are available in the literature
[22]. In the current paper, we explore the use of ordinary
Kriging. The ordinary Kriging estimate y(xo) for each of the
blue points in Fig. 3 is given by the following expression:

y(xo) =

n∑

i=1

λiR(xi), (1)

where y is the estimated value, xo is the location of the
bootstrap point for which the estimate is made (blue points
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Fig. 2: Proposed Kriging-Bootstrapped DNN hierarchical model for real-time seizure detection.
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Fig. 3: Schematic illustration of proposed Kriging Bootstrap.

in Fig. 3), xi are the locations of the original samples (red
points in Fig. 3), and

R(xi) =

n∑

i=1

(Z(xi)− μz), (2)

is the residual at each point xi, i.e. the difference between the
Gaussian process Z(xi) at xi and the global mean μz . The
weights λi in eq. (1) are obtained from:

λn×1 = (Cn×n)
−1

cn×1, (3)

where Cn×n is a covariance matrix of all sample pairs, cn×1

is a covariance vector of individual points with respect to the
unknown, λn×1 is the vector of weights and n is the number
of points.

B. The Deep Neural Network

A deep neural network is a neural network with more
than one hidden layer. The typical neural network has one
input layer, one hidden layer and one output layer. The
neural network operates by minimizing the cost function which
represents the sum of the error margin between a predicted

value and the true value via the gradient descent algorithm.
The cost function is given by the following expression:

J(ω, b) = − 1

n

n∑

i=1

[
yi log ŷi + (1− yi) log(1− ŷi)

]
, (4)

where ω refers to the weights, b is the bias, while yi and
ŷi represent the true and the predicted outputs respectively.
i refers to individual sample and n is the total number of
samples.

The gradient descent iterative equations for minimizing the
cost are the following:

ω := ω − α
∂J(ω, b)

∂ω
(5)

and

b := b− α
∂J(ω, b)

∂ω
, (6)

respectively, for finding the weight-bias pair at which the cost
function J(ω, b) is minimum. In the above expression, α is
called the learning rate.

The final prediction ŷ for a single neuron are then given by:

ŷ = f(ωTX+ b), (7)

where ω and b are the values obtained from gradient descent
equations (5) and (6) respectively and f is the activation
function. The cost function and its derivative are computed by
forward propagation and backward propagation respectively.

The proposed deep neural network model for this work,
as shown in Fig. 2, is a 4-layer fully connected deep neural
network with three hidden layers. The input layer is not
counted as a layer in the network. The first two hidden layers
have five neurons each while the third hidden layer has three
neurons.



V. EXPERIMENTAL VALIDATION OF THE PROPOSED
MODEL

A. The Dataset and Features Extracted

The dataset used for this work are EEG signals collected
from patients with epilepsy as well as healthy individuals [23].
The extracted features from the EEG signals are Hjorth Com-
plexity (HJC), Signal Entropy (ENT) and Petrosian Fractal
Dimension (PFD). A single feature vector is created from these
features and is then used to generate a Kriging model. Fig. 4
shows typical examples of a seizure EEG signal and a healthy
EEG signal taken from the dataset with their corresponding
features extracted.

Fig. 4: EEG segments at healthy and seizure states.

B. Experimental Results and Their Analysis

Several experiments were performed using different data
sizes and training epochs while comparing the proposed
Kriging-Bootstrapped DNN model with the baseline ordinary
DNN. Tables I and II show the performance of the proposed
hierarchical model and the baseline DNN model respectively
using the same DNN architecture while Table III compares
both models’ best performances with respect to training time,
training epochs and accuracy. It is observed from Table I that
more training time and more epochs are required to achieve a
decent performance with the baseline DNN model whereas
Table II indicates that the proposed Kriging-Bootstrapped
model converges quickly to a very good performance within
a short training time and reduced training epochs. Note that
the recorded training time for the Kriging-Bootstrapped DNN
in Tables II and III is a total sum of the Kriging time and the
subsequent training time for the DNN.

As observed in Table III, the training time for Kriging-
Bootstrapped DNN is reduced by 75%, testing accuracy is
improved by 2.5% and 30 times fewer training epochs are
required than that of the baseline DNN model. It is however
noted that the ordinary DNN model has a slightly better
training accuracy by a marginal 0.07%. Fig. 5 is a plot
comparing the testing accuracy of both models with respect

TABLE I: Baseline DNN model performance results with
10,000 samples.

Count Training

Accuracy

Testing

Accuracy

Training

Epochs

Training

Time

1 99.82% 80.00% 800 4.29s
2 99.85% 82.50% 1000 5.13s
3 99.95% 92.50% 10000 37.46s
4 99.99% 97.50% 45000 173.57s
5 99.99% 97.50% 50000 199.66s

TABLE II: Kriging-Bootstrapped DNN model performance
with 10,000 samples.

Count Training

Accuracy

Testing

Accuracy

Training

Epochs

Training

Time

1 99.14% 97.50% 500 41.07s
2 99.76% 100.00% 800 41.73s
3 99.84% 100.00% 1000 42.02s
4 99.92% 100.00% 1500 43.83s
5 99.92% 100.00% 10000 80.99s

to their training times while Fig. 6 shows a plot of testing
accuracy against the respective training epochs. It is clear from
Figures 5 and 6 that the proposed Kriging-Bootstrapped DNN
model achieved a higher accuracy in much shorter training
time and fewer training epochs than the ordinary DNN model.

Fig. 5: Performance Comparison of DNN model vs Kriging-
Bootstrapped DNN model with respect to training time.

VI. CONCLUSION AND FUTURE WORK

A novel Kriging-Bootstrapped DNN hierarchical model for
real-time seizure detection from EEG signals was presented in
this paper. The proposed model was compared to a baseline
DNN model and the performance results demonstrate that the
proposed model trains in 75% less time and 30 times reduced
training epoch size than the ordinary DNN, as well as a 2.5%

TABLE III: Comparing best performances for DNN and
Kriging-Bootstrapped DNN models.

Models Training

Accuracy

Testing

Accuracy

Training

Epochs

Training

Time

DNN 99.99% 97.50% 45000 173.57s
Kriging DNN 99.92% 100.00% 1500 43.83s



Fig. 6: Performance Comparison of DNN model vs Kriging-
Bootstrapped DNN model with respect to training epoch.

improvement in testing accuracy. This proves that the proposed
Kriging-Bootstrapped DNN model will be a better choice for
real-time seizure detection.

While in the current method ordinary Kriging method has
been used, in future work we will explore other Kriging
methods. We will study the effectiveness of other Kriging
methods for hierarchical machine learning (ML) modeling.
Similarly other types of DNN models and with different
number of hidden layers is a future research. The authors
intend to implement this model in edge computing hardware
for real time seizure detection. Predicting the onset of seizure
rather than detection is another area the authors look to explore
in the near future. Integration of seizure control methods along
with the detector to have a unified seizure detection and control
in the IoMT framework is another future research.
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