
1

Calibration Method to Reduce the Error in Logarithmic Conversion with Its
Circuit Implementation

Zhou Zhao 1, Ashok Srivastava 1*, Lu Peng 1, Saraju P. Mohanty2

1 Division of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, U.S.A.
2 Department of Computer Science and Engineering, University of North Texas, Denton, U.S.A.
*eesriv@lsu.edu

Abstract: In this paper, based on Mitchell’s logarithmic conversion, we propose a fast calibration method using a fixed binary
code with case judgement, which suppresses the conversion error. We developed a highly paralleled circuit serving the
proposed calibration method. Differential cascade voltage switch logic (DCVSL) is used to work in both high-speed logic and
adiabatic logic and trade-off between power dissipation and operation speed. In addition, a low cost adiabatic clock
generator without any passive component is presented to support a four-phase sine clock for the adiabatic logic operation.
An 8-bit logarithmic converter is designed in TSMC 180nm CMOS. Simulation results show that the proposed calibration can
reduce the conversion error to 1.55% based on Mitchell’s algorithm, the power dissipation varies between 1.12-3.709mW
and the delay is 1.82ns under operational DCVLS.

1. Introduction

Multi-bit logic appears everywhere in electrical

systems, most of which require large circuit area and long

computation time. In some specific applications, system can

tolerate a little bit error that does not influence the

performance visibly [1, 2]. Thus, some approximated

computations can be applied in specific applications. A very

interesting theory is that a binary number can be converted to

the form of a logarithmic code which can be processed by the

following task with conversion error occurred. This theory

has been used to simplify multiplication and division [3, 4].

[Reply to Reviewer-1, comment-2] A lot of work has been

done to reduce the conversion error. One strategy is to use a

multi-step function to further increase the conversion

accuracy [5-8]. SanGregory, et al. [9] used another curve to

approximate the logarithmic curve instead of the linear

function used for the generation of the fraction part. Iteration

can mitigate the approximated error step-by-step at the cost

of long computation time [10]. Lookup table (LUT) is also

used to supress the conversion error [11] but it introduces

additional memory array. In addition, the search method for

the logarithmic conversion has been studied with the purpose

of effectively using LUT [12]. Programmable logic array

(PLA) has also been used [13, 14]. This method can

accelerate the design but it does not introduce the circuit

optimization due to the restriction of already-defined logic

gates in PLAs. For the VLSI circuit design, the leading-one

detector is widely used for determining both the integer part

and fraction part [15, 16, 17]. The leading-one detector, (Fig.

1 in [15]) is the pipelined circuit using MUX and AND gates

to search the first high-bit for any given binary number. The

computation time is highly dependent on both the word length

and the location of the first high-bit.

The power dissipation is another important issue in the

circuit implementation. For energy efficient VLSI design,

adiabatic logic is one of promising logic families that is well

used [18, 19]. The essence of the adiabatic logic is to activate

slow charge/discharge under clocked power supply to reduce

the power dissipation [20]. In this work, we introduce a fixed-

binary method to calibrate the conversion error based on

Mitchell’s logarithmic conversion [3] and present a highly

paralleled circuit structure of logarithmic converter which can

be supplied by both dc power and clocked power to verify the

proposed calibration method.

The main work is summarized as follows:

i. We analysed the classical Mitchell’s algorithm used

for logarithmic conversion. Based on this, we proposed a

novel calibration using a fixed binary code with a case

judgement to reduce the conversion error.

ii. We present a highly paralleled circuit structure for

fast logarithmic converter with the proposed calibration

method. We used differential cascade voltage switch logic

(DCVSL) as the bottom gate. The proposed topology can be

powered either by dc voltage for fast computation or by the

clocked power to perform as an efficient charge recovery

logic (ECRL) at the cost of lowering the work speed. For

calibration block, we used a specific digital comparator,

which can be used only to compare with a fixed code to

implement the case judgement of the proposed calibration,

and a simplified carry lookahead adder (CLA) to speed up the

calibration. To reliably drive the converter, we proposed a

ring oscillator-based circuit without any passive device to

generated four-phase sine wave for the adiabatic logic.

iii. We compared the proposed calibration and other

algorithms of logarithmic conversion. We designed an 8-bit

logarithmic converter using TSMC 180nm technology. Post

layout simulation shows that the proposed calibration method

is robust and supported by our circuit with a wide working

range. The power dissipation of the entire logarithmic

converter under adiabatic logic is much smaller than that

under DCVSL.

In Section 2, we present the analysis of the Mitchell’s

logarithmic conversion and propose a novel calibration

method to supress the conversion error. In Section 3, we

discuss the circuit structure to serve the logarithmic converter

with the consideration of both the proposed calibration

method and the purpose of speeding up adiabatic logic.

mailto:eesriv@lsu.edu

2

Section 4, we discuss simulation results and comparison with

the prior work. The conclusions are presented in Section 5.

2. Study of calibration for logarithmic conversion

2.1. Mitchell’s logarithmic conversion

The logarithmic multiplication and division are

described below,

 babafmul 2222 loglogloglog (1)

 babafdiv 2222 loglogloglog (2)

Above two equations show that multiplication and

division in binary domain can be converted to addition and

subtraction in logarithmic domain, respectively. This

logarithmic conversion can reduce the design complexity and

the computation latency in the circuit implementation, which

is a significant motivation of processing some specific

operations in logarithmic domain.

For any number, it can be factored as follows,

 F

X
XX I 12 (3)

Taking logarithmic conversion of (3), we obtain:

 FI XXX 1loglog 22
 (4)

where XI is the integer part of the converted number and

log2(1+XF) contributes the fraction part of the logarithm code.

When XF is between 0 and 1, log2(1+XF) can be approximated

to XF. Thus, the converted number can be shown as follows,

FI XXX 2log (5)

This is the fundamental theory of Mitchell’s

logarithmic conversion [3]. The conversion process can be

summarized as follows:

1) Convert the decimal number into a binary number

and search for the MSB.

2) Use the digit of the MSB as the integer part of

logarithmic code.

3) Copy all of numbers after MSB as the fraction part

of logarithmic code.

As an example, take the decimal number 21. Its binary

form is 10101. The MSB is in the fourth digital position.

According to the described principle, the integer part is 100,

and the bits after MSB, 0101 is the fraction part in logarithmic

code. Therefore, the converted number is (100.0101)2. It

should be noticed that the converted numbers have an error,

which will affect the accuracy of the following multiplication

or division as analysed in [21]. The conversion error for a

single number can be shown as follows,

 FF XX 1log 2 (6)

If there is no calibration to reduce above conversion

error, the average conversion error for a single binary number

is 0.0572.

2.2. The proposed calibration

From (6), if the base in logarithmic form is 2, the error

is always positive and occurs between 2k and 2k+1, where k

is any positive integer.

In (6), if we add a positive binary code to XF, thereby

shifting the error curve down, the conversion error can be

described as follows,

Fig. 1. Error curves of Mitchell’s algorithm and the one

with the addition of C

a

Binary
Number

Logarithmic
Number

Mitchell's
Algorithm

Belong to
[0.000101,

0.111] or not?

YES NO

Logarithmic
Number+0.0001

Unchanged

Following
Multiplication

Case
Judgement

b

Fig. 2. Proposed calibration with case judgement

a Error curve

b Calibration flow

3

 CXX FFcal 1log 2 (7)

where εcal is the new error and C is the calibration code. The

average conversion can be computed as follows,

 F

X

X
FF

lowhigh

avgcal dXCXX
XX

high

low

 1log

1
2_

 (8)

Eqn. (8) indicates that XF is located in the interval [Xlow,

Xhigh]. Since the integral is applied to a pure fraction number,

Xlow and Xhigh are 0 and 1, respectively. Note that we choose

an absolute value for the integral and in that the introduced

binary number will make some part of the conversion error to

be negative. If only original value is integrated, the calculated

average value is not the real error. Absolute deviation only

can reflect the real error.

Setting (7) to 0, we obtain a transcendental equation.

Using Newton-Raphson method to find the root step by step,

two roots can be obtained which are:

2
2ln

2ln2

1
2ln

2ln2

1

2

1

1

C

F

C

F

W
X

W
X (9)

where W(x) is the product logarithm function. To make both

roots to be the real numbers, the variable in the product

logarithm function, -2C-1ln2, should be larger than -1/e [22].

Under this restriction, C should be smaller than 0.0861. Eqn.

(9) gives two subsection points of the new error curve

crossing the X-axis. Thus, (8) can be rewritten as follows,

2ln

2ln

2ln2
ln2ln2

2ln

2

2ln

2ln

2ln2
3ln2ln2

2ln

2
6

2ln

52ln5.42ln5
2ln

4
422ln2

1log

1log

1log

1
1

1
1

1

1

2
2ln

)2ln2(2

2
2ln

)2ln2(

1
2ln

)2ln2(2

1
2ln

)2ln2(

0
2_

1

1

1

1

C
C

C
C

C

FW FF

F

W

W FF

F

W

FFavgcal

W
W

W
W

CCW

dXXCX

dXCXX

dXXCX

C

C

C

C

(10)

Taking derivative of above equation with respect of

C, we obtain the equation shown in (11).

For the variable C, in the interval [0, 0.063], (11) is

negative, while in the interval [0.063, 0.0861], it is positive,

so the minimum average error is around 0.0063. Converting

this decimal number to a binary number, (0.00010000001)2,

is the highly approximated option. Considering that the

longer bits contributing to the calibration lead to a more

complex circuit block with higher power dissipation, and the

LSB in (0.00010000001)2 is a very small fraction number, we

remove the LSB and set C to (0.0001)2 as the fixed binary

code to implement the calibration.

Fig. 1 shows error curves of Mitchell’s algorithm and

the one, which is based on Mitchell’s algorithm with the

addition of C. We notice that when the fraction part, XF

approaches to 0 or 1, the error with (0.0001)2 calibration is

larger than that without calibration. Thus, there should be no

calibration for XF in these two areas, which are marked by

two subsection points of two curves, (0.000101)2 and (0.111)2,

both of which are used to build a piecewise function for the

final calibration. Fig. 2 shows this error curve and its

calibration flow. The proposed calibration only uses a fixed

calibration code with a simple case judgement to supress the

conversion error. When XF is between (0.000101)2 and

(0.111)2, the calibration is enabled. Otherwise, the traditional

conversion based on Mitchell’s algorithm is still applied

without the proposed calibration. Under this piecewise

function, the average error computed by Matlab is 0.0155.

3. Circuit implementation

In this section, we introduce a highly paralleled circuit

structure for the logarithmic converter with the proposed

calibration as shown in Fig. 3. The entire system mainly

consists of two parts: logic part and clock part. Logic part

works for the logarithmic converter designed by DCVSL. It

uses two bridge signals named as EN and R, both of which

will be introduced later, to obtain non-calibration logarithmic

code. The calibration uses case judgement and adder to obtain

the final logarithmic code. The power part is designed to

supply dc power or four-phase clocked power.

3.1. Adiabatic logic

The way of designing digital logic using DCVSL

under dc bias is same as using static logic gates [23]. When

2ln

2ln52ln24

2ln

2

2ln22ln3

1
2ln2

2ln

2
6

2ln

2ln2
ln

2ln

2

)11(
2ln

2ln2
3ln

2ln

2

2ln

4
42

2ln

2ln2

2ln2

1

1

1
1

12ln21

21

_
1

C

C

C
C

CWC

C

avgcal

W

W
W

W

W
Ce

C

C

Logarithmic Converter

Logic Part

RO_0deg

RO_90deg

RO_180deg

RO_270deg

Power Part

EN

Binary
Code

R

Fraction

Integer

Case
Judgement

Adder

Calibration

Logarithmic Code

Fig. 3. Block diagram of the proposed logarithmic

converter

4

supplying clocked power to the whole system, DCVSL is

changed to ECRL behaving as an adiabatic logic [24].

Adiabatic logic has been introduced in VLSI design

considering the power budget and the limitation of cooling

technique. Under clocked power supply, the single work

cycle in ECRL is built by four phases, which are evaluation

phase, hold phase, recover phase and wait phase. The

evaluation phase and recover phase correspond to slow

charge and discharge, respectively. For the two connected

logic stages, the second stage must work under the next phase

compared to the first stage. Therefore, to ensure that the entire

logic chain processes correct data transmission, both phases

of slow charge and discharge should work one by one in

cascade way. The highly pipelined clocked power must

supply to the entire cascade chain with 90° phase difference.

It means an adiabatic system needs to add dummy buffers to

build a strict pipelined logic chain to confirm each path has

the same number of logic stages from the initial node to the

terminal node.

Another issue is regarding the highest fan-in for a

single gate. We follow a paralleled structure to supress

computation delay. Thus, the drive-in ability should be

seriously taken into consideration. Using a high fan-in

structure, it can supress the delay at the cost of signal integrity

[25]. Making a trade-off between signal integrity and delay,

we restrict the upper bound of fan-in to eight for a single gate.

3.2. Logic part

The logic part is for the logarithmic conversion with a

calibration block. The logarithmic converter can be split into

two parts: integer conversion and fraction conversion. For the

integer conversion, the leading-one detection and overflow

detection [15, 16, 17] are widely used to find the MSB of a

given binary number. Both of two strategies require a long

logic chain with register, which brings long time to get the

results and is sensitive to the external clock signal. Thus, it is

required to find another way to achieve a fast integer

conversion.

For a given N-bit binary number, SN-1SN-2…S1S0, if

MSB is located in SMSB bit, higher bits than SMSB are all 0. This

means,

1... 11- MSBMSBN SSS (12)

using (12), we create a series of enable signals to help both

integer conversion and fraction conversion. The enable signal,

ENi, is expressed as follows,

11-

2111-

0121-

,

NN

NMSBMSBN

NN

i

SMSBS

SSMSBSSS

SMSBSSS

EN

 (13)

Eqn. (13) indicates that for random numbers with a

fixed MSB, the introduced enable signals are always unique

that one is high logic and the rest of them are low logic. Thus,

for a group of numbers with the same MSB, their integer parts

in logarithmic codes are the same. For the circuit

implementation, the enable signals can be obtained through

NOR array guided by (13). We can use enable signals to

obtain the corresponding integer number as follows,

..
.

..
.

...

...

ENi0_j'

ENi1_d_k'
ENi1_c_k'
ENi1_b_k'
ENi1_a_k

ENi1_d_k'
ENi1_c_k'
ENi1_b_k

ENi1_a_k'
ENi1_d_k'
ENi1_c_k

ENi1_b_k'
ENi1_a_k'
ENi1_d_k

ENi1_c_k'
ENi1_b_k'
ENi1_a_k'

N/8 groups

Ii

N/2
inputs

a
ENN-1

Si

ENN-2

Si-1

ENN-i

S1

ENN-1-i

S0

...

RN-1,i

RN-2,i-1

RN-i,1

RN-1-i,0

... ... Fi

N2 inputs

b

FN-2
FN-3

FN-4
FN-5

FN-2
FN-3

FN-4
FN-6

FN-2
FN-3

FN-4
FN-7

FN-2'
FN-3'
FN-4'
FN-5'

FN-2'
FN-3'
FN-4'
FN-5
FN-6'
FN-7'

Carry Lookahead
Adder

FN-5 as Cin

Original
Logarithmic

Number

Calibrated
Logarithmic

Number

CEN

Cin Cin CinA0 A0A1 A0A1A2

…

C0 C1 C2A1 A2 A3Cin A0

S0 S1 S2 S3

…

c

VCTRL

Front-end Stage
d

Fig. 4. Circuit diagram of the proposed N-bit logarithmic

converter

a Integer part

b Fraction part

c Calibration block

d Clock generator

5

8

1

__1__1__1__1

__1__1__1__1

__1__1__1__1

__1__1__1__1

2

1

_0)(

N

k

kdikcikbikai

kdikcikbikai

kdikcikbikai

kdikcikbikai

N

j

jii

ENENENEN

ENENENEN

ENENENEN

ENENENEN

ENI

 (14)

In (14), Ii reflects a single bit in the integer part of a

logarithmic code. If an N-bit binary number follows N=2n+1-

1, Ii ranges from I0 to In. ENi0_j is the group of enable signals

that map Ii to be low logic in truth table. In this group, there

are N/2 enable signals for any Ii to build the first term in (14).

ENi1_(a, b, c, d)_k is the group of enable signals that map Ii to be

high logic in truth table. In this group, there are also N/2

enable signals for any Ii. Every 4 ENi1_(a, b, c, d)_k signals in

Sigma function in (14) are grouped again, that begins with the

first ENi1_a_k appeared and then sorted one by one in truth

table, to form the second term of in (14). Using the binary

code, 00101101, as the case study of (14). Only EN5

corresponds to high logic and the rest of ENi to low logic.

From the truth table of ENi and mapping to Ii and using (14),

we can determine the groups of both ENi0 and ENi1 as follows,

I2=(E7·E6'·E5'·E4'+E7'·E6·E5'·E4'+E7'·E6'·E5·E4'+E7'·E6'·E5'·E

4)·(E3'·E2'·E1'·E0'), (15a)

I1=(E7·E6'·E3'·E2'+E7'·E6·E3'·E2'+E7'·E6'·E3·E2'+E7'·E6'·E3'·E

2)·(E5'·E4'·E1'·E0'), (15b)

I0=(E7·E5'·E3'·E1'+E7'·E5·E3'·E1'+E7'·E5'·E3·E1'+E7'·E5'·E3'·E

1)·(E6'·E4'·E2'·E0'). (15c)

Using above three specific equations with all ENi of

the given number, the integer part can be obtained, which is

101 as desired. The circuit implementation of (14) is shown

in Fig. 4a. The logic gates with three dotted symbols indicate

that the single gate may extent to the logic chain if fan-in

exceeds 8. The buffer shown by the dotted symbol is a

dummy buffer or a chain of buffers, which makes the entire

block to correctly work under ECRL.

To get the fraction part, we also try to find a paralleled

topology. If we define an intermediate term Rm,n, which can

be expressed by,

nmnm SENR ,
 (16)

Using this intermediate signal, we can write,

i

j

jijNi RF
0

,1
 (17)

In (17), Fi refers to any single bit in the fraction part

of a logarithmic code, which is implemented by the circuit

shown in Fig. 4b. The final form of the logarithm code

converted from the N-bit binary code can be expressed as InIn-

1…I1I0. FN-2FN-3…F1F0.

The calibration block is to reduce the error due to

Mitchell’s logarithmic conversion. As described in previous

section, whether the proposed calibration is enabled or not, is

strictly based on the original converted code. Thus, we need

to compare the converted code with the lower bound and

upper bound of calibration region. Digital comparator is

widely used for the binary code comparison [26]. Our

calibration requires the fraction part to be compared only with

the fixed reference numbers (0.000101)2 and (0.111)2. Thus,

we give up the standard digital comparator but use a simple

logic, which can compare with our fixed bounds at low circuit

cost.

For a single converted number, first a signal, CEN is

defined, to judge if the number locates between upper bound

and lower bound in which the number needs to be calibrated.

For a given N-bit input, CEN can be expressed as follows:

765432

54327432

64325432

NNNNNN

NNNNNNNN

NNNNNNNNEN

FFFFFF

FFFFFFFF

FFFFFFFFC (18)

Above equation shows high logic when the faction

part is located in the calibration region that enables the

original logarithmic code to be added to (0.0001)2. Otherwise,

there is no calibration enabled. The entire calibration block is

shown in Fig. 4c with the circuit implementation of (18) and

a simplified CLA to achieve the fixed binary calibration that

CEN is connected to the FN-5 bit. Under this connection, if there

is no calibration enabled, the original converted number

keeps the same value. Once the calibration is enabled, the

original converted number is added with (0.0001)2. Note that

the circuit of the case judgement only uses two logic stages

no matter how many bits will be converted. For the design of

simplified CLA, since FN-5 is the last bit in the adder, we can

set FN-5 as carry-in bit so that the original logarithmic code

adds a full zero sequence. Thus, the generate terms in a CLA

are all low logic and the propagate terms are equal to the

original logarithmic code. We cancel the AND array

outputting the generate terms and XOR array outputting

propagate terms. We leave only AND array to obtain the carry

terms, and XOR array outputs the final results, which are also

shown in Fig. 4c. This simplified CLA can reduce two logic

stages and the circuit cost due to the proposed calibration.

3.3. Power part

Another important issue is how to drive adiabatic logic

using the clocked power. The types of clocked power include

sine, trapezoid, and step-by-step waveforms. Sine clocked

power can be obtained by oscillators with passive devices to

boost oscillation frequency [27]. Trapezoid power can be

obtained by the RL circuitry, which brings analogue block to

the entire system [28]. Step-by-step power can be obtained by

tank capacitors [29]. To save the chip area by removing

passive devices, the performance of clocked power built by

purely logic gates has been studied [30]. It does reduce the

occupied area with low power dissipation but signal integrity

degrades when frequency boosts.

In this work, we use the voltage controlled ring

oscillator (RO) [31] to build our clock tree. To generate four-

phase signals with 90° phase difference, we design four ROs

with modified dimensions of transistors since the phase

difference is highly related to additive RC delay existed in

transistors. We select designing RO with seven stages to

balance the oscillation frequency and signal integrity. The

entire design of clock part is shown in Fig. 4d. The first stage

of this circuit is the control block with diode-connected

6

transistors. The large current going through this control block

can boost the oscillation frequency. With the decrease of

VCTRL, the oscillation frequency will gradually reduce and the

clocked power will finally change to the dc power. The W/L

of both pMOS and nMOS transistors with diode connection

are set to 800nm/200nm. The W/L of two transistors in the

front-end stage of RO is set to 1000nm/200nm,

1600nm/200nm, 2000nm/200nm, and 2400nm/200nm, to

build four sine waves with 90° phase difference. For the rest

of transistors in this circuit, these are uniformly set to

200nm/200nm.

4. Test results

4.1. Error analysis

The proposed calibration method is developed based

on the Mitchell’s logarithmic conversion. Fig. 5 shows the

error sweep of these two conversions with random fraction. It

can be seen that the proposed calibration can obviously

supress the conversion error. To evaluate the performance of

the proposed calibration in depth, we list a comparison of the

proposed one and other reported conversion methods [3, 5-7,

9, 32, 33] in Table 1 in Appendix. The percentage error range

can reflect the average error for a given method. The

computed percentage error range of our work is 1.55% using

Matlab simulation. Thus, using Mitchell’s algorithm as the

reference, the reduced rate of conversion error in our work is

71.1%, which is larger than reported in [5-7, 9]. On

comparison with [33], the reduced rate of conversion error in

the proposed work is larger than the case of four fraction

regions. To obtain nearly the same error as in [33] for the

proposed work, it requires eight fraction regions in [33]. The

number of fraction regions is proportional to the circuit

complexity and the computation latency. Our calibration

method uses three fraction regions to be processed, which is

larger than reported in [6, 7, 9] and one case in [32]. However,

these three fraction regions are only generated by one case

judgement. The calibration block only uses two logic stages

for the case judgement as described in the last section. Thus,

three fraction regions in this work cannot lower the work

speed significantly. Methods in [5, 9, 32] are very time

consuming since counter, shifter, or leading-one detector are

used, which are not suitable to the fast computation. When

the number of fraction regions increases, the computation in

[32, 33] can reduce further conversion error than in our work.

However, both of two works introduce a complex multi-step

linear function, which is a penalty on computation speed since

each linear function requires multi-bit multiplication and

addition to be processed. In [33], it uses LUT to reduce the

computation latency of multi-step function at the cost of chip

a

b

c

d

Fig. 6. Simulations of clock generator

a Waveform at 498MHz

b Waveform at 0.981GHz

c Oscillation frequency versus control voltage

d Frequency deviation versus control voltage

Fig. 5. Error sweep of the proposed calibration and

Mitchell’s algorithm

7

area. The work in [6, 7] simply uses two fraction regions to

speed up the conversion at the cost of conversion accuracy.

4.2. Circuit analysis

We first test the performance of the clock block. Fig.

6a and b show the transient simulation results of 498MHz and

0.981GHz four-phase sine waves under two control voltages,

1.5V and 1.8V, respectively. We can see that the clocked

power generated by the proposed circuit is roughly the same

as the standard sine wave, which can be used for ECRL work.

Fig. 6c shows the oscillation frequency with the variation of

VCTRL. We can see the oscillation frequency ranges from

79MHz to 0.981GHz when VCTRL boosts from 1.3V to 1.8V.

When the control voltage is lower than 1.2V, the clock block

supplies dc power making the following logic block work in

high speed DCVSL. Another important issue is the frequency

deviation since each two adjacent logic stages must follow 90°

phase difference to confirm the correct data transmission in

ECRL. Comparing each two ROs outputting two adjacent

clocked power, we use 90° phase difference as the standard

value. The phase deviation is calculated from the difference

between actual phase and 90°, and divided by 90°.

The phase deviation with the variation of oscillation

frequency is shown in Fig. 6d. It can be seen that the phase

deviation increases with the boost of the oscillation frequency

and does not exceed 5% so that the clock part can reliably

support the logic part working in ECRL.

Fig. 7a shows the layout of our design using TSMC

180nm CMOS. It includes 1162 transistors with the

dimension of 0.063mm2. Besides some transistors in clock

part, the dimensions of the rest of transistors are

200nm/200nm. From the layout, we can see that both

calibration block and clock generator do not occupy large

chip area. The logarithmic converter is the largest block since

we use highly paralleled structure to speed up the conversion

instead of counter, leading-one detector and any other blocks,

which can process multiple-bit repeatedly using the single

circuitry. Fig. 7b and c show the simulation results of the

logarithmic codes under DCVSL and ECRL, respectively.

The frequency of the clocked power in ECRL transient

simulations is 498MHz. The input signal sequence in both

DCVSL and ECRL transient simulations are (11111111)2,

(11101000)2, (00001111)2, and (00000000)2 at 100MHz.

Under these inputs, the outputs are (111.1111111)2,

(111.1110000)2, (011.1111000)2, and (000.0000000)2, which

are matched to the Mitchell’s conversion with the proposed

calibration method. The delay in DCVSL is 1.82ns with good

signal integrity. In ECRL, the output in the first 5ns is

unstable and incorrect since the adiabatic chain supplied by

four-phase clocked power outputs the results stage by stage.

After 5ns, the output port can correctly transmit the results.

Through the sine waves, we can see the distinction of high

logic and low logic in ECRL simulations. However, the signal

integrity in ECRL is not as good as in DCVSL. This is due to

the supplied clocked power, which is not a perfect sine signal

as previously shown in Fig. 6a and b. Incomplete charging

and discharging are implemented during fast operation of

ECRL. In addition, the limited driven-ability of the clock

generator in this work degrades the clocked power supply.

Fig. 7d shows the simulation results of the power dissipation

under both ECRL and DCVSL. We set the frequency of

clocked power at 498MHz and 0.981GHz used for our ECRL

simulation. The power dissipation of the converter under dc

power ranges from 2.4mW to 3.709mW with boost in input

frequency. Under clocked power supply, when the frequency

of the clocked power is 498MHz, the power dissipation varies

from 1.12mW to 1.9352mW. The power dissipation under

0.981GHz clocked power varies from 1.6656mW to

2.1734mW. It can be concluded that ECRL does reduce

power dissipation compared to DCVSL. The converter driven

a

b

c

d

Fig. 7. Simulations of the entire logarithmic converter

a Layout view

b DCVSL transient simulation

c ECRL transient simulation

d Comparison of power dissipation under different logic

8

by the low frequency clocked power can save more energy

than that driven by the high frequency clocked power.

To evaluate the performance of the proposed work

depending on the increased bit length, a comparison is

presented in Table 2. It compares our work with the prior

work presented in [5-7, 9, 12, 32, 33] from the viewpoint of

the number of all bottom cells. Three numbers identified by

two slashes, from left to right, represent the number of basic

logic cells (all Boolean logic, MUX and transmission gate),

unit adders and unit memory cells, respectively. The method

to estimate the number of all bottom cells is based on the

diagrams of both circuit and system shown in the reported

papers. For [32], we used the case of 3-regions to estimate the

number of all bottom cells. While in [33], the case of 8-

regions is used for the estimation. We observe that when the

bit length is 8-bit or 16-bit, the number of all bottom cells in

this work is smaller than that in [5, 12, 32, 33]. Over 16-bits,

the proposed work and [33] consume much more bottom cells

than the other work except [12], in which the conversion is

fully implemented by memory array and the usage of memory

cells is the largest since all converted results corresponding to

the specific binary codes need to be stored. Hardware

implementations in [6, 7, 9] is not as sensitive to bit width

increasing as in other work. The reason that both [33] and the

proposed one consume large number of bottom cells is that

the two work use highly paralleled topology instead of the

pipelined structure achieved by leading-one detectors or

shifters. Thus, to process the input with large bit width with

the consideration of the allowable fan-in, in a single stage, the

requirement of bottom cells is larger than in the other work

using step-by-step computation. Another issue is the

conversion latency. A very significant metric to evaluate it is

through the maximum path, which requires to determine the

number of longest logic stages in entire conversion from the

binary code to logarithmic code. Table 3 presents the

comparison of maximum path between the proposed work

and other prior work [5-7, 9, 13, 32, 33]. It is observed that

the proposed one consumes the shortest path to obtain the

converted result compared to other designs. The

implementations with the computations of pipelined shifting

[5, 9, 32] are sensitive to the increase of bit length. The work

using PLA [13] is not suitable for the fast conversion. For

work in [6, 7], the front-end circuit to achieve multi-step

function without LUT contributes the most to the required

path. The runner-up in conversion speed is the design in [33],

since it also follows the path of highly paralleled topology.

The reason that it is slightly slower than the proposed one is

that its multi-step function is complex and requires more

stages than in the proposed one.

In our design, the latency through the calibration block

is not sensitive to the bit width. As mentioned in the last

section, the block to implement the case judgement of the

calibration block requires only two stages without stage

variation as bit width is increasing. Our simplified traditional

CLA reduces the number of logic stages required by the

calibration. The block outputting fraction number contributes

mainly to both required stages and the number of bottom cells

with the increase of bit width since one stage has N2 inputs as

shown in Fig. 4b. Other blocks for the enable signals and the

integer number do not introduce more stages and hardware

cost when bit width increases.

5. Conclusion

In this work, based on Mitchell’s algorithm, we

propose a novel calibration method to supress the error during

logarithmic conversion. The essence of our calibration is to

use a fixed code to calibrate a single converted number. At

the circuit level, we propose a highly paralleled structure to

speed up the logarithmic conversion. The bottom gate is

designed by DCVSL to let the system work under both

adiabatic logic and fast logic. For the clocked power design,

we used four voltage controlled ring oscillators without

passive devices to generate four-phase sine signals to drive

the converter. This clock block also can be controlled to

supply dc power to support traditional DCVSL working. We

designed an 8-bit logarithmic converter in layout level to

Table 2: Comparison of hardware cost with the prior work and the proposed work

 [5] [9] [32] [6] [7] [33] [12]
This

work

8-Bit 200/0/0 72/8/0 202/16/40 46/18/0 10/8/0 64/0/64 0/0/192 120/0/0

16-Bit 400/0/0 144/16/0 404/32/80 16/34/0 20/16/0 128/0/256 0/0/640 343/0/0

32-Bit 800/0/0 288/32/0 808/64/160 32/66/0 40/32/0 256/0/1028 0/0/40k 1198/0/0

64-Bit 1600/0/0 576/64/0 1616/128/320 64/130/0 80/64/0 512/0/4112 N/A 4613/0/0

Table 3: Comparison of maximum path with the prior work and the proposed work

 [5] [9] [32] [6] [7] [33] [13]
This

work

8-Bit 30 11 24 16 13 13 N/A 8

16-Bit 54 20 37 24 21 13 N/A 11

32-Bit 102 36 69 40 37 13 640 12

64-Bit 198 68 133 72 69 13 N/A 12

9

successfully verify the proposed calibration method. The

results prove that when the system work in ECRL, the power

dissipation is smaller than that in DCVSL. The performance

comparison proves that the conversion latency of the

proposed design is not sensitive to the increase in bit width,

since computations of shifting and iteration are not

introduced into our work.

6. References

[1] Chen, Y. J., Hsu, C. H., Hung C. Y., et al.: 'A 130.3 mW

16-core mobile GPU with power-aware pixel approximation

techniques', IEEE Journal of Solid-State Circuits, 2015, 50,

(9), pp. 2212-2223.

[2] Chrétien, B., Escande, A. and Kheddar, A.: 'GPU robot

motion planning using semi-infinite nonlinear

programming', IEEE Transactions on Parallel and

Distributed Systems, 2016, 27, (10), pp. 2926-2939.

[3] Mitchell, J. N.: 'Computer multiplication and division

using binary logarithms', IRE Transactions on Electronic

Computers, 1962, 11, (4), pp. 512-517.

[4] Mahalingam, V. and Nagarajan, R.: 'Improving accuracy

in Mitchell's logarithmic multiplication using operand

decomposition', IEEE Transactions on Computers, 2006, 55,

(12), pp. 1523-1535.

[5] Combet, M., Zonneveld, H. V. and Verbeek, L.:

'Computation of the base two logarithm of binary numbers',

IEEE Transactions on Electronic Computers, 1965, (6), PP.

863-867.

[6] Juang, T. B., Chen, S. H. and Cheng, H. J.: 'A lower

error and rom-free logarithmic converter for digital signal

processing applications', IEEE Transactions on Circuits and

Systems II: Express Briefs, 2009, 56, (12), pp. 931-935.

[7] Juang, T. B., Meher, P. K. and Jan, K. S.: 'High-

performance logarithmic converters using novel two-region

bit-level manipulation schemes', Proceedings of 2011 IEEE

International Symposium on VLSI Design, Automation and

Test, Hsinchu, Taiwan, April 2011, pp. 1-4.

[8] Kostopoulos, D. K.: 'An algorithm for the computation

of binary logarithms', IEEE Transactions on Computers,

1991, 40, (11), pp. 1267-1270.

[9] SanGregory, S. L., Brothers, C., Gallagher, D. et al.: 'A

fast, low-power logarithm approximation with CMOS VLSI

implementation', Proceedings of 1999 IEEE Midwest

Symposium on Circuits and Systems, Las Cruces, USA,

August 1999, pp. 388-391.

[10] Huang, S. C., Chen, L. G. and Chen, T. H.: 'The chip

design of a 32-b logarithmic number system', Proceedings of

1994 IEEE International Symposium on Circuits and

Systems (ISCAS), London, UK, May 1994, pp. 167-170.

[11] Fit-Florea, A., Li, L., Thornton, M. A. and Matula, D.

W.: 'A discrete logarithm number system for integer

arithmetic modulo 2^{k}: algorithms and lookup structures',

IEEE Transactions on Computers, 1994, 141, (5), pp. 281-

292.

[12] Wan, Y. and Wey, C. L.: 'Efficient algorithms for

binary logarithmic conversion and addition', IEE

Proceedings-Computers and Digital Techniques, 1999, 146,

(3), pp. 168-172.

[13] Lai, F. S.: 'The architecture and analysis of a hybrid

number system processor', Proceedings of 1992 IEEE

International Symposium on Circuits and Systems (ISCAS),

San Diego, USA, May 1992, pp. 803-806.

[14] Lo, H. Y.: 'Generation of a precise binary logarithm

with difference grouping programmable logic array', IEEE

transactions on computers, 1985, 100, (8), pp. 681-691.

[15] Abed, K. H. and Siferd, R. E.: 'VLSI implementations

of low-power leading-one detector circuits', Proceedings of

the IEEE SoutheastCon 2006, Memphis, USA, March 2006,

pp. 279-284.

[16] Gok, M., Schulte, M. J. and Arnold, M. G.: 'Integer

multipliers with overflow detection', IEEE Transactions on

Computers, 2006, 55, (8), pp. 1062-1066.

[17] Abed, K. H. and Siferd, R. E.: 'CMOS VLSI

implementation of 16-bit logarithm and anti-logarithm

converters', Proceedings of 2000 IEEE Midwest Symposium

on Circuits and Systems, Lansing, USA, August 2000, pp.

776-779.

[18] Maksimovic, D., Oklobdzija, V. G., Nikolic, B. and

Current, K. W.: 'Clocked CMOS adiabatic logic with

integrated single-phase power-clock supply', IEEE

Transactions on Very Large Scale Integration (VLSI)

Systems, 2000, 8, (4), pp. 460-463.

[19] Tenace, V., Calimera, A., Macii, E. and Poncino, M.:

'Quasi-adiabatic logic arrays for silicon and beyond-silicon

energy-efficient ICs', IEEE Transactions on Circuits and

Systems II: Express Briefs, 2016, 63, (12), pp. 1111-1115.

[20] Kim, C., Yoo, S. M. and Kang, S. M.: 'Low-power

adiabatic computing with NMOS energy recovery logic',

Electronics Letters, 2000, 36, (16), pp. 1349-1350.

[21] Gutierrez, R. and Valls, J.: 'Low cost hardware

implementation of logarithm approximation', IEEE

Transactions on Very Large Scale Integration (VLSI)

Systems, 2011, 19, (12), pp. 2326-2330.

[22] 'Properties of Logarithmic Functions',

http://www.montereyinstitute.org/courses/DevelopmentalM

ath/TEXTGROUP-1-

19_RESOURCE/U18_L2_T2_text_final.html, accessed

May 2017.

[23] Lee, H. J. and Kim, Y. B.: 'Low power null convention

logic circuit design based on DCVSL', Proceedings of 2013

IEEE International Midwest Symposium on Circuits and

Systems, Columbus, USA, August 2013, pp. 29-32.

[24] Sathe, V. S., Chueh, J. Y. and Papaefthymiou, M. C.:

'Energy-efficient GHz-class charge-recovery logic', IEEE

Journal of Solid-State Circuits, 2007, 42, (1), pp. 38-47.

[25] Rabaey, J., Chandrakasan, A. and Nikolić, B.: 'Digital

integrated circuits' (Upper Saddle River, New Jersey, 2003).

[26] Kim, J. M. and Yoo, H. J.: 'Bitwise competition logic

for compact digital comparator', Proceedings of 2007 IEEE

Asian Solid-State Circuits Conference, Jeju, Korea,

November 2007, pp. 59-62.

[27] Teichmann, P.: 'Adiabatic logic: future trend and

system level perspective' (Springer Science & Business

Media, Berlin, Germany, 2011).

[28] Stoffi, A. B., Amirante, E., Fischer, J., Innaccone, G.

and Landsiedel, D.: 'Resonant 90 degree shifter generator

for 4-phase trapezoidal adiabatic logic', Advcanced Radio

Science, 2003, 1, (9) pp. 243–246.

[29] Nakata, S., Makino, H. and Matsuda, Y.: 'A new

stepwise adiabatic charging circuit with a smaller

capacitance in a regenerator than a load capacitance',

Proceedings of 2014 IEEE International Midwest

http://www.montereyinstitute.org/courses/DevelopmentalMath/TEXTGROUP-1-19_RESOURCE/U18_L2_T2_text_final.html
http://www.montereyinstitute.org/courses/DevelopmentalMath/TEXTGROUP-1-19_RESOURCE/U18_L2_T2_text_final.html
http://www.montereyinstitute.org/courses/DevelopmentalMath/TEXTGROUP-1-19_RESOURCE/U18_L2_T2_text_final.html

10

Symposium on Circuits and Systems, College Station, USA,

August 2014, pp. 439-442.

[30] Zhao, Z., Srivastava, A., Peng, L. and Mohanty, S. P.:

'A low-cost mixed clock generator for high speed adiabatic

logic', Proceedings of 2016 IEEE Computer Society Annual

Symposium on VLSI (ISVLSI), Pittsburgh, USA, July 2016,

pp. 587-590.

[31] Jovanovic, G., Stojcev, M. and Stamenkovic, Z.: 'A

CMOS voltage controlled ring oscillator with improved

frequency stability', Scientific Publications of the State

University of Novi Pazar, Series A: Applied Mathematics,

Informatics and mechanics, 2010, 2, (1), pp. 1-9.

[32] Abed, K. H. and Siferd, R. E.: 'CMOS VLSI

implementation of a low-power logarithmic converter', IEEE

Transactions on Computers, 2003, 52, (11), pp. 1421-1433.

[33] Caro, D. D., Genovese, M., Napoli, E., et al.: 'Accurate

fixed-point logarithmic converter', IEEE Transactions on

Circuits and Systems II: Express Briefs, 2014, 61, (7), pp.

526-530.

7. Appendix

Table 1 in Appendix section is the comparison

between reported conversion methods and this work.

Table 1: Comparison with the reported conversion methods and the proposed calibration

 [3] [5] [9] [32] [6] [7] [33]
Proposed

calibration

Number of

fraction regions
1 4 2 2 3 2 2 4 11 3

Maximum

positive error
0.086 0.0253 0.0292 0.0449 0.0293 0.036 0.0319 0.004 0.004 0.03189

Maximum

negative error
0 -0.0062 -0.028 -0.0183 -0.021 -0.009 0 -0.004 -0.004 -0.03197

Error range 0.086 0.0315 0.0572 0.0632 0.0503 0.045 0.0319 0.008 0.008 0.06386

Maximum

positive

percentage error

(%)

5.36 2.293 0.431 0.93 0.431 2.889 2.337 2.93 0.225 1.15

Maximum

negative

percentage error

(%)

0 -0.468 -1.54 -0.554 -0.268 -0.45 0 -1.67 -0.181 -0.4

Percentage error

range (%)
5.36 2.761 1.971 1.484 0.699 3.339 2.337 4.6 0.406 1.55

Reduced rate

compared

to Mitchell’s

algorithm (%)

0 48.5 63.2 72.3 87 37.7 56.4 14.2 92.4 71.1

Circuit strategy N/A
Counter;

Register.

Shifter

Array;

Adder.

ROM;

Leading-one

Detector;

Shifter.

Double-

Adder.

Logic

Array;

Adder.

Segment Encoder

Array.

Logic

Array;

Adder.

For all compared metrics in above table, the computation methods are listed as follows:

1) Maximum positive and negative errors are two extreme values and can be found through the error curve directly.

2) The error range can be obtained by the difference between the maximum positive error and maximum negative

error.

3) The percentage error range is obtained through εMitchell-εNEW, where εMitchell is the mean value of the error using

Mitchell’s conversion, εNEW is the mean value of the error using the novel conversion method. Specifically, for the

proposed work, εNEW can be calculated from (8) in Section 2. Using the same equation, if we only use positive part in

the error curve for the integral, the maximum positive percent error can be obtained. Therefore, if the integral is

applied to the negative part in the error curve, the maximum negative percentage error can be obtained.

4) The reduced rate compared to Mitchell’s algorithm is calculated through (PERMitchell-PERNEW)/PERMitchell, where

PER is the percentage error range.

