Visible Watermarking Algorithm

The steps for watermark insertion are discussed below:

- The original image I (one to be watermarked) and the watermark image W are divided into blocks of size 8*8. (both the images may not be of equal size).
- For each block of the original image I the mean gray value μ_n is computed.
- The DCT for each block of the original image are found.
- The DCT of watermark image blocks are found out.
- For AC DCT co-efficient of each original image block, variance σ_n is found out.
- The block means μ_n scaled to the range 0.1 to 1.0.
- The log of the variance σ_n are scaled to the range 0.1 to 1.0.
- The image mean μ is found out which the mean of block means μ_n .
- Let in denote the nth DCT block of original image I, and w_n denote the nth DCT block of watermark image W. Denoting the nth block of watermarked image by i_n', we have,

$$i_n' = \alpha_n . i_n + \beta n w_n$$
 $n = 1, 2,$ eqn. (1)

The α_n and β_n are classified and Gaussian random numbers are added where α_n and β_n are scaling and embedding factors respectively for each block computed as described. They are computed using eqn. (2) and eqn. (3). (if required).

- The IDCT of in' are found out which give the watermarked image I'.
- Basing on the above discussion we propose the following mathematical model. $\alpha_n = \alpha_{max} + (\sigma_n (\alpha_{max} - \alpha_{min}) / \sigma_{max}) \exp(-(\mu_n - \mu)^2/2),$

 $\beta_n = \beta_{min} + (\sigma_{min} (\beta_{max} - \beta_{min}) / \sigma_n) [1 - exp (- (\mu_n - \mu)^2/2],$ Where,

 α_{min} and α_{max} are respectively minimum and maximum values of scaling factor, β_{min} and β_{max} are respectively minimum and maximum values of embedding factor,

 μ_n is normalized mean for each block,

 σ_n is normalized variance of each DCT blocks,

 σ_{min} and σ_{max} are respectively minimum and maximum values of DCT block variances.

 μ is the normalized image mean.

This algorithm is implemented by Rajan Sheth, Adrain Pinto and Nitesh Chawada. http://www.geocities.com/gwatermarker

Source: Suraju Mohanty's Thesis.