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Abstract—Epileptic seizures are dangerous. They render pa-
tients unconscious and can lead to death within seconds of
onset. There is, therefore, the need for a very fast and accurate
seizure detection mechanism. Kriging methods have been used
extensively in geostatistics for spatial prediction and are known
for very high accuracy. By modeling the brain as a spatial map,
we demonstrate the effectiveness of Kriging Methods for efficient
seizure detection in an edge computing paradigm. We explore
three different types of Kriging - Simple Kriging, Ordinary
Kriging and Universal Kriging. Results from various experiments
with electroencephalogram (EEG) signals of both healthy and
diseased patients show that all three Kriging methods have
good performance in terms of accuracy, sensitivity and detection
latency. However, Simple Kriging emerged as the slight favorite
for seizure detection with a mean detection latency of 0.81
sec, an accuracy of 97.50%, a sensitivity of 94.74% and a
perfect specificity. Simple Kriging is at least 5% better than
Ordinary Kriging and Universal Kriging when evaluated at
68.2% confidence interval. The results obtained in this paper
compare favorably with other seizure detection models in the
literature.

Index Terms—Smart Healthcare, Brain, Seizure Detection,
Epilepsy, Edge Computing, Kriging Methods, EEG

I. INTRODUCTION

Epilepsy is one of the most common neurological diseases,
affecting more than 50 million people all over the world and
does not discriminate based on age, race or gender [1]. People
living with epilepsy experience a higher mortality rate than the
general population [2]. Apart from the Sudden Unexpected
Death in Epilepsy (SUDEP) which may or may not have
a seizure relation [3], most other known causes of death in
epilepsy such as fatal injury and drowning can be averted by
an early and accurate detection of seizure, accompanied by
prompt reaction from care givers. Accurate seizure detection
is important because a few false alarms can dampen the
urgency of care givers in the event of a real seizure crisis.
Fig. 1 highlights the benefits of seizure detection and the
consequences of none.

Kriging methods have been widely used in geostatistical
applications for spatial predictions in an unknown space given
some locations with known values of the quantity of interest.
They use the Best Linear Unbiased Estimator (BLUE) and
take advantage of the covariances among the data points to
produce an estimate with the smallest possible error [4]. While
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Fig. 1: Seizure effects and benefits of seizure detection.

Kriging improves performance in terms of accuracy, the other
important aspect of this work is latency. Edge computing
improves latency by bringing computations close to the source
of the data to be processed, hence reducing the routing time
that usually results from traversing the path from source to
cloud.

The rest of this paper is organized as follows: Section
II presents the motivation for proposing the use of Kriging
in seizure detection. Section III highlights the novel con-
tributions of this paper. Section IV is a review of related
work. Our proposed edge computing paradigm for real-time
seizure detection is described in section V. Section VI is
a theoretical perspective on Kriging methods. Section VII
discusses experiments and results while Section VIII states
the conclusion and future works.

II. WHY KRIGING? - THE BRAIN ENVISIONED AS A
SPATIAL MAP SUITABLE FOR SPATIAL DATA PROCESSING

We envision the brain as a spatial map on which spatial data
processing methods such as Kriging can be applied. The brain
is a spatial multi-level and multi-scale entity with unceasing
dynamic processes [5]. There are various similarities between
brain mapping and geographical information system (GIS)
mapping as evident from some GIS applications for pattern
recognition of electronic medical records of the brain. Studies
also show that the brain’s hippocampus produces multiple
maps (by the activity of some cells) which are used for
recognition and navigation [6]. It was remarked in [7] that
some of the EEG recordings collected from epilepsy patients
were taken from the hippocampal region of the brain.
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Fig. 2: Schematic representation of the brain as a spatial map.

Fig. 2 is a schematic representation of the brain map with
labeled cortices which are analogous to geographical bound-
aries of the earth. Kriging [8] is a geo-statistical technique
that is widely used to spatially predict processes or quantities
in locations where they are not known, given other locations
where they are known. The red and black circles in Fig.
2, respectively represent locations in the brain with known
and unknown measures of the quantities or processes of
interest while the dotted lines depict a measure of the spatial
correlation among different locations. It has been observed that
while seizures may begin from a specific region of the brain,
they are not restricted and can be spatially distributed to the
other parts of the brain [9]. Therefore, some of the locations
with known values have seizure while some do not. Hence it
might be possible to predict the actual locations of the brain
that are affected by seizures. However, the specific focus of
this work is to prove the effectiveness of Kriging methods for
epileptic seizure detection.

III. NOVEL CONTRIBUTIONS OF THE CURRENT PAPER

A. The Problem Addressed in the Current Paper

Based on the discussion in section II, is it possible to take
advantage of the brain’s spatial mapping characteristics in
providing a better solution to the seizure detection problem?
Furthermore, given the fact that the brain is like a spatial map,
will Kriging methods which have been largely successful in
geo-statistics be effective and efficient for seizure detection?
If yes, which of the Kriging methods will produce the best
performance in an edge computing paradigm? These are the
research questions that are addressed in this paper.

B. The Challenges in Solving the Problem

Collecting a custom data-set that will fully explore Kriging
and exploit its benefits in solving the seizure detection problem
is a challenge due to the stringent regulations that are involved
when collecting data from animals or human subjects. Most

biomedical researchers are therefore left with the option of
using public data-sets collected by some teaching hospitals
[7]. Data collection from the brain is generally susceptible
to noise as a result of artifacts but it is difficult to estimate
the level of noise in public data-sets since the conditions of
the environment in which they are collected are not known.
Another challenge is the cubic time complexity of Kriging.
This was however addressed in this work by not training the
Kriging model on the edge device [10].

C. The Solution Proposed in the Current Paper

This paper proposes the use of the Kriging method as a
worthy and effective solution to the problem of seizure detec-
tion in real-time with an edge computing paradigm based on
the premise that the brain is analogous to a geographical map
with contiguous locations that are cross-correlated. The main
objective of this paper is to identify the most suitable Kriging
method for real-time seizure detection with edge computing
by comparing three different Kriging methods, namely Simple
Kriging, Ordinary Kriging and Universal Kriging. Ordinary
Kriging was used for real-time seizure detection in an edge
computing paradigm in a previous work by the authors of this
paper [10].

D. The Novelty of the Solution Proposed

Our conceptual analysis of the brain as a spatial map on
which the Kriging methods can be applied with respect to a
seizure detection problem is novel. To the best of the authors’
knowledge, this is the first work where multiple Kriging
methods have been used for real-time seizure detection in
an edge computing paradigm. Our work reports an average
detection latency of less than one second, which makes it
suitable for real time applications. The accuracy, sensitivity
and specificity of our proposed model are also comparable to
those of other existing works.

IV. RELATED WORKS IN EEG BASED SEIZURE
DETECTION

Seizure detection is a well-explored area in the literature.
A good number of efforts concentrate largely on improving
seizure detection performance using metrics such as accuracy,
sensitivity and specificity with little or no emphasis on the
computing paradigm utilized [11]–[13]. A few others recog-
nized the importance of latency and included it in the metrics
considered to measure the performance of their proposed
seizure detection systems [14]. Machine learning algorithms
such as Support Vector Machines (SVM) [11], κ-Nearest
Neighbor (κ-NN) [15] and Artificial Neural Network (ANN)
[12] are some of the most commonly used in previous works
for classifying seizures from a pool of electroencephalogram
(EEG) signals.

Apart from EEG-based seizure detection, other methods
that are not so common have also been used. There are
seizure detection systems which make use of accelerometers
and gyroscopes in the form of wearable devices on the wrist
or some other parts of the body to sense weird movements of



the limbs and eccentric body vibration during epilepsy [16],
[17]. One limitation of this method lies in accurately identi-
fying the seizure movements from other non-epileptic random
movements resulting from sports or dancing, to mention a few.
The EEG method also has the advantage of taking the signals
directly from the source of the seizure itself - the brain.

Although Faul et al. [9] proposed the use of Gaussian Pro-
cess modeling otherwise known as Kriging for the detection
of seizures in neonates, it was not in an edge computing
environment, hence latency was not considered as a perfor-
mance metric. It was however remarked that the detection time
could be up to 15 seconds for a given computational power
that was not stated. On the other hand, a previous work by
the authors of this paper using Ordinary Kriging in an edge
computing paradigm for seizure detection reported a mean
detection latency of 0.85 second with very good accuracy and
sensitivity [10].

V. A NOVEL EDGE COMPUTING PARADIGM FOR
REAL-TIME SEIZURE DETECTION

It is highly beneficial to process data at the edge since
more data are now being generated at the edge of the Internet
of Things (IoT) network than ever, due to the proliferation
of sensing devices and mechanisms [18]. Reduced cost of
deployment, portability and low latency are key advantages
leading to the increasing popularity of the edge computing
paradigm. These advantages are even more important when
there is threat to life, as in the case of epileptic seizure. Seizure
detection should be affordable since low income regions of
the world are the most impacted, it should be portable so that
patient’s mobility is not confined to a limited environment,
and it should have low latency in order to effectively reduce
the threat to life during seizure crisis. These three elements, as
well as accuracy, are reflected in our proposed edge computing
paradigm for real-time seizure detection depicted in Fig. 3.
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Fig. 3: Real-Time Seizure Detection for Rapid Response.

As shown in Fig. 3, the smart EEG cap and the wearable
edge computing device attached to the suffering subject are

portable devices that will not affect the mobility of patients in
their daily lives, hence seizure can be detected anywhere and
anytime without restriction. All signal processing of the EEG
data leading up to seizure detection takes place in the wearable
edge device that is very close to the subject, resulting in a fast
seizure detection with low latency and a quick response to
rescue the victim from injury or even death by the assigned
care-givers. In this case, the cloud is only used as a means
of persistent storage of data for later use by a physician or
research scientists since it has a bigger capacity rather than
its conventional use for computation. Adequate management
of seizure crisis in this way is paramount until full remission
is accomplished if at all possible, or for the entire life of the
patient if not.

VI. KRIGING METHODS - A THEORETICAL PERSPECTIVE

Kriging was named after Daniel Krige, a foundational
proponent of geo-statistical mining from South Africa [19].
Kriging relies on spatial continuity which is a measure of
correlation between values over distance. This implies that
values in closer locations are more correlated than those with
larger separating distances. There are three important steps in
the application of Kriging methods. First is the establishment
of spatial continuity through the semi-variogram which is a
function of the variations in values over distance, second is
fitting a model to the generated semi-variogram and the final
step is the actual estimation through the fitted model [20].

Fig. 4 highlights a cross-section of the different types of
Kriging [19]. The top three Kringing types - Simple Kriging
[21], Ordinary Kriging [10], and Universal Kriging [22] are
the most commonly used and thus are the focus of this paper.
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Fig. 4: The different types of Kriging methods.

A. The Semi-variogram

The semi-variogram is merely a scatter plot with each point
representing the average variation among a group of location



pairs with common distance known as the lag vector h [20].
The formula for generating the semi-variogram is given by:

γ(h) =
1

2N(h)

N(h)∑
i=1

(Z(xi)− Z(xi + h))2, (1)

where γ(h) represents the semi-variogram at the lag vector
h between two points, N(h) is the number of lag vectors
h considered for a single point on the semi-variogram plot
and Z(xi) represents a Gaussian process over the observations
x1,x2, ...,xi at different locations.

B. The Semi-variogram Model

The semi-variogram model simply fits a line or curve on the
scatter plot represented by the semi-variogram. Fig. 5 shows
the various types of semi-variogram models that are used in
fitting the semi-variogram.
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Fig. 5: Semi-variogram models.

The choice of semi-variogram model largely depends on the
nature of the spatial relationship between the points on the
semi-variogram [20]. It was remarked in [7] that EEG time-
series recorded from normal and epileptic patients were con-
gruent with Gaussian stochastic process. This further strength-
ens the case for Kriging (Gaussian Process Regression) in
seizure detection and also positions the Gaussian model as the
favored semi-variogram model. The Gaussian semi-variogram
model is mathematically given by:

γ(h) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
C

[
1− exp

(
− h2

a2

)]
h > 0

0 h = 0

(2)

In the above expression, C is the sill (total variance contri-
bution) and a is the range (distance on the horizontal axis
corresponding to the sill).

C. Kriging Estimate

This is the actual estimation of the unknown values at the
locations of interest. Having established the trend through
the fitted semi-variogram model, unknown values at given
locations can be estimated from the fitted model. Kriging is
also referred to as Best Linear Unbiased Estimator (BLUE)
because it assigns weights to the link between two locations
based on the auto-correlation between them. That is, higher
weights are assigned to spatial links with stronger auto-
correlation [10].

There are three fundamental types of Kriging based on the
assumption about the global mean (μz) of the underlying

Gaussian process Z(x). They are Simple Kriging, Ordinary
Kriging and Universal Kriging. While Simple Kriging assumes
a known and constant mean, Ordinary Kriging assumes a
global mean that is constant but unknown. Universal Kriging
on the other hand assumes a variable global mean [8]. Every
other type of Kriging (Fig. 4) has one of the above mean
assumptions together with some other assumptions.

The covariance C(h) between two locations is obtained
from the semi-variogram model as follows [4]:

C(h) = C(0)− γ(h), (3)

where C(0) is the sill (variance of variable).
Now, by obtaining the covariance for every pair of known

points using Eqn. (3) and multiplying by a given weight, we
have the following system of equations:

λn×1.Cn×n = cn×1, (4)

where Cn×n is a covariance matrix for all known pairs, cn×1

is a covariance vector of all the points relative to the unknown,
λn×1 is a vector of the weights and n is the number of points.
Hence, we obtain the following expression:

λn×1 = (Cn×n)
−1

.cn×1 (5)

The final Kriging estimate y(xo) is then obtained by multiply-
ing the resulting weight vector in Eqn. (5) with the residual
R(xi) as follows:

y(xo) =

n∑
i=1

λiR(xi), (6)

where

R(xi) =

n∑
i=1

(Z(xi)− μz) (7)

VII. EXPERIMENTAL RESULTS AND THEIR ANALYSIS

A. EEG Dataset and Extracted Features

The dataset [7] used for this work has been widely used for
seizure detection research [11], [15]. It has five different sets
(A - E) comprising ictal, interictal and healthy EEG segments.
Sets A and E which are healthy and epileptic EEG signals
respectively, are used in this work. Each set consists of 100
EEG segments sampled at 173.61 Hz.

To accurately model the seizure detection challenge as a
Kriging problem, we extracted three different features from the
EEG dataset. The features are Singular Value Decomposition
(SVD) Entropy, Hjorth Complexity and Fractal Dimension.
The first two features were modeled as the Kriging coordinates
while the Fractal Dimension was modeled as the quantity to
be estimated.

Fig. 6 which represents the 200 EEG segments as data points
using the extracted features roughly depicts two categories by
merely observing the colors of the data points except for a
few outliers which could be due to some in the dataset. It also
reveals that there is spatial continuity within the dataset. This
shows that our modeling of the dataset using SVD Entropy,
Hjorth Complexity and Fractal Dimension is a good candidate
for Kriging methods.



Fig. 6: Feature representation of EEG dataset using color map.

B. Training the Kriging Models

The dataset is divided randomly into training and testing sets
using the recommended 80/20 rule [23], especially since the
dataset is relatively small, as is the case for most biomedical
datasets. The Kriging model training follows the process de-
scribed in section VI. First we obtained the semi-variogram of
the training set according to Eqn. (1) and then fitted the semi-
variogram with the Gaussian semi-variogram model using Eqn.
(2). Figs. 7a and 7b show the semi-variogram plot and the fitted
semi-variogram plot of the training set respectively.

The covariance matrix that is used for generating the Krig-
ing weights is obtained from the fitted semi-variogram. Finally,
the Kriging estimates for the fractal dimensions are calculated
by multiplying the weights with the residuals using Eqn.
(6). During the Kriging estimation, the necessary assumptions
stated in section VI are reflected in the calculation of the
residuals to account for the specific type of Kriging. The
resultant Kriging estimates are then mapped to one of two
states - healthy or ictal which are represented by ”0” and ”1”
respectively.

C. Performance Metrics for Edge Computing Paradigm based
Seizure Detection

After obtaining the seizure states from the Kriging esti-
mates, the performance of the three types of Kriging consid-
ered in this paper were evaluated and compared using metrics
such as accuracy, sensitivity, specificity, F1-score and latency
in an edge computing environment. The model training was
done on a workstation because of the cubic time complexity of
Kriging before porting the trained model to an edge device for
further performance testing. Table I reveals the performance
of the different types of Kriging.

From the results shown in Table I, Simple Kriging and Ordi-
nary Kriging maintained the same performance at 99.7% and
95.4% Confidence Intervals (CI). However, Simple Kriging
performed better than Ordinary Kriging at 68.2% CI. Universal
Kriging has the least performance across all the confidence
intervals considered for the seizure detection task. This may be

(a) Semi-variogram of the EEG training set.

(b) Fitted semi-varigram using the Gaussian semivariogram model.

Fig. 7: Modeling of the semi-variogram for Kriging prediction.

TABLE I: Comparing Kriging performances for seizure detec-
tion at different confidence intervals (CI).

C. Int.

(CI)

Kriging Mod-

els

Accuracy Sensitivity Specificity

Simple Kriging 97.50% 94.74% 100.00%
99.7% CI Ordinary Kriging 97.50% 94.74% 100.00%

Universal Kriging 80.00% 89.47% 71.43%
Simple Kriging 92.50% 94.74% 90.48%

95.4% CI Ordinary Kriging 92.50% 94.74% 90.48%
Universal Kriging 80.00% 89.47% 71.43%
Simple Kriging 90.00% 89.47% 90.48%

68.2% CI Ordinary Kriging 87.50% 84.21% 90.48%
Universal Kriging 80.00% 89.47% 71.43%

due to the fact that Universal Kriging is slightly more complex
than the other two Kriging methods and could not fit well to
the limited size of the dataset.

Fig. 8 shows the histogram plot of the F1 scores based on
the Kriging performances on the seizure detection. The figure
further confirms the superiority of Simple Kriging method
over the other Kriging types especially at 68.2% CI. Ordinary
Kriging has the closest average F1 score to Simple Kriging
while Universal Kriging has the least.

After training, the three Kriging models were ported to an
edge device for a real time testing in an edge computing
paradigm. Table II shows the performances of the models in
terms of detection latency while running on the edge device.
Simple Kriging again emerged here as the Kriging model with



Fig. 8: Kriging performance comparison using F1-scores and
confidence intervals.

the lowest mean detection latency of 0.81s while Universal
Kriging has the longest latency of 16.25s. The mean detection
latency was calculated over ten trials for each Kriging model.

TABLE II: Comparing mean detection latency of Kriging
models in an edge computing paradigm.

Kriging Models Detection Latency (in sec)

Simple Kriging 0.81

Ordinary Kriging 0.86
Universal Kriging 16.25

VIII. CONCLUSION AND FUTURE WORK

The effectiveness of Kriging methods for real time seizure
detection in edge computing paradigms was explored in this
paper by modeling the brain as a three dimensional spa-
tial entity, analogous to a geographical landscape on which
Kriging methods excel. Three different Kriging methods were
examined using various performance metrics for comparison.
Simple Kriging emerged the winner with Ordinary Kriging
coming very close to it while Universal Kriging had the worst
performance by a wide margin.

A future work, the authors intend to work on a real-time
hardware implementation of the idea presented in this paper
and further explore the use of the Simple Kriging method for
more efficient and timely seizure detection and prediction. We
plan to integrate drug-delivery system along with the detector
[24]. We also plan to explore integration of security features to
the proposed medical device as it is IoMT enabled and can be
part of large scale Internet-of-Everything (IoE) or healthcare
Cyber-Physical Systems (H-CPS) [25], [26].
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