A Secure Digital Camera Architecture for
Integrated Real-Time Digital Rights Management

Saraju P. Mohanty

VLSI Design and CAD Laboratory (VDCL)
Dept. of Computer Science and Engineering
University of North Texas, Denton, TX 76203, USA.

Abstract

This paper presents a novel concept of a secure digital camera (SDC) with a built-in watermarking and encryption facility. The
motivation is to facilitate real-time digital rights management (DRM) by using the SDC right at the source end of multimedia
content. The emerging field of DRM systems addresses the issues related to the intellectual property rights of digital content. The
use of digital watermarking along with encryption for effective DRM is proposed. In this context, a novel discrete cosine transform
domain invisible-robust watermarking method that uses cryptography and watermarking methods simultaneously to provide a
double layer of protection to digital media is presented. The proposed method securely hides binary images in color image media
and securely extracts and authenticates it by using a secret key. Experimental results prove that the proposed technique is resilient
to stringent watermarking attacks. Hence, it is an effective method for providing protection of ownership rights. The corresponding
application-specific architectures for invisible-robust watermarking and Rijndael advanced encryption standard (AES) towards
the prototyping of the SDC are presented. The proposed architectures are modeled and synthesized for field programmable gate
array (FPGA). The soft cores in the form of hardware description language resulting from this research can serve as intellectual-
property core and can be integrated with any multimedia-producing electronic appliances which are built as embedded systems
using system-on-a-chip (SoC) technology.

Key words: Application Specific Architectures, VLSI (Very Large Scale Integration) Architectures, Watermarking Chip, Digital Rights
Management (DRM), Copyright Protection, Multimedia Security, Digital Watermarking, Encryption, Real-Time DRM

1. Introduction and Motivation

The Internet revolution toward the end of the last millennium ushered in a new era of information technology. There
has been an explosive growth in multimedia applications such as video-on-demand, distance education, etc. Flexibility
to avail digital content in form of images and video has many issues. Easy access facilitates information piracy through
unauthorized replication and manipulation of digital content with the help of inexpensive tools. Hence, concerns about
protection and enforcement of intellectual property (IP) rights of the digital content involved in transactions have also
been mounting. The emerging field of digital rights management (DRM) systems [1,2] addresses these issues related
to ownership rights of digital content.

Email address: saraju.mohanty@unt .edu (Saraju P. Mohanty).

Preprint submitted to Elsevier 10 July 2009

Various aspects of content management - namely, content identification, storage, representation, distribution and
intellectual property rights management - are highlighted in DRM [1,2]. Unauthorized access of digital content is be-
ing prevented by implementing encryption technologies, but their implementation does not prevent illegal replication
of the decrypted content by an unauthorized user. Hence, encryption alone does not address all the IP issues related
to DRM. Digital watermarking can be used for establishing ownership rights, tracking usage, ensuring authorized
access, preventing illegal replication, and facilitating content authentication. In essence, digital watermarking is the
process of embedding into a multimedia object a digital signature or data that is variously known as watermark, tag,
or label. Detection or extraction of this watermark at a later time enables users to make an assertion about the au-
thenticity and ownership of the object. When encryption techniques are used with watermarking, full protection from
unauthorized access of digital content can be achieved. The novel approach proposed in this paper aims at providing
two-tier protection mechanism with simultaneous use of cryptography and watermarking.

Research on watermarking has matured over the last decade; hence, the current literature abounds with techniques
in this area [3,4,5,6,7,8,9]. Based on human perception, digital watermarks can be divided into visible and invisible
(robust or fragile) types [10,11,12]. These existing algorithms primarily work offline because they are computation-
ally very intensive and cannot be applied in real time. However, the security and copyright protection mechanisms
have to work in real time in the case of emerging applications; namely, digital television broadcasting, Internet pro-
tocol television (IP-TV), video on demand, pay-TV, electronic passport (e-passport), credit cards, personal identity
cards, driving licenses, etc. Consequently, appliances such as digital still cameras, digital motion cameras, network
processors, mobile phones, video phones, graphics processing units, and digital video disc (DVD) players need to be
equipped with mechanisms for real-time security and copyright protection. In these situations, software-only solutions
may not be adequate to provide real-time performance. Hardware-assisted solutions are needed for providing real-
time performance along with easy integration in multimedia hardware, low-power consumption, higher reliability and
availability compared to software, and low cost [13]. This need to provide real-time performance is the motivation for
exploring hardware-assisted solutions for DRM in the framework of the camera, one of the most common multime-
dia creating consumer appliances. The system level solution presented as secure digital camera (SDC) is a real-time
DRM solution which performs real-time DRM of images (or video frames) without using computers and associated
specialized softwares.

The rest of the paper is organized as follows. The contributions of this paper are highlighted in Section 2. An
overview of the SDC is presented in Section 3. Related research work is presented in Section 4. A discussion of the
proposed algorithm is provided in Section 5. The proposed architectures are described in Section 6. The experimental
results are presented in Section 7. Conclusions, future work, and sample applications are provided in Section 8.

2. Novel Contributions of this Paper

The novel contributions of this paper are follows. First, the paper introduces the concept of the secure digital camera
(SDC) with built-in DRM facility which is suitable for real-time applications. SDC is a low-cost and high-performance
watermarking solution which performs watermarking without using separate computer and softwares. An overview is
presented for the system-level architecture of SDC with the associated design challenges to promote further research
in this area. Possibilities of alternative designs for the SDC are also presented. In this paper, we then focus on two key
components of SDC, the watermarking and the encryption. A new algorithm, corresponding architectures, and field
programmable gate array (FPGA) based prototyping for DRM are presented for one of the selected alternative designs
of the SDC. The paper presents a novel invisible watermarking method called “CryptMark™ that uses cryptography
and watermarking methods simultaneously to provide a double-layer protection to the digital media which can be
an effective technique for DRM. The method proposed securely hides binary images in color image, extracts it, and
authenticates it by using a secret key as demonstrated in Fig. 1.

The advantage of the encrypted watermark processing as proposed in this paper is that at no point is raw watermark
information passed in the transmission channel, thus providing maximum security. The proposed embedding process
uses both direct current (DC) and alternating current (AC) discrete cosine transform (DCT) components to carry the
payload, unlike most of the existing algorithms that heavily rely on low-frequency AC components. This use of DC
and AC components provides more resilience to lossy compression, a process that is heavily dependent on smaller
low-frequency values of AC components. In addition, selective addition or subtraction of the watermark from the

2

@):w—»l Encryption Process |<—ﬂ
K

ey _
Binary Information

Original Image

E —>| Embedding Process |<—l
I

Watermarked Image

y

(a) Embedding Scheme

Encryption Process
O e IET Hﬁ'

Binary Information Compare
for
Authenticatio

Yes/No

Watermarked Image

-

z,

*
I —'I Extraction Process

(b) Authentication Scheme

Fig. 1. The Proposed Secure Watermarking Scheme: CryptMark

DCT coefficients is performed instead of the addition operation in typical available algorithms. Thus, the proposed
approach allows carrying maximum payload with the highest robustness and highest undetectability, which are three
contradictory objectives of data hiding mechanisms. This is evident from Section 5 by the fact that the algorithm has
been able to hide watermark images completely inside the host images and produce high quality watermarked images
(high peak-signal-to-noise ratio, PSN R) compared existing similar algorithms.

In this paper, novel architectures for the invisible watermarking [14] and Rijndael Advanced Encryption Standard
(AES) [15] that will be integrated in the SDC are presented. The approaches of parallelism and resource-sharing are
used to meet the timing and area constraints. The architecture for AES is area-optimal because the round key for each
transformation is calculated on the fly, instead of storage of all calculated round keys. The FPGA prototype version
of the proposed watermarking architecture is estimated to have a maximum operating frequency of 256 M/ H z and the
encryption architecture is estimated to have a maximum operating frequency of 204M H z.

3. The Proposed Secure Digital Camera (SDC)
3.1. SDC: A System-Level Perspective

The SDC is an appliance built as a system on a chip (SoC) with the standard features of a digital camera and a built-
in facility for real-time, low-cost, and low-power DRM. For a given multimedia data (image or video), SDC needs to
prove many DRM-related tasks, including: (i) copyright information (using visible and invisible-robust watermark-
ing); (ii) extent of tampering (invisible-fragile watermarking); (iii) source of image - camera information, place, or
date (invisible-robust or visible watermarking); (iv) owner’s, creator’s, or cameraman’s information (invisible-robust
or visible watermarking), etc. An algorithm, an architecture, and a chip for visible watermarking have been presented
in our previous publication [16]. This paper focuses on the invisible-robust watermarking algorithm and architectures.

The system-level block diagram of the proposed SDC is shown in Fig. 2. It identifies most of its components, such
as active pixel sensor (APS) unit, liquid crystal display (LCD), memory, encryption unit, compression unit, bar code
unit, and watermarking unit. In the proposed SDC, the image is captured by an image sensor and converted to a digital
signal by the analog-to-digital converter (ADC). A complementary metal oxide semiconductor (CMOS) image sensor
that has an embedded ADC is used. The captured image is stored temporarily in the scratch memory, after which it is
displayed on the LCD panel with the help of the controller. The scratch memory can either be a volatile or non-volatile

3

Lens/ Active Pixel Analog-to-Digital
Shutter/ Sensors Converter
Mirror

Liquid Crystal
Display

NN

m g]\%l(;rr?ltgr}; (User Interface)
A
s A A I >
Shztter |_—‘|_1“ < Ry ﬁ
Controller [¢ v [4
Encryption System Controller o Iv
5 Unitt i ,| DSP ﬁiﬁr‘?
JV « I_" :
“W“H“|H||‘|N”W W\;e;term?lrk LCo:;pression N - — Control
MM —> Unit Unit —>l
Bar Code Unit Flash Storage — Data

Fig. 2. The Proposed SDC: A System-Level Representation

memory. The purpose of the LCD panel is to enable the user to see the image frame before it is watermarked by the
watermarking unit and stored in the camera. The image can then be further transmitted over the network or transferred
to flash memory, computer hard drive, or optical discs. The flash memory is a non-volatile memory used for permanent
storage of images in camera. The controller unit is responsible for controlling the entire sequence of events. Both the
invisible-robust and visible watermarking algorithms can be used along with encryption and data compression for
different purposes. The choice of operations performed on the image depends on the user of the camera. This paper
focuses on the structural aspects of the controller, watermarking, and encryption units to develop the prototype of the
complete SDC.

It may be noted that the system presented for SDC is a generic context. The exact architecture depends on specific
applications. The application will determine the followings: (i) the selection of exact watermarking, encryption, and
compression algorithm, (ii) the architectures of corresponding individual modules of SDC, such as watermarking,
encryption, compression, and (iii) the amount of on-chip memory. We now discuss some representative examples. For
an application like photo-ID card, the watermarking algorithm may be an visible watermarking and the watermarked
photos needed to be stored in flash storage. For a live broadcasting applications (such as live sports), both visible and
invisible-robust blind watermarking is needed. The visible watermark is a broadcasters’ logo and invisible-robust blind
watermarking is a permanent copyright protection mechanism at the top of it. For high-quality image watermarking
applications the owner wants to have original image with him, but wants to release only watermarked images. In this
case, invisible-robust non-blind watermark is most suitable for application point of view. SDC system point of view,
the amount of flash memory needs to be maximum to store both original and watermarked images. However, with
the cost of memory coming down and high-capacity solid-state memory available in the market, this is not an issue
from either cost, technology, or system power consumption. Invisible-robust non-blind watermarking is needed for
biometric based watermarking which finds application in e-passport applications [17]. In this paper, we focus on AES
encryption and invisible-robust non-blind watermarking. The future research in this direction is for invisible-robust
blind watermarking and their low-power, low-cost architectures.

3.2. Motivation for Hardware-Assisted DRM Through SDC

The advantages of the proposed hardware-assisted DRM over existing software-based DRM are as follows:
(1) Hardware-based DRM can be easily integrated with multimedia hardware, such as digital cameras, network
processors (NPs), graphics processing units (GPUs), etc. However, this paper focuses only on digital cameras.
(ii)) Power consumption for hardware-based DRM is lower compared to that of software because DRM would not
need to use the power-hungry general-purpose processor. Hence hardware-based DRM is more suitable for
battery operated embedded systems.
(iii) Performance in hardware-based DRM is higher compared to that of software since hardware can be custom-built
for high throughput.

(iv) Hardware has higher reliability and availability compared to software; as softwares may have bugs, softwares
need maintenance, software is also affected by the performance of the hard disk or system in which they are
parked for permanent storage.

(v) Hardware-based DRM is absolutely needed for real-time applications like digital video broadcasting. Software-
based DRM simply cannot be used in this case to provide real-time performance processing high-resolution
video frames at the rate of typically 29.97 frames per second.

(vi) The cost is low compared to having explicit software because it can be monolithically built on a single unified
system in the context of SoC technology in cameras, NPs, or GPUs, with minimal hardware overhead when
compared to a system without DRM.

(vii) Hardware-based DRM right at the source e.g. at sensors or analog-to-digital converter (refer next subsection)
ensures that the information is always protected.

(viii) Hardware-based DRM integrated with multimedia creating or processing components (digital signal processor,
cameras, NPs, or GPUs) rather than separate software running in a separate computer will be more acceptable
as legal evidence.

It may be noted one misapprehends that if security features are implemented in hardware platforms then they can
not be modified later. There are several aspects for this issue. First, the primary motivation for hardware assisted
solution is real-time performance and performing the operations without using softwares in a PC for this task, which
leads to offline approaches. The second thought is that to maintain upgradability of the hardware one can implement
the hardware as a soft core expressed in structural Verilog or VHDL hardware description language. The soft core can
be modified as algorithm changes and resynthesized to build new silicon.

3.3. The Proposed Design Alternatives

In the system-level design perspective of SDC, the following alternative approaches for designing the SDC are
proposed. It is envisioned that they will give rise to multi-front research in DRM including from the analog VLSI
design and the embedded system design researchers.

3.3.1. New CMOS Sensor with DRM

Recently, a completely new generation of image sensors, the digital pixel sensor (DPS), has been getting lots of
attention. In a DPS, each pixel consists of a photo-detector, an ADC, and a digital memory for temporary storage of
data before a digital output signal is read out. This pixel array can be accessed randomly from digital memory provided.
DPS has several advantages over analog image sensors, such as passive pixel sensor (PPS) and APS [18]. DPS provides
better scaling with CMOS technology and reduces fixed pattern noises and readout noises. Thus, integration of pixel-
level watermarking processing is an attractive option with minimal overhead [19]. The watermark inserted at this stage
of the multimedia will provide maximum security.

3.3.2. New ADC with DRM

Another alternative for sensor-end watermarking of the multimedia information is to design a new type of ADC.
This option can be useful in the case of APS, PPS, and charge coupled devices (CCDs). In these cases, ADC is a
distinct component contrary to DPS [20]. Thus, integrating pixel-level watermarking processing in the circuit of ADC
is an lucrative option with minimal overhead to provide security to multimedia content for a digital camera irrespective
of the type of image sensor.

3.3.3. Independent DRM Processors

In this design option, physically individual processors for invisible watermarking, visible watermarking, and en-
cryption can be designed as intellectual property (IP) cores and integrated in the framework of an SoC realizing the
SDC. This design is currently the most attractive one and can potentially provide the highest performance. More-
over, this approach can work with any type of digital camera as demonstrated in this paper. In this method, cores can
be switched off when not in use by clock gating, resulting in better power dissipation [16]. We follow this design
alternative in this paper.

3.3.4. DRM coprocessor for DSP

In a typical digital camera, the main work horse is a digital signal processor (DSP) that performs primitive image
processing operations. So the fourth design alternative is to modify the design of the DSP to have integrated co-
processors to perform DRM. However, this modification can potentially affect the operating frequency of the DSP
and subsequently overall performance.

3.3.5. New instruction set architecture for a reduced instruction set computer (RISC) to support DRM at
micro-architecture level

When designed as an embedded system with a DSP or application-specific integrated circuit (ASIC) of the RISC
architecture being the main high-performance component, this option can be attractive [21]. The instruction set ar-
chitecture of the RISC component can be modified to have explicit encryption and watermarking as instructions.
This modification can be beneficial when these instructions are used quite frequently. The potential downside of this
approach is performance overhead.

4. Related Prior Research

Research on digital rights management is in full swing and several results have been presented in current literature.
In this section we discuss the DRM research which are hardware assisted solutions and present them in the context of
digital camera. The trustworthy camera, with the aim of restoring credibility to photographic images using encryption,
is presented in [22]. This is the earliest attempt that have incorporated cryptography in the camera. The development
of a biometric authentication system for a secure camera is discussed in [23]; however, application specific very-large-
scale integration (VLSI) architecture was not proposed. However, the term of “secure digital still camera” was coined
by us for first time in the literature in [24] and a visible watermarking chip was presented there.

Additionally, several watermarking chips and FPGA prototypes are presented in the literature. The authors in [25]
propose a real-time watermarking algorithm. This algorithm is extended to a VLSI chip in [26]. A DCT domain
invisible watermarking chip is presented in [27]. The authors in [28] propose a watermarking VLSI architecture for
invisible fragile watermarking. A visible watermarking design based on an adaptive discrete wavelet transform is
presented in [29]. The authors in [30] present a design for a CMOS APS imager incorporating circuits for a pseudo-
random generator for invisible watermarking. In [31], both semi-fragile and robust watermarks are employed when
images are captured by digital camera, but application specific VLSI or hardware architecture was not presented. In
[32], concept of single-sensor digital camera that inserts visible watermarks is presented; this also does not deal with
VLSI or hardware architecture.

In this paper, architecture for an SDC with both watermarking and encryption for image security and authentication
is introduced as an advancement of the state-of-the-art. A new algorithm that uses both encryption and watermarking
is presented which is based on our conference presentation [14]. The corresponding VLSI architectures are proposed
and prototyped with Xilinx FPGA based on the preliminary results presented in our conference publication [33].

5. The Proposed Algorithm : CryptMark
5.1. The Embedding Algorithm

The algorithmic flow of secure insertion process of the proposed watermarking is represented in Fig. 3. The algo-
rithm first encrypts the watermark and then fuses it into the intensity image of a grayscale cover image or into the
Y -component (in the Y C,.C', coordinate system) of a color image. The relevant component of the cover image is
referred as . The image is decomposed in the preprocessing stage of the algorithm to obtain the required compo-
nent. The binary watermark is encrypted with a user-supplied key in this preprocessing step. At this step, any image
extension necessary to facilitate the division of the image into integral number of blocks is performed.

After preprocessing, the cover image I is divided into 8 X 8 blocks and each block is transformed into the DCT
domain. The “(7, j)”th DCT coefficient of the kth block is denoted by ¢;; (k). Suppose that the image has M blocks
overall; each block can be numbered uniquely with a number in the range [1, M] based on its position in the raster

6

Get Cover (Image) and Watermark Information (Image).
Get Encryption key.
Get AC and DC Embedding Parameters.

Color Image A Grayscale Image
v

Transform Cover to Y-Cr-Cb. Consider the intensity
Consider Y component. image of the Cover.
I e |
Y
¥ ¥
Divide Cover into 8x8 blocks. Encrypt and zero-pad
Take DCT of each block. the Watermark.

| Obtain Encoded Watermarked Image |

. S I
Decode Image. Fine tune AC and DC
Assess Quality. embedding parameters.

— t

Y_ !
Quality needs
improvement? N
| Done. |

Fig. 3. The Proposed Algorithmic Flow of the Insertion Process.

scanning of the image. M is given by (ROW x COL/64), where ROW is the number of image pixels row-wise,
and COL is the number of pixels column-wise. Based on experience with perceptual analysis, the number of DCT
frequency components has to be decided to obtain high-quality watermarked images.

Let us assume that only the DC component cqg is needed and the three low frequency components cg;, c19, and
c11. In this case, the size of the encoded and hashed watermark should be such that it can be partitioned into the same
number of blocks as the cover image, but with a block size of 2 x 2. It cannot be bigger; but if it is smaller, it can
be padded with zeros. Let us now denote the watermark’s binary value at position (7, j) in block k by w;; (k). This
watermark is embedded in the cover image by using the following expression: V4, j, k,

cij(k) (1 + auj) if wij(k) =

1
ey
Clj(k)(]. — Ozij) Zf w”(k) =0.

Unlike the method in [3], in the current approach, the watermark is not always added to the significant frequency
components. Instead, it is added to some components and subtracted from the other components [4]. This action
strengthens the requirement that a statistical analysis of the watermarked image should not reveal the presence of an
invisible watermark. Unlike the method in [3], four embedding factors are used: apc for DC components and o 4¢
for AC components. Thus, g9 = apc and ag; = a9 = @11 = a4¢. Because choosing so many scaling factors
(one for each frequency component) is a optimization problem in itself, only two values have been chosen so as not
to degrade the quality of the watermarked image. Image quality can be assessed either quantitatively by measuring its
peak-signal-to-noise ratio (PSN R) or other similar measures.

In the case of grayscale cover images, the watermarked image I* can be obtained by performing block-wise inverse
DCTs (IDCTs) on the coefficients modified as above. However, in the case of colored images, only the Y -component
of I* is acquired by the above process. The Y -component is clubbed with the C,. and C}, components of the cover to
get 1*. At this point, an optional step (dashed line in Fig. 3) of assessing quality of the watermarked image may be
executed by a quality measure and fine-tuning of the parameters a s and apc.

7

Get the Test Images.

Get the Original Cover Image.
Get Encryption key.

Get stored binary watermark.

Color Images AGrayscale Images

v 1
Transform Cover to Y-Cr-Cb. Consider the intensity
Consider Y component. image of the Cover.
l . I
O
13 v
Divide Cover into 8x8 blocks. Encrypt and zero-pad
Take DCT of each block. the Watermark.

I s |
Construct encrypted binary watermark.
Extract encrypted binary watermark from test image.

Match? é

! Y N !
Confirm authenticity of | Image is not genuine. |
watermarked image.

L :Y‘

| Done. |

Fig. 4. The Proposed Algorithmic Flow of the Extraction and Authentication Process.

5.2. The Extraction and Authentication Algorithm

The flow of secure extraction and authentication process in the proposed CryptMark is demonstrated in Fig. 4. The
extraction algorithm involves the following sequence of steps. First, the watermarked (possibly suspect) test image
I and the original cover image I are obtained. The watermark information (image) and the original encryption key
are then obtained. After initial preprocessing, both I™ and I are divided into 8 x 8 blocks. During this phase, if the
image is color, then it is converted from RGB space to Y C.C}, representation. DCT coefficients of both the images are
obtained for all the blocks. The blocks of both test image and original image are then compared. If a DCT coefficient
in a block of I7 is larger than the corresponding coefficient in the original image block, then the watermark bit is 1;
otherwise, it is 0. Finally, the extracted sequence with the binary watermark (encrypted with the key) is compared to
make a decision on authenticity of the image.

6. The Proposed Application Specific Architectures for CryptMark

In this section, VLSI architectures for the invisible-watermarking unit and the cryptographic unit are discussed.
The invisible-insertion architecture and encryption architecture are presented. The structures of the extraction and
insertion modules are similar; therefore, for brevity, only the insertion module is discussed here. In same spirit, the
decryption module is structurally similar to encryption module and hence not presented here. The rest of the units of
the camera design are being researched and will be presented in subsequent publications. The datapath components
of the proposed architectures, such as adder, subtractor, multiplier, multiplexers, etc. are designed following different
approaches from [34,35,36,33].

We present new architectures of an invisible watermarking unit in Fig. 5 which will be integrated in the SDC. We
used resource parallelism and resource-sharing to meet the timing, area, and performance tradeoffs. One invisible
watermarking architecture is area efficient which uses minimal number of resources and other architecture is high
performance. The AES architecture in Fig. 7 is high performance, high throughput, and area efficient. The proposed

8

Ope Oye Opc Y%4c

Watermark Watermark
Address Address
[Tach] [Teich] [Loior] [Lotor]
| Latch | | Latch | Latc Latc Latch Latch
7 7 ! ! | !
| Adder | [Subtractor| ’Eubtractod [Subtractor| mddeﬂ W Adder |
[! !]
Watermark
Data .

g,

(a) Area-Efficient Architecture (b) High-Performance Architecture

Fig. 5. The Proposed Datapaths of the Invisible-Robust Insertion Architecture

AES architecture is optimized for high throughput in terms of the data rates using partial pipelining [36,33]. The hard-
ware complexity is decreased by realizing polynomial multiplication using XOR operation. Memory optimization is
achieved by selective use of look-up tables and combinational logic. An important feature of the proposed AES archi-
tecture is an effective solution of real-time round key generation that requires significantly less storage for buffering,
thus particularly suitable for real-time DRM through SDC.

Three block random access memories (RAMs) are needed in the architecture: one block RAM is used as a scratch
memory to store an individual image, the second RAM stores the watermark, and the third RAM stores data that has
undergone processing in the SDC. Registers have been used extensively in the DCT submodule to aid utilization of
pipelining. An address generator serves as an address decoder by supplying the appropriate address needed for reading
from the memory.

6.1. The Proposed Architecture for Invisible Watermarking

The architecture of the invisible watermarking insertion architecture consists of two distinct modules: insertion
datapath module and controller module. The insertion module performs the watermarking insertion process. The
architecture of this module, as shown in Fig. 5(a), uses a minimal number of resources. The architecture consists
of one multiplier, two multiplexers (MUX), one adder, one subtractor, and two latches. The insertion unit takes the
DC DCT component (cgp) and the first (co1), second (c1¢), and third (c11) AC components of each 8 x 8 block for
watermarking. The top multiplexer is used to choose between the watermarking strength factors, a4 and apc.
Then a multiplexer helps in selecting an additive or subtractive process of watermarking insertion. To improve the
performance of this architecture, an alternative version is developed that uses more resources in parallel as shown in
Fig. 5(b). This parallel architecture provides the capability to watermark a DCT block in two clock cycles instead of
four, improving the performance of the system. However, there is a trade-off between the performance and the area
used. Latches are used in the insertion module for temporary buffering.

One of the computationally intensive units needed in the datapath architecture is the DCT module. The DCT module
consists of two 1D DCT sub-modules and is implemented by following a similar approach as that of our previous work
[34]. The DCT module in the current paper is realized in field programmable gate array contrary to custom integrated
circuit in the previous work [34]. Buffer circuitry is used to assist in finding the transpose. It also serves as temporary
storage for the first 1D DCT coefficient. In order to reduce latency, a multiplexer is used between the buffer and the
second 1D DCT submodule. As opposed to RAM cells, registers are typically used to design the transpose buffer
for reducing latency and increasing performance. The DCT module is controlled by the main controller and has no
separate controller.

The controller is modeled as a finite state machine (FSM) with eight states (init, Sy to Sg) as shown in Fig. 6.
Transition from the initial state (init) to So occurs when the start signal is high. The pixels (/;;) are read from storage
to the input register for their DCT coefficients to be calculated. The first DCT operation is carried as a pipelined

9

Read to Perform Store to

start = 0 Register 1D DCT Buffer
{(50) (s1) (52
start = 1 \SK _/
IDDCT_Done = 1
Watermarking | Complete = 1 IDDCT_Done =0

Watermarking_Complete = 0

S3
Write/Display Perform Write DCT Perform
Watermarked Image ~Watermarking Coefficients 2D DCT

Fig. 6. Finite State Machine Presenting the Controller of Invisible Watermarking Architecture

"

Plain Text

Register Cipher Text

User Key—>|Key Scheduler |—>|Transformation Module

Fig. 7. High-Level Architecture of the Encryption Unit

operation. If the DCT coefficient of all the coefficients of a block is not completed, there is a transition from state S2
to state SO. After the completion of the 1D DCT operation on the original image pixel (/;;) of the block, there is a
transition to state S for the second DCT operation. The input to the second DCT is given in parallel because of the
use of the transpose buffer and the multiplexer. The 2-D DCT coefficients (c;;) of the original image are obtained in
state S4. In state S5, the process of watermarking is performed on (c;;) and is then written to RAM or displayed in
state Sg. If all the coefficients of the block are watermarked, a transition occurs to the initial state.

6.2. The Proposed Architecture for the Rijndael Advanced Encryption Standard (AES)

A high-level view of the encryption unit architecture is presented in Fig. 7. The datapath unit consists of the initial
round of key addition, standard rounds, and a final round. In this paper, the implementation supports 128 bits of data
and key length. The initial round operation is carried out by XORing the 128-bit plain text with the 128-bit input key.
The plain text input and the key input are retrieved from the input register. The output from the initial round is then
passed through a multiplexer to the register for temporary storage, after which it is then passed to the transformation
module. A round key is generated for each round by the key scheduler module. The output is iterated back into the
round module through the multiplexer. The transformation module is executed 10 times. The control module takes care
of the sequence of operations of the encryption unit. For brevity we present a brief description of the AES architecture
in this subsection and we point readers to our conference publications [36,33] for detailed understanding of the AES
algorithm, FPGA prototyping, and chip implementation.

6.2.1. The Transformation Module

In Fig. 8, the different components of the transformation module - namely, the ByteSub, ShiftRow, MixColumn,
and AddRoundkey submodules - are shown. The MixColumn submodule is used only in the standard rounds and not
in the final round.

ByteSub submodule: The ByteSub submodule is made up of multiplicative inverse in G F(2%) and linear affine
mapping over GF'(2) transformations as shown in Fig. 9. The Galois field GF(28) is defined by finding a polynomial
that is irreducible over GF'(2). The multiplicative inverse operation is carried out with the aid of substitution box
(S-box) and affine mapping with XOR blocks. The architecture consists of 16 S-boxes operating in parallel. A “Byte

10

ByteSub |—>| ShiftRow -+ MixColumn

AddRoundKey

Fig. 8. Architecture of the Transformation Module

Multiplicative Inverse |_,| Linear Affine Mapping
(S-Boxes) (XOR Banks)

Byte Input—| — SubByte Output

Fig. 9. Architecture of the ByteSub Submodule

From ByteSub . To MixColumn
Submodule Multiplexer Bank Module

Fig. 10. Architecture of the ShiftRow Submodule

XOR Bank —Multiplexer Bank

Fig. 11. Architecture of the MixColumn Submodule

From the MUX of_
Transformation Module XOR Bank

—>Output

RoundKey—|

Fig. 12. Architecture of the AddRoundKey Submodule

Input” is replaced by its corresponding value from the S-box, which then goes through linear affine mapping to
produce “SubByte Output”, i.e. substituted byte output.

ShiftRow Submodule: The architecture shown in Fig. 10 shifts the position of bytes in the states by amounts of
offsets. In this transformation, the rows of the block state are shifted over different offsets. The amount of shifts is
determined by the block length. Although the first row is not shifted, the 2nd row is shifted to the left once, the 3rd
row is shifted to the left twice, and the 4th is shifted thrice. Considering the offset by which a row should be shifted,
the proposed architecture implements the shift row operation by using combinational logic and a parallel bank of
multiplexers.

MixColumn Submodule: The elements of columns in a state are considered coefficients of a polynomial over Galois
field GF(28), where these elements are smaller than three. This polynomial is then multiplied by the fixed polynomial
[C(z) = (03)z® + (01)z% + (01)z + (02)] modulo (z* + 1). The operation could be carried out by using matrix
operations. The column mixing step is basically a matrix multiplication in the Galois field, which is carried out by
using shift and XOR operations. The multiplexer bank of this architecture is different from ShiftRow Submodule,
which is shown in Fig. 11. In this case, each XOR gate from the XOR bank is connected to each multiplexer from
the multiplexer bank to perform Galois field multiplication. Then these gates are connected in an array to perform the
operation for 128 bits.

AddRoundKey Submodule: The high-level architecture of the AddRoundKey submodule is shown in Fig. 12. In this
case, the round key obtained from the key scheduler is XORed with the block state obtained from the MixColumn
transformation or ShiftRow transformation based on the type of round being implemented. In the standard round, the
round key is XORed with the output obtained from the MixColumn transformation, whereas in the final round, it is
XORed with the output obtained from the ShiftRow transformation. Moreover, bitwise XOR operation is performed
between the initial round key and the initial state block in the initial round.

6.2.2. Key Scheduler Module

The round key is obtained from the initial key through key expansion by using the architecture in Fig. 13. If it is the
first round in the standard round module, the multiplexer outputs the initial key for expansion. The module is able to
generate subsequent round keys from the initial round keys through the register. As a result, round keys are generated

11

Round+C0nstant

Round Key YOR
Initial Key_| T S-box
| Register |—>| XOR Bankl—' Shift

| 1

Fig. 13. Architecture of the Key Scheduler Module

at every round, thereby reducing area requirements. The ByteSub operation in the key schedule is implemented by
using S-boxes. Round-key computation is completed in one clock cycle. The round constants are generated using
the combinational logic [36,33]. This is amenable for hardware realization using simple XOR operations. The round
constant is obtained by XORing the previous round constant by = (hexadecimal value 02). The total number of round
constants generated is equal to the number of rounds.

6.2.3. Controller module

The sequence of operation of the system is determined by the control module. The multiplexer selects inputs,
whereas the control module provides register load signals. The controller (not presented for brevity) is implemented
as a finite state machine (FSM) with 13 states [33]. Each state of the FSM represent one round of operation; in addition
there are two load register rounds and one initial state.

6.2.4. Decryption in AES

In the Rijndael algorithm, the encryption and decryption use the same operations, but in different order [36,33]. In
the decryption, inverse transformations of the round functions are applied. The sequence in which the transformations
of the round function are applied differs from that in the encryption. For encryption, initial AddRoundKey involves
XORing of input key with the plain text. The second through tenth key addition involves XORing of the round
key with the MixColumn output for encryption and the inverse of the ByteSub output for decryption. The final key
addition involves XORing of the final round key with the output of the ShiftRow for encryption and the inverse of the
ByteSub for decryption, respectively. The MixColumn transformation in decryption use a different fixed polynomial
D(z) than that of MixColumn transformation in encryption C(z). The fixed polynomial for decryption is represented
as: [D(z) = (0B)z® + (0D)2? + (09)z + (0E)] modulo (z* + 1). The MixColumn transformation hardware in
decryption has same structure that uses XOR bank and multiplexer bank, however operating on different inputs for
different polynomials [36,33].

7. Simulations, Experiments, and Field-Programmable-Gate-Array (FPGA) Prototyping
7.1. Experiments with the Algorithm

7.1.1. Experimental Setup

The proposed algorithm is implemented in MATLAB. The computation platform was a Core 2 duo processor with
a speed of 2.8GH z and 4GB of memory. A larger volume of benchmark images and watermarks were used for the
experiments, but results for selected images and watermarks are presented for brevity.

7.1.2. Insertion Algorithm Testing and Watermarked Image Quality Assessment

The defaults values for a4¢c and apc are set to 0.1 and 0.02, respectively. These values have been found to
yield optimal results. Selected binary watermarks are presented in Fig. 14. In Fig. 15 and 16, selected watermarked
benchmark images are presented with the first image of Fig. 14 used as a watermark. It was observed that the typical
execution time for insertion was fraction of seconds for an image with a size of 256 x 256. The algorithm performance
is independent of image size and hence any size image can be considered. Thus, the time overhead of the algorithm
was minimal. The storage requirement overhead was also very small because only the keys are needed to be stored
by the owner to prove ownership. The amount of memory required to store the keys is insignificant compared to the
amount required for the host image.

12

e e Copyright

(a) Sample 1 (b) Sample 2

Fig. 14. Sample Binary Images Used as Watermarks

The quality of the watermarked images obtained by using our watermarking algorithm may be assessed by visual
inspection of the watermarked images in Fig. 15 and 16. In addition, the peak-signal-to-noise ratio (PSN R) of the
watermarked images are calculated for quantitative assessment of the quality. The PSN R of the watermarked images
is calculated using the following expression [16,26,37,38]:

255
PSNR =20 x lOgl() (_R]WS_E) N (2)

where the root mean square error (RM S FE) of the watermarked image with respect to the original image is estimated
by the following expression [16,26,37,38]:

S O S g, k) = T (i G, k>|> 3)

o =1 7j=1
RMSE = (3 x ROW x COL

where i is the image pixel row from 1 to ROW, j is the image pixel column from 1 to COL, and k is from 1 to 3
as RGB color pixels. I (i, j, k) and I* (4, j, k) are the image pixels after and before watermarking, respectively. The
PSN R values of the sample color images are provided in Table 1.

In order to get a comparative perspective of the performance of the watermarking process, selected watermarking
techniques are discussed. The watermarking algorithm proposed in this work is unique because it considers: both AC
and DC DCT coefficients, uses encryption in the framework, and hides binary image inside host image by selective
addition and subtraction based on watermark image gray value together in a unified approach (as discussed in pre-
ceding sections). Thus, it can allow secure storage of sensitive information in an image. In order to get a comparative
perspective of performance of our CryptMark algorithm, we selected few research works [39,40,41,42] as these algo-
rithms hide binary image inside the host image. The PSN R for [39] is the range of 24.9 — 47.9d B with an average
of 38.3d B, which is 62.4% lower in quality than the proposed algorithm. For the algorithm in [40], the PSN R is the
range of 29.1 — 39.6d B with an average of 34.7d B, which is 65.9% lower than the current paper. The PSN R for [41]
is in the range of 23.67 — 23.73d B with an average of 23.7d B, which is 76.7% lower in quality than the algorithm
presented in this paper. The P.SN R for [42] is in the range of 42.9 — 45.8d B (average of 44.1dB), which is 56.7%
lower than the algorithm of the current paper. In summary, the algorithm of the current paper produces better quality
watermarked images with PSN R improvement in the range of 56.7 — 76.7% than the above discussed papers.

7.1.3. Authentication Algorithm Testing

The performance of the proposed algorithm with respect to attack resilience has been established by the results
shown in Table 1 for the well-known StirMark attack against the algorithm. The watermarking survived all but one
of the attack types included in the synthetic benchmark attack, StirMark [43]. Only the binary outcome of different
attacks has been reported in the Table 1; i.e., whether the watermark extracted has survived in the sense that it is
recognizable as a replica of the original watermark. As long as the extracted watermark is recognizable, the purpose
is served. There is always a tradeoff between the perceptual quality of the watermarked image produced by an algo-
rithm and the quality of the extracted watermark under noise and other degradations. Hence, after establishing with
different images that the visual quality of the watermarked images is acceptable, the results are presented that help
benchmarking this algorithm against the ideal algorithm that survives all the attack types in the StirMark attack. The
algorithm’s extraction performance is observed to be better than the counterparts proposed in [39,41].

13

(a) Original Lena (b) Watermarked Lena

(e) Original F16 (f) Watermarked F16

Fig. 15. Performance Evaluation CryptMark for a Set of Benchmark Images - Set 1

7.2. Prototyping and Testing of the Architectures

For the prototyping, the architecture was modeled by using VHSIC hardware description language (VHDL), and the
simulation was carried out with Modelsim XE III 6.0a tools. The VHDL code was compiled with Xilinx ISE. The syn-
thesis of the architectures was carried out by using VIRTEX-II technology. The power measurement of architectures

14

(c) Original pepper

(d) Watermarked pepper

Fig. 16. Performance Evaluation CryptMark for a Set of Benchmark Images - Set 2

Table 1

Attacks Performed using Benchmarks for Testing of the Invisible-Robust Algorithm

Attacks Performed for Testing

Various Benchmark Images

Lena Mig21 F16 mandril pepper

(PSNR=105)|(PSNR=97)(PSNR=99)|(PSNR=101)|(PSNR = 108)
JPEG Compression 0 quality Survived Survived Survived Survived Survived
Gray scaling 16 levels Survived Survived Survived Survived Survived
Gray scaling 256 levels, JPEG compression 0 quality|Survived Survived Survived Survived Survived
Blurring , 0 quality JPEG Compression Survived Survived Survived Survived Survived
Partial cropping Survived Survived Survived Survived Survived
Stirmark Self Similarities Survived Survived Survived Survived Survived
Stirmark 0 quality JPEG compression Survived Survived Survived Survived Survived
Stirmark median filtering Survived Survived Survived Survived Survived
Stirmark Random Distortions Survived Survived Survived Survived Survived

is performed using XPower. The throughput of architectures is calculated using the following expression:

15

Table 2
Synthesis of the Watermarking Architecture

Architecture Attributes Architecture Statistics
Cell Usage — Basis Logic Gates, LUTs, MUX, XOR|218 BELS

Device Usage — Number of Slices 78

Maximum Frequency 256 MHz

Minimum Period 3.9ns

Critical Path Delay 2.1ns

Power Dissipation 3.7mW

Throughput 544.2 Mbps

Table 3
Comparative Perspective with Existing Image Watermarking Architectures

Prior Research Architecture Features

Jeong, et al. [44] |Invisible-Robust, Video, Wavelet, XILINX VERTEX2PRO

Jeong, et al. [45] |Invisible-Robust, Video, Spatial, ALTERA STRATIX FPGA

Mohanty, et al. [2] |Invisible-Robust, Image, Spatial, 50M H z

Seo, et al. [46] Invisible-Robust, Image, Wavelet, 82M H z

Petitjean, et al. [47]|Invisible-Robust, Image, Fractal, 50M H z

Maes, et al. [48] Invisible-Robust, Video, Spatial, 17/14 kG Logic

This Paper Invisible-Robust, Image, DCT, 256 M H z
. Quantity of Data Processed x Clock Cycle Frequency
Architecture Throughput = 4
reffecture JATougpy (Total Number of Clock Cycles ’ ®
B Quantity of Data Processed 5)
-\ Critical Path Delay x Total Number of Clock Cycles /

7.2.1. The Watermarking Architecture

First, the architecture was tested for functionality. It resulted in same outputs as that expected from the algorithms,
thus proving its correctness. Synthesis results for the high-performance invisible-robust watermarking unit of the SDC
are presented in Table 2. A pixel i.e. 8 bit data is processed through 7 cycles each taking critical-path-delay time of
2.1ns; thus the throughput is 8/(2.1 ns x 7) or 544.2 Mbps.

The comparative perspective of this architecture with respect to existing FPGA-based image watermarking schemes
is presented in Table 3. It may be noted that the working domain and scope of these schemes are different; so a fair
comparison is not possible. However, from a larger perspective, the architecture proposed in this paper has minimal
cell usage and higher performance compared to the existing works.

7.2.2. The Encryption Architecture

The synthesis results of the FPGA prototyping of the encryption unit of the SDC is presented in Table 4. A pixel
i.e. 8 bit data is processed through 12 cycles each taking critical-path-delay time of 4.3ns; thus the throughput is
8/(4.3 ns x 12) or 155.0 Mbps. However, the AES architecture can take 128 bit data at a time and in that case
the throughput is 128/(4.3 ns x 12) or 2480.6 Mbps or 2.480 Gbps. We can utilize this throughput by processing
16 pixels at a time. The implementation of the proposed architecture is presented in Table 5 in the context of similar
works to get a comparative perspective. However, it is difficult to make a fair comparison as various works use different
architectures, design objectives, and hardware resources.

It may be noted that the frequency reported for watermarking and encryption in Table 2 and 4, respectively are
“maximum” possible operating for these architectures. However, when they are integrated in the SDC, they may
operate in two different scenario. If the whole SDC system is operated using a centralized controller in single operating

16

Table 4
Synthesis of the Encryption Architecture

Architecture Attributes Architecture Statistics
Cell Usage — Basis Logic Gates, LUTs, MUX, XOR 6117 BELS

Device Usage — Number of Slices 968

Maximum Frequency 204 MH=z

Minimum Period 49ns

Critical Path Delay 4.3 ns

Power Dissipation 39.8 mW
Throughput (Processing a pixel at a time) 155.0 Mbps
Throughput (Processing a AES 128-bit data packet at a time)|2.48 Gbps

Table 5
Comparative Perspective with Existing Encryption Architectures

Prior Research ‘Architecture Features

Laue, et. al. [49] Compact AES module design, 125.6 M H z, 916 slices, 171.1 Mbps

Badillo, et. al. [50] [96.42 M H z, 586 slices, 1.45 Gbps

Sodon, et. al. [51] |Low-cost using bit-serial approach, 510 M H z maximum frequency, 0.37 Gbps

McLoone, et. al. [52]|Virtex-E FPGA, 192-bit key design at 5.8 Gbps

Chittu, et al. [53] Xilinx FPGA, 75 M H z, 739 Mbps

Sklavos, et al. [54] | XCV300-BG432, 2358 Slices, 22 M H z, 259 Mbps

This Paper Single-Pixel Processing at 155.0 M bps, 16-Pixel Processing at 2.48 Gbps

frequency mode (e.g. [16]), then that frequency is the minimal operating frequency of the modules. On the other hand,
if they are operated in decentralized controlled fashion with multiple operating frequency (e.g. [34]), then they units
can operate at any frequency up to their maximum operating frequency.

8. Conclusions and Future Research
8.1. Summary and Conclusions

This paper introduced the concept of an SDC for image copyright protection, security, and authentication in a DRM
framework. The novel invisible watermarking method called CryptMark that uses cryptography and watermarking
methods simultaneously to provide double-layer protection to the digital media is presented that can be an effective
technique for DRM. Exhaustive testing of the algorithm proved that the algorithm works well and can survive various
forms of attacks. The architecture and the FPGA implementation of the invisible watermarking and encryption unit
were presented toward the realization of the SDC. The performance of the architectures was found to be promising for
real-time DRM. Design and implementation of the remaining components of the SDC are being conducted as ongoing
research in our laboratory.

8.2. Future Research

Currently, research is under way to consider having two watermarks as a user-specific binary watermark and syn-
thetic watermark generated by the system and fuse them into the cover for additional protection and better image
quality. Other possible extensions will include the use of wavelet transforms for embedding strong watermarks. Blind
extraction of invisible watermarks is also a planned extension, particularly because of its usefulness in authentication
at the receiver end as well as identification of secretive communication. Watermarking, Encryption, and Compression

17

will be integrated as a single unified operation to be called WEnCompression, exploiting common operations in the
algorithms and resources in their architectures. Further low-power methodologies for complete SDC system are in the
pipeline that will also improve the portability of the SDC by enhancing battery life.

9. Acknowledgments

The author would like to acknowledge the help of many colleagues, such as M. Varanasi and O. B. Adamo of the
University of North Texas (UNT).

References

[1] S. Emmanuel, M. S. Kankanhalli, A Digital Rights Management Scheme for Broadcast Video, ACM-Springer Verlag Multimedia Systems
Journal 8 (6) (2003) 444-458.

[2] S. P. Mohanty, R. K. C., S. Nayak, FPGA Based Implementation of an Invisible-Robust Image Watermarking Encoder, in: Lecture Notes in
Computer Science, Vol. 3356, 2004, pp. 344-353.

[3] IJ.Cox,J. Kilian, T. Leighton, T. Shamoon, Secure Spread Spectrum Watermarking for Multimedia, IEEE Transactions on Image Processing
6 (12) (1997) 1673-1687.

[4] S. Craver, N. Memon, B. L. Yeo, M. M. Yeung, Resolving Rightful Ownerships with Invisible Watermarking Techniques: Limitations, Attacks
and Implications, IEEE Journal on Selected Areas in Communications 16 (4) (1998) 573-586.

[S] H. Guo, N. D. Georganas, A Novel Approach to Digital Image Watermarking Based on a Generalized Secret Sharing Scheme, ACM-Springer
Verlag Multimedia Systems Journal 9 (3) (2003) 228-238.

[6] G. Jiang, M. Yu, S. Shi, X. Liu, Y. D. Kim, New Blind Image Watermarking in DCT Domain, in: Proceedings of the 6th International
Conference on Signal Processing, Vol. 2, 2002, pp. 1580 — 1583.

[71 Z.M. Lu, D. G. Xu, S. H. Sun, Multipurpose Image Watermarking Algorithm based on Multistage Vector Quantization, IEEE Transactions
on Image Processing 14 (6) (2005) 822-831.

[8] Y. T.Pai, S.J. Ruan, J. Gotze, Energy-Efficient Watermark Algorithm Based on Pairing Mechanism, in: Lecture Notes in Computer Science
(LNCS), KES (1), 2005, pp. 1219-1225.

[9] N.P. Sheppard, R. S. Naini, P. Ogunbona, On Multiple Watermarking, in: Proceedings of the ACM Multimedia workshops on multimedia and
security: new challenges, 2001, pp. 3—-6.

[10] N. Memon, P. W. Wong, Protecting Digital Media Content, Communications of the ACM 41 (7) (1998) 34-43.

[11] M. Swanson, M. Kobayashi, A. Tewfik, Multimedia Data Embedding and Watermarking Technologies, Proceedings of the IEEE 86 (6) (1998)
1064-1087.

[12] H. Berghel, Watermarking Cyberspace, Communications of the ACM 40 (11) (1997) 19-24.

[13] S. P. Mohanty, N. Memon, K. Chatha, Guest editorial, Special Issue on Circuits and Systems for Real-Time Security and Copyright Protection
of Multimedia, Elsevier International Journal on Computers and Electrical Engineering (IICEE) 35 (2) (2009) 231-234.

[14] S. P. Mohanty, R. Sheth, A. Pinto, M. Chandy, CryptMark: A Novel Secure Invisible Watermarking Technique for Color Images, in:
Proceedings of the 11th IEEE International Symposium on Consumer Electronics (ISCE), 2007, pp. 1-6.

[15] Federal information processing standards publication 197 (fips 197),
http://csrc.nist.gov/publications/fips/fipsl197/fips-197.pdf, 2001.

[16] S. P. Mohanty, N. Rangnathan, R. K. Namballa, A VLSI Architecture for Visible Watermarking in a Secure Still Digital Camera (S2DC)
Design, IEEE Transactions on Very Large Scale Integration Systems 13 (7) (2005) 808-818.

[17] S. P. Mohanty, O. B. Adamo, E. Kougianos, Vlsi architecture of an invisible watermarking unit for a biometric-based security system in a
digital camera, in: Proceedings of the 25th IEEE International Conference on Consumer Electronics (ICCE), 2007, pp. 485-486.

[18] J. L. Trpanier, M. Sawan, Y. Audet, J. Coulombe, A wide dynamic range cmos digital pixel sensor, in: Proceedings of the International
Symposium on Circuits and Systems, 2002, pp. 437-440.

[19] O. Y. Pecht, G. R. Nelson, G. A. Jullien, Patent title: Digital watermarking cmos sensor, patent application number: 20070019090, Patent,
http://www.freshpatents.com/Digital-watermarking-cmos-sensor-dt20070125ptan20070019090.php
(May 19 2005).

[20] E. Artyomov, O. Y. Pecht, Adaptive multiple resolution cmos active pixel sensor, IEEE Transactions on Circuits and Systems 53 (10) (2006)
21782186.

[21] S. Ravi, A. Raghunathan, P. Kocher, S. Hattangady, Security in embedded systems: design challenges, ACM Transactions on Embedded
Computing Systems 3 (3) (2004) 461491.

[22] G. L. Friedman, The Trustworthy Digital Camera: Restoring Credibility to the Photographic Image, IEEE Transactions on Consumer
Electronics 39 (4) (1993) 905-910.

[23] P. Blythe, J. Fridrich, Secure digital camera, in: Proceedings of Digital Forensic Research Workshop (DFRWS), 2004.

[24] S. P. Mohanty, N. Rangnathan, R. K. Namballa, VLSI Implementation of Visible Watermarking for a Secure Digital Still Camera Design, in:
Proceedings of the 17th International Conference on VLSI Design, 2004, pp. 1063—-1068.

18

[25] L. D. Strycker, P. Termont, J. Vandewege, J. Haitsma, A. Kalker, M. Maes, G. Depovere, Implementation of a Real-Time Digital Watermarking
Process for Broadcast Monitoring on Trimedia VLIW Processor, IEE Proceedings on Vision, Image and Signal Processing 147 (4) (2000)
371-376.

[26] N. J. Mathai, D. Kundur, A. Sheikholeslami, Hardware Implementation Perspectives of Digital Video Watermarking Algortithms, IEEE
Transanctions on Signal Processing 51 (4) (2003) 925-938.

[27] T. H. Tsai, C. Y. Lu, A Systems Level Design for Embedded Watermark Technique using DSC Systems, in: Proceedings of the IEEE
International Workshop on Intelligent Signal Processing and Communication Systems, 2001.

[28] A. Garimella, M. V. V. Satyanarayan, R. S. Kumar, P. S. Murugesh, U. C. Niranjan, VLSI Impementation of Online Digital Watermarking
Techniques with Difference Encoding for the 8-bit Gray Scale Images, in: Proceedings of the International Conference on VLSI Design, 2003,
pp- 283-288.

[29] Y. C. Fan, L. D. Van, C. M. Huang, H. W. Tsao, Hardware-efficient architecture design of wavelet-based adaptive visible watermarking, in:
Proceedings of 9th IEEE International Symposium on Consumer Electronics, 2005, p. 399403.

[30] G. R. Nelson, G. A. Jullien, O. Y. Pecht, Cmos image sensor with watermarking capabilities, in: Proceedings of the IEEE International
Symposium on Circuits and Systems (ISCAS), 2005, p. 53265329.

[31] L. Tian, H.-M. Tai, Secure images captured by digital camera, in: Proceedings of the International Conference on Consumer Electronics, 2006,
pp. 341-342.

[32] R. Lukac, K. N. Plataniotis, Secure single-sensor digital camera, IEE Electronics Letters 42 (11) (2006) 627-629.

[33] O. B. Adamo, S. P. Mohanty, E. Kougianos, M. Varanasi, VLSI Architecture for Encryption and Watermarking Units Towards the Making of
a Secure Digital Camera, in: Proceedings of the IEEE International SOC Conference (SOCC), 2006, pp. 141-144.

[34] S. P. Mohanty, N. Ranganathan, K. Balakrishnan, A dual voltage-frequency vlsi chip for image watermarking in dct domain, IEEE Transaction
on Circuits & Systems II 53 (5) (2006) 394-398.

[35] N. H. E. Weste, D. Harris, Principles of CMOS VLSI Design: A Systems Perspective, 3rd Edition, Addison Wesley Longman, 2006.

[36] N. M. Kosaraju, M. Varanasi, S. P. Mohanty, A high-performance vlsi architecture for advanced encryption standard (aes) algorithm, in: 19th
International Conference on VLSI Design, 2006, pp. 481-484.

[37] L. E. G. Richardson, H.264 and MPEG-4 Video Compression, John Wiley & Sons, Ltd., 2003.

[38] J. Chen, U. V. Koc, K. J. R. Liu, Design of Digital Video Coding Systems A Complete Compressed Domain Approach, Marcel Dekker, Inc.,
2002.

[39] Y. Wu, X. Guan, M. S. Kankanhalli, Robust invisible watermarking of volume data using the 3d dct, in: Proc. of Computer Graphics
International (CGI), 2001, pp. 359-362.

[40] Y. T. Pai, S. J. Ruan, Low Power Block-Based Watermarking Algorithm, IEICE Transactions on Information and Systems E89-D (4) (2006)
1507-1514.

[41] V. Saxena, J. P. Gupta, Collusion attack resistant watermarking scheme for images using dct, in: Proceedings of 15th IEEE Conf. on Signal
Processing and Communications Applications, 2007, pp. 1-4.

[42] N. N. Rao, P. Thrimurthy, B. R. Babu, A Novel Scheme for Digital Rights Management of Images Using Biometrics, International Journal of
Computer Science and Network Security 9 (3) (2009) 157-167.

[43] S. Voloshynovskiy, S. Pereira, T. Pun, J. Eggers, J. Su, Attacks on Digital Watermarks: Classification, Estimation-based Attacks and
Benchmarks, IEEE Communications Magazine 39 (9) (2001) 118-126.

[44] Y.-J. Jeong, K.-S. Moon, J.-N. Kim, Implementation of Real Time Video Watermark Embedder Based on Haar Wavelet Transform Using
FPGA, in: Proceedings of the Second International Conference on Future Generation Communication and Networking Symposia (FGCNS),
2008, pp. 63 — 66.

[45] Y.-J. Jeong, W.-H. Kim, K.-S. Moon, J.-N. Kim, Implementation of Watermark Detection System for Hardware Based Video Watermark
Embedder, in: Proceedings of the Third International Conference on Convergence and Hybrid Information Technology (ICCIT), 2008, pp.
450 —453.

[46] Y. H. Seo, D. W. Kim, Real-Time Blind Watermarking Algorithm and its Hardware Implementation for Motion JPEG2000 Image Codec, in:
Proceedings of the 1st Workshop on Embedded Systems for Real-Time Multimedia, 2003, pp. 88-93.

[47] G. Petitjean, J. L. Dugelay, S. Gabriele, C. Rey, J. Nicolai, Towards Real-time Video Watermarking for Systems-On-Chip, in: Proceedings of
the IEEE International Conference on Multimedia and Expo (Vol. 1), 2002, pp. 597-600.

[48] M. Maes, T. Kalker, J. P. M. G. Linnartz, J. Talstra, G. F. G. Depovere, J. Haitsma, Digital Watamarking for DVD Video Copyright Protection,
IEEE Signal Processing Magazine 17 (5) (2000) 47-57.

[49] R. Laue, O. Kelm, S. Schipp, A. Shoufan, S. A. Huss, Compact aes-based architecture for symmetric encryption, hash function, and random
number generation, in: Proceedings of the International Conference on Field Programmable Logic and Applications (FPL), 2007, pp. 480—484.

[50] I. Algredo-Badillo, C. F. Uribe, R. Cumplido, Design and implementation of an fpga-based 1.452gbps non-pipelined aes architecture, in:
Proceedings of the International Conference Computational Science and Its Applications (ICCSA), 2006, pp. 456—465.

[51] O.J. Hernandez, T. Sodon, M. Adel, Low-Cost Advanced Encryption Standard (AES) VLSI Architecture: A Minimalist Bit-Serial Approach,
in: Proceedings of the IEEE Southeast Conference, 2005, pp. 121-125.

[52] M. McLoone, J. V. McCanny, Rijndael FPGA Implementations Utilizing Look-Up Tables, Journal of VLSI Signal Processing Systems, KAP
34 (3).

[53] C. Chitu, D. Chien, C. Chien, I. Verbauwhede, F. Chang, A Hardware Implementation in FPGA of the Rijndael Algorithm, in: Proceedings of
the 45th Midwest Symposium on Circuits and Systems, 2002, pp. 507-510.

[54] N. Sklavos, O. Koufopavlou, Architectures and vlsi implementations of the aes-proposal rijndael, IEEE Transactions on Computers 51 (12)
(2002) 1454-1459.

19

