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Abstract: In this paper, based on Mitchell’s logarithmic conversion, we propose a fast calibration method using a fixed binary 
code with case judgement, which suppresses the conversion error. We developed a highly paralleled circuit serving the 
proposed calibration method. Differential cascade voltage switch logic (DCVSL) is used to work in both high-speed logic and 
adiabatic logic and trade-off between power dissipation and operation speed. In addition, a low cost adiabatic clock 
generator without any passive component is presented to support a four-phase sine clock for the adiabatic logic operation. 
An 8-bit logarithmic converter is designed in TSMC 180nm CMOS. Simulation results show that the proposed calibration can 
reduce the conversion error to 1.55% based on Mitchell’s algorithm, the power dissipation varies between 1.12-3.709mW 
and the delay is 1.82ns under operational DCVLS. 
 

1. Introduction 

Multi-bit logic appears everywhere in electrical 

systems, most of which require large circuit area and long 

computation time. In some specific applications, system can 

tolerate a little bit error that does not influence the 

performance visibly [1, 2]. Thus, some approximated 

computations can be applied in specific applications. A very 

interesting theory is that a binary number can be converted to 

the form of a logarithmic code which can be processed by the 

following task with conversion error occurred. This theory 

has been used to simplify multiplication and division [3, 4]. 

[Reply to Reviewer-1, comment-2] A lot of work has been 

done to reduce the conversion error. One strategy is to use a 

multi-step function to further increase the conversion 

accuracy [5-8]. SanGregory, et al. [9] used another curve to 

approximate the logarithmic curve instead of the linear 

function used for the generation of the fraction part. Iteration 

can mitigate the approximated error step-by-step at the cost 

of long computation time [10]. Lookup table (LUT) is also 

used to supress the conversion error [11] but it introduces 

additional memory array. In addition, the search method for 

the logarithmic conversion has been studied with the purpose 

of effectively using LUT [12]. Programmable logic array 

(PLA) has also been used [13, 14]. This method can 

accelerate the design but it does not introduce the circuit 

optimization due to the restriction of already-defined logic 

gates in PLAs. For the VLSI circuit design, the leading-one 

detector is widely used for determining both the integer part 

and fraction part [15, 16, 17]. The leading-one detector, (Fig. 

1 in [15]) is the pipelined circuit using MUX and AND gates 

to search the first high-bit for any given binary number. The 

computation time is highly dependent on both the word length 

and the location of the first high-bit. 

The power dissipation is another important issue in the 

circuit implementation. For energy efficient VLSI design, 

adiabatic logic is one of promising logic families that is well 

used [18, 19]. The essence of the adiabatic logic is to activate 

slow charge/discharge under clocked power supply to reduce 

the power dissipation [20]. In this work, we introduce a fixed-

binary method to calibrate the conversion error based on 

Mitchell’s logarithmic conversion [3] and present a highly 

paralleled circuit structure of logarithmic converter which can 

be supplied by both dc power and clocked power to verify the 

proposed calibration method. 

The main work is summarized as follows: 

i. We analysed the classical Mitchell’s algorithm used 

for logarithmic conversion. Based on this, we proposed a 

novel calibration using a fixed binary code with a case 

judgement to reduce the conversion error. 

ii. We present a highly paralleled circuit structure for 

fast logarithmic converter with the proposed calibration 

method. We used differential cascade voltage switch logic 

(DCVSL) as the bottom gate. The proposed topology can be 

powered either by dc voltage for fast computation or by the 

clocked power to perform as an efficient charge recovery 

logic (ECRL) at the cost of lowering the work speed. For 

calibration block, we used a specific digital comparator, 

which can be used only to compare with a fixed code to 

implement the case judgement of the proposed calibration, 

and a simplified carry lookahead adder (CLA) to speed up the 

calibration. To reliably drive the converter, we proposed a 

ring oscillator-based circuit without any passive device to 

generated four-phase sine wave for the adiabatic logic. 

iii. We compared the proposed calibration and other 

algorithms of logarithmic conversion. We designed an 8-bit 

logarithmic converter using TSMC 180nm technology. Post 

layout simulation shows that the proposed calibration method 

is robust and supported by our circuit with a wide working 

range. The power dissipation of the entire logarithmic 

converter under adiabatic logic is much smaller than that 

under DCVSL. 

In Section 2, we present the analysis of the Mitchell’s 

logarithmic conversion and propose a novel calibration 

method to supress the conversion error. In Section 3, we 

discuss the circuit structure to serve the logarithmic converter 

with the consideration of both the proposed calibration 

method and the purpose of speeding up adiabatic logic. 
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Section 4, we discuss simulation results and comparison with 

the prior work. The conclusions are presented in Section 5. 

2. Study of calibration for logarithmic conversion  

 
2.1. Mitchell’s logarithmic conversion 

 

The logarithmic multiplication and division are 

described below, 

  babafmul 2222 loglogloglog        (1) 

 

  babafdiv 2222 loglogloglog        (2) 

 

Above two equations show that multiplication and 

division in binary domain can be converted to addition and 

subtraction in logarithmic domain, respectively. This 

logarithmic conversion can reduce the design complexity and 

the computation latency in the circuit implementation, which 

is a significant motivation of processing some specific 

operations in logarithmic domain. 

For any number, it can be factored as follows, 

 

 F

X
XX I  12                            (3) 

 

Taking logarithmic conversion of (3), we obtain: 

 

 FI XXX  1loglog 22
              (4) 

 

where XI is the integer part of the converted number and 

log2(1+XF) contributes the fraction part of the logarithm code. 

When XF is between 0 and 1, log2(1+XF) can be approximated 

to XF. Thus, the converted number can be shown as follows, 

 

FI XXX 2log                         (5) 

 

This is the fundamental theory of Mitchell’s 

logarithmic conversion [3]. The conversion process can be 

summarized as follows: 

1) Convert the decimal number into a binary number 

and search for the MSB. 

2) Use the digit of the MSB as the integer part of 

logarithmic code. 

3) Copy all of numbers after MSB as the fraction part 

of logarithmic code. 

As an example, take the decimal number 21. Its binary 

form is 10101. The MSB is in the fourth digital position. 

According to the described principle, the integer part is 100, 

and the bits after MSB, 0101 is the fraction part in logarithmic 

code. Therefore, the converted number is (100.0101)2. It 

should be noticed that the converted numbers have an error, 

which will affect the accuracy of the following multiplication 

or division as analysed in [21]. The conversion error for a 

single number can be shown as follows, 

 

  FF XX  1log 2                   (6) 

 

If there is no calibration to reduce above conversion 

error, the average conversion error for a single binary number 

is 0.0572. 

 

2.2. The proposed calibration 
 

From (6), if the base in logarithmic form is 2, the error 

is always positive and occurs between 2k and 2k+1, where k 

is any positive integer. 

In (6), if we add a positive binary code to XF, thereby 

shifting the error curve down, the conversion error can be 

described as follows, 

 
Fig. 1.  Error curves of Mitchell’s algorithm and the one 

with the addition of C 
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   CXX FFcal  1log 2                 (7) 

 

where εcal is the new error and C is the calibration code. The 

average conversion can be computed as follows, 

 

 
     F

X

X
FF

lowhigh

avgcal dXCXX
XX

high

low
 


 1log

1
2_

 (8) 

 

Eqn. (8) indicates that XF is located in the interval [Xlow, 

Xhigh]. Since the integral is applied to a pure fraction number, 

Xlow and Xhigh are 0 and 1, respectively. Note that we choose 

an absolute value for the integral and in that the introduced 

binary number will make some part of the conversion error to 

be negative. If only original value is integrated, the calculated 

average value is not the real error. Absolute deviation only 

can reflect the real error. 

Setting (7) to 0, we obtain a transcendental equation. 

Using Newton-Raphson method to find the root step by step, 

two roots can be obtained which are: 
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where W(x) is the product logarithm function. To make both 

roots to be the real numbers, the variable in the product 

logarithm function, -2C-1ln2, should be larger than -1/e [22]. 

Under this restriction, C should be smaller than 0.0861. Eqn. 

(9) gives two subsection points of the new error curve 

crossing the X-axis. Thus, (8) can be rewritten as follows, 
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Taking derivative of above equation with respect of 

C, we obtain the equation shown in (11). 

For the variable C, in the interval [0, 0.063], (11) is 

negative, while in the interval [0.063, 0.0861], it is positive, 

so the minimum average error is around 0.0063. Converting 

this decimal number to a binary number, (0.00010000001)2, 

is the highly approximated option. Considering that the 

longer bits contributing to the calibration lead to a more 

complex circuit block with higher power dissipation, and the  

LSB in (0.00010000001)2 is a very small fraction number, we 

remove the LSB and set C to (0.0001)2 as the fixed binary 

code to implement the calibration. 

Fig. 1 shows error curves of Mitchell’s algorithm and 

the one, which is based on Mitchell’s algorithm with the 

addition of C. We notice that when the fraction part, XF 

approaches to 0 or 1, the error with (0.0001)2 calibration is 

larger than that without calibration. Thus, there should be no 

calibration for XF in these two areas, which are marked by 

two subsection points of two curves, (0.000101)2 and (0.111)2, 

both of which are used to build a piecewise function for the 

final calibration. Fig. 2 shows this error curve and its 

calibration flow. The proposed calibration only uses a fixed 

calibration code with a simple case judgement to supress the 

conversion error. When XF is between (0.000101)2 and 

(0.111)2, the calibration is enabled. Otherwise, the traditional 

conversion based on Mitchell’s algorithm is still applied 

without the proposed calibration. Under this piecewise 

function, the average error computed by Matlab is 0.0155. 

3. Circuit implementation  

In this section, we introduce a highly paralleled circuit 

structure for the logarithmic converter with the proposed 

calibration as shown in Fig. 3. The entire system mainly 

consists of two parts: logic part and clock part. Logic part 

works for the logarithmic converter designed by DCVSL. It 

uses two bridge signals named as EN and R, both of which 

will be introduced later, to obtain non-calibration logarithmic 

code. The calibration uses case judgement and adder to obtain 

the final logarithmic code. The power part is designed to 

supply dc power or four-phase clocked power. 

 

3.1. Adiabatic logic 
 

The way of designing digital logic using DCVSL 

under dc bias is same as using static logic gates [23]. When 
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supplying clocked power to the whole system, DCVSL is 

changed to ECRL behaving as an adiabatic logic [24]. 

Adiabatic logic has been introduced in VLSI design 

considering the power budget and the limitation of cooling 

technique. Under clocked power supply, the single work 

cycle in ECRL is built by four phases, which are evaluation 

phase, hold phase, recover phase and wait phase. The 

evaluation phase and recover phase correspond to slow 

charge and discharge, respectively. For the two connected 

logic stages, the second stage must work under the next phase 

compared to the first stage. Therefore, to ensure that the entire 

logic chain processes correct data transmission, both phases 

of slow charge and discharge should work one by one in 

cascade way. The highly pipelined clocked power must 

supply to the entire cascade chain with 90° phase difference. 

It means an adiabatic system needs to add dummy buffers to 

build a strict pipelined logic chain to confirm each path has 

the same number of logic stages from the initial node to the 

terminal node. 

Another issue is regarding the highest fan-in for a 

single gate. We follow a paralleled structure to supress 

computation delay. Thus, the drive-in ability should be 

seriously taken into consideration. Using a high fan-in 

structure, it can supress the delay at the cost of signal integrity 

[25]. Making a trade-off between signal integrity and delay, 

we restrict the upper bound of fan-in to eight for a single gate. 

 

3.2. Logic part 
 

The logic part is for the logarithmic conversion with a 

calibration block. The logarithmic converter can be split into 

two parts: integer conversion and fraction conversion. For the 

integer conversion, the leading-one detection and overflow 

detection [15, 16, 17] are widely used to find the MSB of a 

given binary number. Both of two strategies require a long 

logic chain with register, which brings long time to get the 

results and is sensitive to the external clock signal. Thus, it is 

required to find another way to achieve a fast integer 

conversion. 

For a given N-bit binary number, SN-1SN-2…S1S0, if 

MSB is located in SMSB bit, higher bits than SMSB are all 0. This 

means, 

 

1... 11-   MSBMSBN SSS                     (12) 

 

using (12), we create a series of enable signals to help both 

integer conversion and fraction conversion. The enable signal, 

ENi, is expressed as follows, 

 

 



























11-

2111-

0121-

,

NN

NMSBMSBN

NN

i

SMSBS

SSMSBSSS

SMSBSSS

EN 


            (13) 

 

Eqn. (13) indicates that for random numbers with a 

fixed MSB, the introduced enable signals are always unique 

that one is high logic and the rest of them are low logic. Thus, 

for a group of numbers with the same MSB, their integer parts 

in logarithmic codes are the same. For the circuit 

implementation, the enable signals can be obtained through 

NOR array guided by (13). We can use enable signals to 

obtain the corresponding integer number as follows, 
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In (14), Ii reflects a single bit in the integer part of a 

logarithmic code. If an N-bit binary number follows N=2n+1-

1, Ii ranges from I0 to In. ENi0_j is the group of enable signals 

that map Ii to be low logic in truth table. In this group, there 

are N/2 enable signals for any Ii to build the first term in (14). 

ENi1_(a, b, c, d)_k is the group of enable signals that map Ii to be 

high logic in truth table. In this group, there are also N/2 

enable signals for any Ii. Every 4 ENi1_(a, b, c, d)_k signals in 

Sigma function in (14) are grouped again, that begins with the 

first ENi1_a_k appeared and then sorted one by one in truth 

table, to form the second term of in (14). Using the binary 

code, 00101101, as the case study of (14). Only EN5 

corresponds to high logic and the rest of ENi to low logic. 

From the truth table of ENi and mapping to Ii and using (14), 

we can determine the groups of both ENi0 and ENi1 as follows, 

 

I2=(E7·E6'·E5'·E4'+E7'·E6·E5'·E4'+E7'·E6'·E5·E4'+E7'·E6'·E5'·E

4)·(E3'·E2'·E1'·E0'),                                                              (15a) 

   

I1=(E7·E6'·E3'·E2'+E7'·E6·E3'·E2'+E7'·E6'·E3·E2'+E7'·E6'·E3'·E

2)·(E5'·E4'·E1'·E0'),                                                              (15b) 

 

I0=(E7·E5'·E3'·E1'+E7'·E5·E3'·E1'+E7'·E5'·E3·E1'+E7'·E5'·E3'·E

1)·(E6'·E4'·E2'·E0').                                                                 (15c) 

 

Using above three specific equations with all ENi of 

the given number, the integer part can be obtained, which is 

101 as desired. The circuit implementation of (14) is shown 

in Fig. 4a. The logic gates with three dotted symbols indicate 

that the single gate may extent to the logic chain if fan-in 

exceeds 8. The buffer shown by the dotted symbol is a 

dummy buffer or a chain of buffers, which makes the entire 

block to correctly work under ECRL. 

To get the fraction part, we also try to find a paralleled 

topology. If we define an intermediate term Rm,n, which can 

be expressed by, 

 

nmnm SENR ,
                           (16) 

 

Using this intermediate signal, we can write, 

 





i

j

jijNi RF
0

,1
                        (17) 

 

In (17), Fi refers to any single bit in the fraction part 

of a logarithmic code, which is implemented by the circuit 

shown in Fig. 4b. The final form of the logarithm code 

converted from the N-bit binary code can be expressed as InIn-

1…I1I0. FN-2FN-3…F1F0. 

The calibration block is to reduce the error due to 

Mitchell’s logarithmic conversion. As described in previous 

section, whether the proposed calibration is enabled or not, is 

strictly based on the original converted code. Thus, we need 

to compare the converted code with the lower bound and 

upper bound of calibration region. Digital comparator is 

widely used for the binary code comparison [26]. Our 

calibration requires the fraction part to be compared only with 

the fixed reference numbers (0.000101)2 and (0.111)2. Thus, 

we give up the standard digital comparator but use a simple 

logic, which can compare with our fixed bounds at low circuit 

cost. 

For a single converted number, first a signal, CEN is 

defined, to judge if the number locates between upper bound 

and lower bound in which the number needs to be calibrated. 

For a given N-bit input, CEN can be expressed as follows: 

 

765432

54327432

64325432













NNNNNN

NNNNNNNN

NNNNNNNNEN

FFFFFF

FFFFFFFF

FFFFFFFFC           (18) 

 

Above equation shows high logic when the faction 

part is located in the calibration region that enables the 

original logarithmic code to be added to (0.0001)2. Otherwise, 

there is no calibration enabled. The entire calibration block is 

shown in Fig. 4c with the circuit implementation of (18) and 

a simplified CLA to achieve the fixed binary calibration that 

CEN is connected to the FN-5 bit. Under this connection, if there 

is no calibration enabled, the original converted number 

keeps the same value. Once the calibration is enabled, the 

original converted number is added with (0.0001)2. Note that 

the circuit of the case judgement only uses two logic stages 

no matter how many bits will be converted. For the design of 

simplified CLA, since FN-5 is the last bit in the adder, we can 

set FN-5 as carry-in bit so that the original logarithmic code 

adds a full zero sequence. Thus, the generate terms in a CLA  

are all low logic and the propagate terms are equal to the 

original logarithmic code. We cancel the AND array 

outputting the generate terms and XOR array outputting 

propagate terms. We leave only AND array to obtain the carry 

terms, and XOR array outputs the final results, which are also 

shown in Fig. 4c. This simplified CLA can reduce two logic 

stages and the circuit cost due to the proposed calibration. 

 

3.3. Power part 
 

Another important issue is how to drive adiabatic logic 

using the clocked power. The types of clocked power include 

sine, trapezoid, and step-by-step waveforms. Sine clocked 

power can be obtained by oscillators with passive devices to 

boost oscillation frequency [27]. Trapezoid power can be 

obtained by the RL circuitry, which brings analogue block to 

the entire system [28]. Step-by-step power can be obtained by 

tank capacitors [29]. To save the chip area by removing 

passive devices, the performance of clocked power built by 

purely logic gates has been studied [30]. It does reduce the 

occupied area with low power dissipation but signal integrity 

degrades when frequency boosts. 

In this work, we use the voltage controlled ring 

oscillator (RO) [31] to build our clock tree. To generate four-

phase signals with 90° phase difference, we design four ROs 

with modified dimensions of transistors since the phase 

difference is highly related to additive RC delay existed in 

transistors. We select designing RO with seven stages to 

balance the oscillation frequency and signal integrity. The 

entire design of clock part is shown in Fig. 4d. The first stage 

of this circuit is the control block with diode-connected 
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transistors. The large current going through this control block 

can boost the oscillation frequency. With the decrease of 

VCTRL, the oscillation frequency will gradually reduce and the 

clocked power will finally change to the dc power. The W/L 

of both pMOS and nMOS transistors with diode connection 

are set to 800nm/200nm. The W/L of two transistors in the 

front-end stage of RO is set to 1000nm/200nm, 

1600nm/200nm, 2000nm/200nm, and 2400nm/200nm, to 

build four sine waves with 90° phase difference. For the rest 

of transistors in this circuit, these are uniformly set to 

200nm/200nm. 

4. Test results 

 

4.1. Error analysis 
 

The proposed calibration method is developed based 

on the Mitchell’s logarithmic conversion. Fig. 5 shows the 

error sweep of these two conversions with random fraction. It 

can be seen that the proposed calibration can obviously 

supress the conversion error. To evaluate the performance of 

the proposed calibration in depth, we list a comparison of the 

proposed one and other reported conversion methods [3, 5-7, 

9, 32, 33] in Table 1 in Appendix. The percentage error range 

can reflect the average error for a given method. The 

computed percentage error range of our work is 1.55% using 

Matlab simulation. Thus, using Mitchell’s algorithm as the 

reference, the reduced rate of conversion error in our work is 

71.1%, which is larger than reported in [5-7, 9]. On 

comparison with [33], the reduced rate of conversion error in 

the proposed work is larger than the case of four fraction 

regions. To obtain nearly the same error as in [33] for the 

proposed work, it requires eight fraction regions in [33]. The 

number of fraction regions is proportional to the circuit 

complexity and the computation latency. Our calibration 

method uses three fraction regions to be processed, which is 

larger than reported in [6, 7, 9] and one case in [32]. However, 

these three fraction regions are only generated by one case 

judgement. The calibration block only uses two logic stages 

for the case judgement as described in the last section. Thus, 

three fraction regions in this work cannot lower the work 

speed significantly. Methods in [5, 9, 32] are very time 

consuming since counter, shifter, or leading-one detector are 

used, which are not suitable to the fast computation. When 

the number of fraction regions increases, the computation in 

[32, 33] can reduce further conversion error than in our work. 

However, both of two works introduce a complex multi-step 

linear function, which is a penalty on computation speed since 

each linear function requires multi-bit multiplication and 

addition to be processed. In [33], it uses LUT to reduce the 

computation latency of multi-step function at the cost of chip 

 
a 

 
b 

 
c 

 
d 

Fig. 6. Simulations of clock generator 

a Waveform at 498MHz 

b Waveform at 0.981GHz 

c Oscillation frequency versus control voltage 

d Frequency deviation versus control voltage 

 
Fig. 5. Error sweep of the proposed calibration and 

Mitchell’s algorithm 
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area. The work in [6, 7] simply uses two fraction regions to 

speed up the conversion at the cost of conversion accuracy. 

 

4.2. Circuit analysis 
 

We first test the performance of the clock block. Fig. 

6a and b show the transient simulation results of 498MHz and 

0.981GHz four-phase sine waves under two control voltages, 

1.5V and 1.8V, respectively. We can see that the clocked 

power generated by the proposed circuit is roughly the same 

as the standard sine wave, which can be used for ECRL work. 

Fig. 6c shows the oscillation frequency with the variation of 

VCTRL.  We can see the oscillation frequency ranges from 

79MHz to 0.981GHz when VCTRL boosts from 1.3V to 1.8V. 

When the control voltage is lower than 1.2V, the clock block 

supplies dc power making the following logic block work in 

high speed DCVSL. Another important issue is the frequency 

deviation since each two adjacent logic stages must follow 90° 

phase difference to confirm the correct data transmission in 

ECRL. Comparing each two ROs outputting two adjacent 

clocked power, we use 90° phase difference as the standard 

value. The phase deviation is calculated from the difference 

between actual phase and 90°, and divided by 90°.  

The phase deviation with the variation of oscillation 

frequency is shown in Fig. 6d. It can be seen that the phase 

deviation increases with the boost of the oscillation frequency 

and does not exceed 5% so that the clock part can reliably 

support the logic part working in ECRL. 

Fig. 7a shows the layout of our design using TSMC 

180nm CMOS. It includes 1162 transistors with the 

dimension of 0.063mm2. Besides some transistors in clock 

part, the dimensions of the rest of transistors are 

200nm/200nm. From the layout, we can see that both 

calibration block and clock generator do not occupy large 

chip area. The logarithmic converter is the largest block since 

we use highly paralleled structure to speed up the conversion 

instead of counter, leading-one detector and any other blocks, 

which can process multiple-bit repeatedly using the single 

circuitry. Fig. 7b and c show the simulation results of the 

logarithmic codes under DCVSL and ECRL, respectively. 

The frequency of the clocked power in ECRL transient 

simulations is 498MHz. The input signal sequence in both 

DCVSL and ECRL transient simulations are (11111111)2, 

(11101000)2, (00001111)2, and (00000000)2 at 100MHz. 

Under these inputs, the outputs are (111.1111111)2, 

(111.1110000)2, (011.1111000)2, and (000.0000000)2, which 

are matched to the Mitchell’s conversion with the proposed 

calibration method. The delay in DCVSL is 1.82ns with good 

signal integrity. In ECRL, the output in the first 5ns is 

unstable and incorrect since the adiabatic chain supplied by 

four-phase clocked power outputs the results stage by stage. 

After 5ns, the output port can correctly transmit the results. 

Through the sine waves, we can see the distinction of high 

logic and low logic in ECRL simulations. However, the signal 

integrity in ECRL is not as good as in DCVSL. This is due to 

the supplied clocked power, which is not a perfect sine signal 

as previously shown in Fig. 6a and b. Incomplete charging 

and discharging are implemented during fast operation of 

ECRL. In addition, the limited driven-ability of the clock 

generator in this work degrades the clocked power supply. 

Fig. 7d shows the simulation results of the power dissipation 

under both ECRL and DCVSL. We set the frequency of 

clocked power at 498MHz and 0.981GHz used for our ECRL 

simulation. The power dissipation of the converter under dc 

power ranges from 2.4mW to 3.709mW with boost in input 

frequency. Under clocked power supply, when the frequency 

of the clocked power is 498MHz, the power dissipation varies 

from 1.12mW to 1.9352mW. The power dissipation under 

0.981GHz clocked power varies from 1.6656mW to 

2.1734mW. It can be concluded that ECRL does reduce 

power dissipation compared to DCVSL. The converter driven 
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Fig. 7. Simulations of the entire logarithmic converter 

a Layout view 

b DCVSL transient simulation 

c ECRL transient simulation 

d Comparison of power dissipation under different logic 
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by the low frequency clocked power can save more energy 

than that driven by the high frequency clocked power. 

To evaluate the performance of the proposed work 

depending on the increased bit length, a comparison is 

presented in Table 2. It compares our work with the prior 

work presented in [5-7, 9, 12, 32, 33] from the viewpoint of 

the number of all bottom cells. Three numbers identified by 

two slashes, from left to right, represent the number of basic 

logic cells (all Boolean logic, MUX and transmission gate), 

unit adders and unit memory cells, respectively. The method 

to estimate the number of all bottom cells is based on the 

diagrams of both circuit and system shown in the reported 

papers. For [32], we used the case of 3-regions to estimate the 

number of all bottom cells. While in [33], the case of 8-

regions is used for the estimation. We observe that when the 

bit length is 8-bit or 16-bit, the number of all bottom cells in 

this work is smaller than that in [5, 12, 32, 33]. Over 16-bits, 

the proposed work and [33] consume much more bottom cells 

than the other work except [12], in which the conversion is 

fully implemented by memory array and the usage of memory 

cells is the largest since all converted results corresponding to 

the specific binary codes need to be stored. Hardware 

implementations in [6, 7, 9] is not as sensitive to bit width 

increasing as in other work. The reason that both [33] and the 

proposed one consume large number of bottom cells is that 

the two work use highly paralleled topology instead of the 

pipelined structure achieved by leading-one detectors or 

shifters. Thus, to process the input with large bit width with 

the consideration of the allowable fan-in, in a single stage, the 

requirement of bottom cells is larger than in the other work 

using step-by-step computation. Another issue is the 

conversion latency. A very significant metric to evaluate it is 

through the maximum path, which requires to determine the 

number of longest logic stages in entire conversion from the 

binary code to logarithmic code. Table 3 presents the 

comparison of maximum path between the proposed work 

and other prior work [5-7, 9, 13, 32, 33]. It is observed that 

the proposed one consumes the shortest path to obtain the 

converted result compared to other designs. The 

implementations with the computations of pipelined shifting 

[5, 9, 32] are sensitive to the increase of bit length. The work 

using PLA [13] is not suitable for the fast conversion. For 

work in [6, 7], the front-end circuit to achieve multi-step 

function without LUT contributes the most to the required 

path. The runner-up in conversion speed is the design in [33], 

since it also follows the path of highly paralleled topology. 

The reason that it is slightly slower than the proposed one is 

that its multi-step function is complex and requires more 

stages than in the proposed one.    

In our design, the latency through the calibration block 

is not sensitive to the bit width. As mentioned in the last 

section, the block to implement the case judgement of the 

calibration block requires only two stages without stage 

variation as bit width is increasing. Our simplified traditional 

CLA reduces the number of logic stages required by the 

calibration. The block outputting fraction number contributes 

mainly to both required stages and the number of bottom cells 

with the increase of bit width since one stage has N2 inputs as 

shown in Fig. 4b. Other blocks for the enable signals and the 

integer number do not introduce more stages and hardware 

cost when bit width increases. 

5. Conclusion 

In this work, based on Mitchell’s algorithm, we 

propose a novel calibration method to supress the error during 

logarithmic conversion. The essence of our calibration is to 

use a fixed code to calibrate a single converted number. At 

the circuit level, we propose a highly paralleled structure to 

speed up the logarithmic conversion. The bottom gate is 

designed by DCVSL to let the system work under both 

adiabatic logic and fast logic. For the clocked power design, 

we used four voltage controlled ring oscillators without 

passive devices to generate four-phase sine signals to drive 

the converter. This clock block also can be controlled to 

supply dc power to support traditional DCVSL working. We 

designed an 8-bit logarithmic converter in layout level to 

Table 2: Comparison of hardware cost with the prior work and the proposed work 

 [5] [9] [32] [6] [7] [33] [12] 
This 

work 

         

8-Bit 200/0/0 72/8/0 202/16/40 46/18/0 10/8/0 64/0/64 0/0/192 120/0/0 

         

16-Bit 400/0/0 144/16/0 404/32/80 16/34/0 20/16/0 128/0/256 0/0/640 343/0/0 

         

32-Bit 800/0/0 288/32/0 808/64/160 32/66/0 40/32/0 256/0/1028 0/0/40k 1198/0/0 

         

64-Bit 1600/0/0 576/64/0 1616/128/320 64/130/0 80/64/0 512/0/4112 N/A 4613/0/0 

         

Table 3: Comparison of maximum path with the prior work and the proposed work 

 [5] [9] [32] [6] [7] [33] [13] 
This 

work 

         

8-Bit 30 11 24 16 13 13 N/A 8 

         

16-Bit 54 20 37 24 21 13 N/A 11 

         

32-Bit 102 36 69 40 37 13 640 12 

         

64-Bit 198 68 133 72 69 13 N/A 12 
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successfully verify the proposed calibration method. The 

results prove that when the system work in ECRL, the power 

dissipation is smaller than that in DCVSL. The performance 

comparison proves that the conversion latency of the 

proposed design is not sensitive to the increase in bit width, 

since computations of shifting and iteration are not 

introduced into our work. 
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7. Appendix 

Table 1 in Appendix section is the comparison 

between reported conversion methods and this work. 

 

Table 1: Comparison with the reported conversion methods and the proposed calibration 

 [3] [5] [9] [32] [6] [7] [33] 
Proposed 

calibration 

           

Number of 

fraction regions 
1 4 2 2 3 2 2 4 11 3 

           

Maximum 

positive error 
0.086 0.0253 0.0292 0.0449 0.0293 0.036 0.0319 0.004 0.004 0.03189 

           

Maximum 

negative error 
0 -0.0062 -0.028 -0.0183 -0.021 -0.009 0 -0.004 -0.004 -0.03197 

           

Error range 0.086 0.0315 0.0572 0.0632 0.0503 0.045 0.0319 0.008 0.008 0.06386 

           

Maximum 

positive 

percentage error 

(%) 

5.36 2.293 0.431 0.93 0.431 2.889 2.337 2.93 0.225 1.15 

           

Maximum 

negative 

percentage error 

(%) 

0 -0.468 -1.54 -0.554 -0.268 -0.45 0 -1.67 -0.181 -0.4 

           

Percentage error 

range (%) 
5.36 2.761 1.971 1.484 0.699 3.339 2.337 4.6 0.406 1.55 

           

Reduced rate 

compared 

to Mitchell’s 

algorithm (%) 

0 48.5 63.2 72.3 87 37.7 56.4 14.2 92.4 71.1 

           

Circuit strategy N/A 
Counter; 

Register. 

Shifter 

Array; 

Adder. 

ROM; 

Leading-one 

Detector; 

Shifter. 

Double-

Adder. 

Logic 

Array; 

Adder. 

Segment Encoder 

Array. 

Logic 

Array; 

Adder. 

For all compared metrics in above table, the computation methods are listed as follows: 

1) Maximum positive and negative errors are two extreme values and can be found through the error curve directly. 

2) The error range can be obtained by the difference between the maximum positive error and maximum negative 

error. 

3) The percentage error range is obtained through εMitchell-εNEW, where εMitchell is the mean value of the error using 

Mitchell’s conversion, εNEW is the mean value of the error using the novel conversion method. Specifically, for the 

proposed work, εNEW can be calculated from (8) in Section 2. Using the same equation, if we only use positive part in 

the error curve for the integral, the maximum positive percent error can be obtained. Therefore, if the integral is 

applied to the negative part in the error curve, the maximum negative percentage error can be obtained. 

4) The reduced rate compared to Mitchell’s algorithm is calculated through (PERMitchell-PERNEW)/PERMitchell, where 

PER is the percentage error range.  

 


