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Abstract

Electronic circuit behavioral models built with hardware description/modeling languages such as
Verilog-AMS for system-level simulations are typically functional models. They do not capture the
physical design (layout) information of the target design. Thus, their applications are limited to early
design feasibility studies and/or pre-layout functional verification. Numerous iterations of post-layout
design adjustments are usually required to ensure that design specifications are met with the presence
of layout parasitics. In this paper a paradigm shift of the current trend is presented that integrates
layout-level information (with full parasitics) in Verilog-AMS through metamodels such that system-
level simulation of a mixed-signal circuit/system is realistic and as accurate as true parasitic netlist
simulation. The simulations performed with these parasitic-aware models can be used to estimate
system performance without layout iterations. We call this new form of Verilog-AMS as iVAMS (i.e.
Intelligent Verilog-AMS). We call this iVAMS 1.0 as it is simple polynomial-metamodel integrated
Intelligent Verilog-AMS. As a specific case study, a voltage-controlled oscillator (VCO) Verilog-AMS
behavioral model and design flow are proposed to assist fast PLL design space exploration. The PLL
simulation employing quadratic metamodels achieves approximately 10× speedup compared to that
employing the layout extracted, parasitic netlist. The simulations using this behavioral model attain
high accuracy. The observed error for the simulated lock time and average power dissipation are 0.7 %
and 3 %, respectively. This behavioral metamodel approach bridges the gap between layout-accurate
but fast simulation and design space exploration. The proposed method also allows much shorter design
verification and optimization to meet stringent time-to-market requirements. In the PLL optimization
case study, 46 % PLL power reduction was achieved using a differential evolution algorithm and the
proposed layout-accurate behavioral model. Compared to the optimization using the layout netlist, the
runtime using the behavioral model is reduced by 88.9 %. To the best of the authors’ knowledge this
is the first approach that brings layout-level accuracy to system-level design exploration and is applied
towards mixed-signal design exploration.

Keywords— Metamodels, Surrogate Modeling, Mixed-Signal Design, Behavioral Simulation, Verilog-
AMS Modeling, Intelligent Verilog-AMS, PLL, Design Exploration

1 Introduction

System-level modeling (using Verilog-AMS or VHDL-AMS) does not capture the physical design (layout)
information of the target design as it is meant for fast behavioral simulation only [1, 2]. In particular,
the effects of parasitics and process variation for nanoscale technology aggravate the situation. On the
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other hand, accurate simulations of nanoscale systems at the layout-level with full-blown parasitics (RCLK)
are very slow and even intractable for large systems [1, 3]. As a paradigm shift of existing trends, we
propose to incorporate layout-level information in Verilog-AMS through metamodels such that system-level
simulation of a mixed-signal system is realistic and accurate in feasible time. The idea is presented in Fig.
1. The resulting layout-Intelligent Verilog-AMS is called iVAMS [1, 4, 5]. In this article, we will call
this new approach iVAMS 1.0 as it is a simple polynomial-metamodel integrated Intelligent Verilog-AMS.
Metamodels are models in the form of mathematical functions or algorithms which are generated from actual
circuits (i.e., netlists) and are different from “macromodels” (which are simplified circuit models). iVAMS
can completely decouple the design simulation flow to non-EDA tools, thus making the design-process very
fast (with 10,000× speedup) compared to the use of analog simulators [6, 7].

Figure 1: The concept of the proposed iVAMS.

Parasitics greatly degrade the performance of nano-CMOS circuit designs. They cause significant
mismatch between schematic and layout circuit simulations. To account for the parasitic effects and achieve
design closure, numerous iterations at the layout stage are usually required. Layout-accurate verification
is the major obstacle because the iteration time is mainly spent on layout modification and simulation.
Behavioral models that are capable of representing circuit layout have the potential to dramatically shorten
the design cycle [1, 8, 9, 10, 11]. Techniques such as model order reduction [12] were proposed to reduce
the complexity of circuit models. Parasitic effects, however, are not discussed in most works due to the
inherent inability of macromodel-derived behavioral models to account for them. Also, circuit models in
these works are commonly implemented as Verilog-A modules rather than Verilog-AMS modules which
are more efficient when used in conjunction with a fast digital simulator. Modeling techniques that do
not account for both model compactness and layout-level accuracy can only have limited success. In this
paper, we address both using a novel metamodeling based methodology. An ultra-fast AMS design space
exploration method based on layout-accurate Verilog-AMS metamodels is proposed. It may be noted that
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the terms macromodel and metamodel are often used interchangeably in the literature. However, while
macromodels are simplified models of a circuit and system that use the same simulator [13], metamodels
are mathematical algorithms that can decouple the design and simulations to a pure behavioral tool such as
MATLAB [8].

The iVAMS based methodology proposed in this article aims at providing a way for the following:

1. Capture post-layout parasitic effects;

2. Establish relationships between design variables and post-layout circuit behavior; and

3. Build parasitic-aware behavioral models for system-level simulation.

A major application of the proposed method is to complement the traditional top-down design flow. With
the proposed method, the designer can examine the system-level impacts of design variables with layout
parasitic effects, make adjustments to design variables, and re-simulate without re-doing the layout. Thus
it greatly reduces the iterations from first layout design to the final one. The proposed method is based on
metamodeling techniques.

A metamodeling technique has been explored for nano-CMOS AMS circuit design exploration [8]. The
models built with this method accurately reflect parasitic effects. In the present work, the metamodeling
approach is used to construct layout-accurate circuit behavioral models. These models can then be used
for accurate and fast high-level simulation. To demonstrate this methodology, a VCO behavioral model
is proposed based on this approach. This model is implemented using the Verilog-AMS language which
enables fast simulations of a phase-locked loop (PLL). Combining metamodeling techniques and Verilog-
AMS simulation, the design verification process achieves a large speedup and maintains reasonably high
accuracy. Not only can the proposed Verilog-AMS behavioral model assist design verification of complex
System-on-Chip (SoC) designs, but it also leverages design space exploration and optimization. A PLL
design with an LC-tank VCO using 180 nm CMOS process is used to demonstrate the modeling technique,
design flow, and optimization. To demonstrate that the proposed method is compatible with state-of-the-art
optimization algorithms, such as evolutionary algorithms (EA), we demonstrate PLL optimization using the
proposed layout-accurate behavioral model with the powerful differential evolution (DE) algorithm.

The rest of this paper is organized as follows: Section 2 describes the key ideas and contributions of
this work. Section 3 discusses previous works relevant to the techniques for accelerating AMS design
simulation and design space exploration. Section 4 presents the metamodeling technique and the proposed
Verilog-AMS behavioral model. Section 5 presents the PLL simulation flow and methodology with the
proposed layout-accurate behavioral model. Section 6 demonstrates the PLL optimization with the proposed
behavioral model. Section 7 concludes this paper and discusses directions for future research.

2 Contributions of this Paper

In this paper a paradigm shift of the current trend is presented that integrates physical design information
(with full parasitics) in Verilog-AMS through parasitic-aware metamodels such that system-level simulation
of a mixed-signal circuit/system is realistic and almost as accurate as the true parasitic netlist simulation. The
Verilog-AMS module encapsulating the parasitic-aware metamodels is named Verilog-AMS-PAM. Verilog-
AMS-PAM is an example of a specific instance of Intelligent Verilog-AMS (iVAMS) (to be considered
as iVAMS 1.0 in this article to suggest simple polynomial metamodel integration in Verilog-AMS) that
bridged the gap between fast-inaccurate system-level simulation, and slow-accurate circuit-level or layout
simulation. The key idea is depicted in Fig. 2.

The AMS system design space exploration flow based on Verilog-AMS-PAM is essentially a parasitic-
aware bottom-up approach complementary to the traditional top-down design flow. Parasitic awareness is
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Figure 2: The traditional top-down design flow and the proposed Verilog-AMS-PAM based parasitic-aware
bottom-up optimization/verification flow.
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introduced into the top-down flow through pre-layout parasitic estimation. The estimated parasitics are then
inserted back to the circuit models and re-simulation is performed to adjust the design. Verilog-AMS-PAM
provides an efficient way to perform accurate parasitic-aware AMS system optimization and verification.

The parasitic-aware bottom-up flow starts with extracting the parasitics from an initial physical design
created at the end of the top-down flow. The parasitic-included netlist of each building block is then
parameterized with respect to design and process variables. Metamodeling samples the response surfaces
of the block to be modeled and generates mathematical models to approximate the entire response surfaces
[1, 6]. Typically each block can be described by a set of metamodels. These metamodels are integrated
into a Verilog-AMS module to behaviorally represent the block. Such a Verilog-AMS module is called
Verilog-AMS-PAM. In the final step of the bottom-up flow, the Verilog-AMS-PAMs created for each
block are assembled to form a system model. The system model created this way is compact and
automatically includes the full parasitic circuit response. Thus it can be used for fast and accurate system-
level optimization and verification. Once the optimized design parameters have been obtained, the layout is
adjusted to these new geometric dimensions (for a sizing problem). The introduced perturbation is generally
small and the resized layout is very near the optimal target. This has been verified in this work and our
previous related research [14].

The novel contributions of this article are the following:

1. The concept of Verilog-AMS-PAM (or iVAMS 1.0) is introduced to facilitate efficient mixed-signal
design space exploration.

2. An effective flow to create compact and layout-accurate circuit behavioral models for system
optimization and verification is proposed coupled with a fast AMS design simulation approach that is
compatible with state-of-the-art optimization algorithms.

3. An accurate and efficient quadratic polynomial metamodel for a 180 nm LC-VCO design is developed.
Implementation details of the Verilog-AMS-PAM creation for the VCO and the behavioral model of
a PLL are also presented.

4. The accuracy and speed of the proposed Verilog-AMS-PAM based AMS design simulation is
discussed through the PLL case study.

5. Metamodel-integrated PLL simulations are presented and the accuracy and speed of the proposed
VCO behavioral Verilog-AMS model are discussed.

6. An optimization flow within the iVAMS 1.0 framework is demonstrated with a PLL as a case study.

3 Related Prior Research

Design space exploration employing traditional SPICE simulation [15] relies on efficient optimization
algorithms to reduce the number of iterations. Various techniques had been developed to speed up these
simulations [16]. Fast-SPICE simulators [17, 18] offer a speedup of roughly one order of magnitude,
which is often insufficient. Another class of approach is to construct macromodels and/or metamodels
to represent AMS designs and to perform design space exploration over these models. It is important for the
models to support the inclusion of parasitic effects [19]. One such model is the parasitic-aware symbolic
model proposed in [20]. However, this symbolic model is limited to modeling small-signal behavior and
is inefficient when the circuit sizes are large. In [21], a technique employing Volterra series based models
together with model order reduction and pruning was proposed, but it is restricted to weakly nonlinear
circuits.
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In the literature, macromodels have been referred to as white-box models that carry a certain amount
of physical information of the design, and as black-box models that approximate the circuit behavior.
They are typically either simplified structures of the design [22] or analytical equations derived based on
the designers’ knowledge of the circuit [23, 24]. Metamodels, also called surrogate models, are gaining
increasing attention in circuit design and are black-box models. Metamodeling attempts to approximate the
response surfaces of the design by first sampling the design space and then fitting a chosen metamodel to
the sampled point responses. The metamodels that have been used for AMS designs include polynomials
[25, 26], splines [27], support vector machines [28], artificial neural networks [29], and Kriging [30, 31].
It is worth mentioning that historically the response surface methodology (RSM) in the literature typically
refers to metamodeling with low-order polynomials (quadratic at most). While low-order polynomials are
limited to a small number of variables and small design spaces, state-of-the-art metamodeling techniques
employing intelligent models can handle large and highly nonlinear design spaces. Despite the success of the
aforementioned metamodels for block-level sizing and optimization, they were not intended for behavioral
model construction to support higher-level system verification or design space exploration.

Efforts such as [32, 21, 33, 34] have been made to advance the modeling techniques. In this work,
we focus on the techniques that consider parasitic effects. Behavioral models and their construction
using hardware description languages (HDLs) such as SystemC-AMS, VHDL-AMS, and Verilog-AMS for
efficient AMS system design space exploration have become popular. The VHDL-AMS op-amp models
presented in [35] and [36] take into account nonidealities such as parasitics. In [35], concepts of exploring
analog design spaces with parasitic-included behavioral models were discussed. The model in [36] is valid
with various loads and accounts for output nonlinear behavior. The limitation is that it requires device
information such as MOSFET operation region. Thus it is difficult to apply this technique to complex
nanometer circuits. A semi-symbolic analysis technique using affine arithmetic was proposed in [37]
to model and analyze AMS system performance degradation caused by nonidealities. The system was
described in SystemC-AMS. This technique has the same accuracy limitation as macromodels. Also,
SystemC-AMS suffers from the difficulty of modeling nonideal and nonlinear systems, and thus is less
accurate compared to VHDL-AMS and Verilog-AMS. For this reason, mixed SystemC-AMS, VHDL-
AMS, and Verilog-AMS modeling was suggested in [38]. In this work, we adopted Verilog-AMS and
metamodeling to construct a compact and layout-accurate VCO behavioral model used for PLL design
space exploration.

Many PLL and VCO behavioral models exist in literature. Still, most of them were either not intended
for layout-accuracy or are too simple to capture the nonlinearity of mixed-signal design spaces. Verilog-A
behavioral modules of linear VCOs were used in [39] for PLL jitter characterization and in [40] for aiding a
hierarchical CPPLL sizing method. No parasitic effects were included in these models. A characterization
technique is developed in [41] to extract circuit parameters, including parasitic effects. The authors also
adopted the linear VCO model which may be sufficient for performing verification on fixed designs, but is
overoptimistic for design exploration since the VCO linearity condition is not always valid. The VCO
behavioral models developed in [42, 43] used lookup-tables (LUTs) inside Verilog-A modules. LUTs
only hold a limited number of simulated sample points. The circuit responses in-between these points are
estimated using interpolation. Interpolation limits the accuracy of LUT models while metamodeling offers
higher accuracy overall. An event-driven analog modeling approach was proposed in [44] which used the
Verilog-AMS wreal data type to improve the model efficiency. However, it is not clear how the VCO gain
and output frequency were modeled.
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4 Proposed Methodology for iVAMS 1.0 (i.e. Verilog-AMS-PAM) Generation

4.1 Proposed Methodology for iVAMS 1.0 (i.e. Verilog-AMS-PAM)

The generation of Verilog-AMS-PAM for a circuit block involves parametric layout netlist creation,
modeling plan creation, circuit response surface sampling, response surface metamodel generation, and
Verilog-AMS integration. The Verilog-AMS-PAM generation flow is depicted in Fig. 3. Parametric layout
netlist generation is the key step to include the parasitic effects. It also ensures that the model estimating
the circuit response surfaces is the closest to the silicon results. The modeling plan creation includes
determination of the design variable ranges, selecting a sampling technique and a metamodel suitable to
model the particular circuit block. The Latin Hypercube Sampling (LHS) technique ensures that the samples
are distributed over the entire design space and that each sample is distributed randomly in the pre-defined
sub-space. It achieves a good trade-off between uniform and random sampling and thus is widely used.

Metamodel selection aims at selecting a metamodel that can meet the accuracy requirements with
minimum complexity. This process can be aided by prior knowledge about the circuit block. For example, in
our case study, quadratic polynomial metamodels are used to model an LC VCO. For more complex analog
blocks with high nonlinearity, intelligent metamodels such as artificial neural networks [45] can be used. For
circuit blocks without prior knowledge, coarse sampling can be performed to facilitate a quick complexity
analysis. Alternatively, metamodels not restricted to a specific type can be created via canonical-form
functions as in [46] where the model selection was formulated as a multi-objective optimization problem.
The model generation settings shown in Fig. 3 can be adjusted easily to select and compare different kinds
of models. An optimization algorithm was employed to find the metamodel Pareto front that minimizes the
model complexity and the prediction error. The cost is the increased modeling effort.

The response surface sampling is best performed using SPICE simulations and the parasitic-included
layout netlist to ensure high accuracy. The selected metamodel is fitted to the sampled data by tuning the
model coefficients. If the accuracy is not satisfied, adjustment can be made to the modeling plan such as
increasing the sample size, changing the metamodel architecture, or using a different metamodel. Since
the layout-level information is included in the parametric netlist, the resultant circuit block metamodels
are layout-accurate parasitic-aware metamodels. These metamodels are described in Verilog-AMS and
embedded in the Verilog-AMS module to construct the behavioral model for the block.

4.2 High-level Description and Modeling of Mixed-Signal Design - A PLL Case Study

A typical charge pump PLL (CPPLL) consists of a phase/frequency detector (PFD), a charge-pump (CP), a
loop filter (LF), and a VCO. If the PLL needs to perform frequency synthesis, a frequency divider (FD) will
also be employed. The system level topology of a CPPLL is shown in Fig. 4. A CPPLL is a mixed-signal
system. The CP, LF, and VCO directly deal with the analog signal therefore are the most critical parts. A
more comprehensive PLL analysis can be found in [47]. This case study focuses on developing a VCO
behavioral model that can accurately represent the VCO physical design. The model is constructed using
the Verilog-AMS language to enable fast design exploration. The other parts of the PLL are modeled with
HDLs or at the schematic level in order to simulate the whole PLL system.

Fig. 4 illustrates the CPPLL configuration in this paper. The frequency of the FD output φfb is 1/N
of that of the VCO output φout, where N is the FD division ratio. The PFD activates its output Up or
Dn to vary the VCO output until φfb and φin are aligned and have the same frequency. They introduce
nonidealities to the system via their signal delay, and the rise/fall time. These nonidealities can be easily
described in the digital domain. Thus the behavior of these two blocks is implemented using the Verilog
language. The CP has digital inputs and analog output so it is implemented as a Verilog-AMS module.
Portions of the source code for the PFD and the CP are shown in Algorithm1.
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Figure 3: Verilog-AMS-PAM Generation Flow.
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Figure 4: Block level representation of CPPLL configuration.

Three different views have been implemented for the VCO: (1) schematic, (2) layout with parasitics,
and (3) parasitic-aware Verilog-AMS (Verilog-AMS-PAM). Fig. 5 shows the schematic and layout views
of the LC VCO design. Both schematic and layout views use SPICE models for simulation. While the
layout view includes the parasitic elements and therefore takes longer to simulate, it results in a much better
estimate of the real silicon performance. Table 1 lists the number of elements in the schematic view and
parasitic extracted layout view. The parasitics consist of Resistance (R), Capacitance (C), self inductance
(L), and mutual inductance (K). Other blocks such as the FD and the CP can also be modeled using the
Verilog-AMS-PAM technique, but in this work we only focus on the VCO to keep the case study simple yet
effective.

Table 1: Element Counts for The LC VCO Schematic and Layout Views.

Schematic Layout
Transistor 4 4
Inductor 1 10
Capacitor 2 38
Resistor 0 560

Total 7 612

4.3 iVAMS 1.0 (or Verilog-AMS-PAM) for VCO

The VCO behavior is mainly determined by its voltage frequency transfer curve. A common way to model
a VCO is to assume that it is perfectly linear and model it with the following:

fosc = f0 +KV COVC , (1)

where fosc is the oscillation frequency, f0 is the center frequency, KV CO is the gain, and VC is the control
voltage at the VCO input. To account for non-linearities and layout parasitics, the metamodeling approach
suggested in [8] is used. Polynomial metamodels are selected in this work for integration as they have the
following advantages: (1) they are simple closed form equations which are easy to implement; (2) their form
is flexible so that one can quickly examine and compare the accuracy of polynomial models with different
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Algorithm 1 Verilog-AMS model for the PFD and the CP.

module PFD(up, dn, clkin, clkfb); //Verilog
... ...

assign #1 reset = up && dn;
always @(posedge clkin or posedge reset)
begin

if (reset) up <= 1’b0;
else up <= 1’b1;

end
always @(posedge clkfb or posedge reset)
begin

if (reset) dn <= 1’b0;
else dn <= 1’b1;

end
endmodule //End PFD

module CP (out, up, dn); //Verilog-AMS
parameter real cur = 50u; //output current
... ...
analog begin
@(initial_step) iout = 0.0;
if (dn && !up && (V(out) > gnd))

iout = -cur;
else if (!dn && up && (V(out) < vdd))

iout = cur;
else iout = 0;
I(out) <+ -transition(iout, 0.0, 2p, 2p);
end

endmodule //End CP

degree; (3) they have been widely used and their properties are well understood. The polynomial metamodel
used in this paper is as follows:

f(x) =

K−1∑
i=0

βix1
p1ix2

p2ix3
p3i , (2)

where x1, x2, and x3 are three input variables corresponding to WP , WN , and VC in this work, respectively.
WP and WN are the PMOS and NMOS widths, respectively. K is the number of basis functions this model
has and βi is the coefficient for the i-th basis function. f(x) is the output that approximates the true model.
In order to construct the metamodel for a given VCO design, for each basis function the coefficient βi and
the power terms p1i, p2i, and p3i for each input variable need to be obtained. This is done in three steps:
first, a set of input variables [x1 x2 x3] is generated using the Latin Hypercube Sampling (LHS) technique;
second, circuit simulations are performed and the outputs for each set of inputs are saved; third, with the
inputs and outputs from previous steps, the coefficients and the power terms that lead to a model with good
fit are computed. In order to incorporate the parasitic effects into the model without repeating the layout for
each simulation, the netlist for the extracted layout view is parameterized for WP and WN . Algorithm 2
shows a portion of the parameterized layout netlist where the original PMOS model has been replaced with
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(a) Schematic view (b) Layout view

Figure 5: The LC VCO schematic and layout views. L = 180 nm; WP = 20 µm; WN = 10 µm.

a parameterized one. The netlist is in the form of Verilog-AMS and thus can be accepted by the AMS
simulator. As has been shown by our previous work in [14], the parameterized layout netlist maintains high
fidelity when compared to a real layout netlist. Thus parasitic re-extraction is not needed for new set of WP

and WN .

Algorithm 2 A portion of the parameterized netlist for the VCO layout view.

... ...
inductor #(.l(8.244e-11)) l1_291 (\291:RLJUNC_ ...
inductor #(.l(8.797e-11)) l1_2 (\2:RLJUNC_J1 , ...
pmos1 #(
.w(((cds_globals.Wp) / (4))), .l(cds_globals.L),
.as((((cds_globals.Wp)/(4))<599.5n) ? (((((200 ...
.ad((((cds_globals.Wp) / (4)) < 599.5n) ? ((fl ...
.ps((((cds_globals.Wp) / (4)) < 599.5n) ? (((...
.pd((((cds_globals.Wp) / (4)) < 599.5n) ? ((fl ...
... ..., .m("(1)*(4)"))
PM1 (\10:Voutp , \6:Voutn , cds_globals.\vdd! ,
cds_globals.\vdd! );
... ...

In this work, the VCO output frequency and its power consumption are of interest. Therefore two
respective metamodels are constructed. They share the same power terms for the input variables, while the
coefficients βi in the two models are different. After these values are computed, they are written into a text
file which will be read by the VCO Verilog-AMS module to implement the model. A quadratic polynomial
metamodel with first order interaction has been implemented. Table 2 shows the layout of the text file
storing the values for the power terms and the coefficients for this model obtained from 100 samples. In
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the table, βi,f and βi,p are the coefficients for the frequency and power consumption models, respectively.
These values are read into the Verilog-AMS module during the initial block.

Table 2: Layout of the text file storing the power terms and coefficients for the VCO quadratic polynomial
metamodel

i p1i p2i p3i βi,f βi,p
0 0, 0, 0, 2.113e+009, 1.385e-005
1 1, 0, 0, -3.214e+012, 44.459e+000
2 2, 0, 0, 3.456e+016, -2.804e+005
3 0, 1, 0, 6.869e+012, 39.729e+000
4 1, 1, 0, -1.021e+017, 2.911e+005
5 0, 2, 0, -2.071e+017, -1.080e+006
6 0, 0, 1, 3.513e+008, -8.271e-004
7 1, 0, 1, -2.565e+012, -31.282e+000
8 0, 1, 1, -5.331e+012, -11.392e+000
9 0, 0, 2, 0.000e+000, 1.041e-003

Algorithm 3 shows a portion of the VCO Verilog-AMS module. The part of the basis function related to
the input variables WP and WN is constructed in the initial block. The remainder of the basis functions
are constructed in the always block since the third variable VC needs to be updated continuously during
the simulation. The output signal of this module is implemented to be of digital logic type to reduce the
computational cost. As in the PFD and FD modules, the non-idealities associated with this output signal can
be modeled in the digital domain.

This Verilog-AMS module can be easily reconfigured for metamodels with different degrees by changing
the parameter K. In Fig. 6, the simulation results of the VCO transfer curves for the design in Fig. 5 are
shown. The parasitics cause a large difference between the schematic and layout results both in the VCO
center frequency and the gain. Metamodel 1 is the Verilog-AMS module with the quadratic model from 100
samples. Metamodel 2 is the module with a 5-th degree polynomial model from 500 samples. Metamodel
2 does not improve significantly over Metamodel 1. Thus Metamodel 1 is used in the PLL simulations
shown in Sections 5 and 6. Differences between the transfer curves of layout and metamodel Verilog-
AMS views can still be observed, which means a better metamodel may be used to further improve the
accuracy. However, as will be seen in Section 5, this polynomial metamodel is sufficient for system level
PLL verification to simulate lock time and average power dissipation.

5 iVAMS 1.0 (i.e. Polynomal-Metamodel-Integrated Intelligent Verilog-AMS) based Simu-
lation of PLL

In this section, we demonstrate PLL simulations with the VCO design shown in Fig. 5. The simulation
results for the PLL with Verilog-AMS-PAM and schematic and layout SPICE models are compared. The
PLL structure shown in Fig. 4 is used. The PFD and FD are in Verilog view. The CP is in Verilog-AMS view
and the LF is in schematic view. The views for these blocks were not changed throughout the simulations.
The VCO view was changed from schematic, to layout with parasitics, and then to Verilog-AMS views. Two
Verilog-AMS views have been implemented–one for the linear model and one for the quadratic metamodel
proposed in Section 4.3. The results for different VCO views are obtained.

A 550 MHz input clock φin is assigned to the PLL input. The FD has a division ratio of 4. Thus the
desired frequency for the PLL output clock φout is 2200 MHz. Fig. 7 shows the φout frequencies from 500
ns transient simulations with different VCO views. Although the PLLs with different VCO views are all
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Algorithm 3 Illustration of iVAMS 1.0 - Verilog-AMS integrated with Parasitic-Aware Metamodels
(Verilog-AMS-PAM) for the LC-VCO.

‘timescale 10ps / 1ps
‘include "disciplines.vams"
module vco_metamodel (out, in);
... ...
parameter integer K;
initial
begin

out = 0; //Initialize vco digital output
... ... //Declare ports and data types
metaf = $fopen("metamodel.csv", "r");
while (!$feof(metaf))
begin
readfile = $fscanf(metaf,

"%e,%e,%e,%e,%e\n",
p1, p2, p3, betaf, betap);

bf[i] = pow(wp,p1) * pow(wn,p2) * betaf;
bp[i] = pow(wp,p1) * pow(wn,p2) * betap;
pv[i] = p3;
i = i + 1;

end
$fclose(metaf);
... ...

end
always
begin

vc = V(in);
... ...
freq = 0;
power = 0;
for (i = 1; i <= K; i = i + 1)
begin

freq = freq + bf[i] * pow(vc, pv[i]);
power = power + bp[i] * pow(vc, pv[i]);

end
... ...
#(0.5 / freq / 10p)
out = ~out;

end
... ...
endmodule
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Figure 6: VCO transfer curves for three different views.

able to lock to the same correct frequency, the one with the schematic view shows quite different locking
behavior compared to the one with the layout view. This mismatch is due to the parasitic effects which
greatly change the VCO transient characteristics. The one with the linear model shows improvements over
the the schematic since the parasitics have been taken into account. However, it still has significant errors, for
example, in the lock time. The PLL with the metamodel Verilog-AMS view offers the best approximation
of the true model and accurately estimated the lock time. To further understand the behavior of the PLL
with different VCO views, the critical analog signal VC was inspected.
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Figure 7: PLL output frequency from AMS simulation with three different VCO views.

Fig. 8 compares the VC waveform from the four simulations. Again, the metamodel Verilog-AMS view
provides an excellent approximation of the layout view behavior. The PLL with the schematic VCO view
can just barely lock to 2200 MHz since VC is approaching the NMOS threshold. This shows that the center
frequency and the gain of the schematic VCO view are very different from the layout one. These further
confirm the VCO transfer curves plotted in Fig. 6.

The Verilog-AMS metamodel also facilitates estimation of power consumption. Fig. 9 shows the average
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VCO power consumption per fifty cycles in the four simulations. It once again confirms that the Verilog-
AMS metamodel can model its layout counterpart very accurately compared to a linear model. Table 3
summarizes the PLL simulation results and compares the accuracy of the linear model and the proposed
metamodel.
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Figure 9: Average VCO power consumption per 50 cycles.

In Table 3, the estimated PLL lock time is listed. The one from the simulation with the VCO layout view
serves as the true model. The errors resulting from the other two models are computed. The metamodel
achieves a very low error rate of 0.7 %, while the linear model causes a large error of 31.7 %. fLocked
is the PLL output frequency when it is locked. PLocked is the average VCO power consumption when
the PLL is locked. Again, the metamodels give an accurate estimation of the power dissipation. The VC

root-mean-square error (RMSE) of the models for the 500 ns simulations are also listed.
Table 4 compares the runtimes for the PLL transient simulations. The Verilog-AMS metamodel achieves

roughly a 10× speedup compared to the layout. Note that in practice the VCO design may contain more
complex circuitry which leads to longer runtime for a simulation run. The runtime for simulation with
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Table 3: Comparison of PLL Simulations with Different VCO Modules.

Layout Linear Model Metamodel
Lock time (ns) 335.4 229.1 332.9

Error % 0.0 % 31.7 % 0.7 %
fLocked (MHz) 2199.99 2199.99 2199.99

Error % 0.0 % 0.0 % 0.0 %
PLocked (µW) 602 560 620

Error % 0.0 % 7.0 % 3.0 %
VC RMSE (mV) 0 33.508 10.889

the Verilog-AMS module will not be substantially different. Thus the speedup will be more significant
in that case. Also note that the Verilog-AMS language along with the AMS simulator allow us to model
and simulate the other blocks in the form of an HDL, which is a great advantage over the full transistor
simulation.

Table 4: Comparison of The Speed of The PLL Simulations with Different VCO Modules

Layout Schematic Metamodel
Runtime 80.5 s 40.3 s 8.7 s

Normalized speed 1× ∼ 2× ∼ 10×

6 PLL Optimization using Verilog-AMS-PAM

In this section, we demonstrate how Verilog-AMS-PAM can assist AMS system design space exploration
using a PLL optimization example. The goal of this PLL optimization is to minimize the power dissipation
(PD) subject to the requirements for lock time (TL), maximum frequency (FT,max) and minimum frequency
(FT,min). The transistor sizes WP and WN of the LC VCO are chosen as the design variables, x1 and x2,
to be optimized. Let x = {x1, x2}. The optimization problem is formulated as:

minimize PD(x)

subject to


TL(x) ≤ TL,min = 400 ns
FT,min(x) ≤ FT,min = 2180 MHz
FT,max(x) ≥ FT,max = 2300 MHz.

(3)

Metaheuristic algorithms are effective tools for solving analog optimization problems, such as in [30,
46]. A generic AMS system optimization flow employing a metaheuristic algorithm is shown in Fig. 10. It
iteratively searches the design space to find the best design. The two key components in this flow are the
search algorithm and the AMS system model. In this example, the differential evolution (DE) algorithm
[48] is selected as the search algorithm to demonstrate that the proposed framework is compatible to one of
the popular metaheuristic algorithms. Other algorithms can of course be used as the proposed framework
is algorithm-agnostic. The system model in the generic flow is for the evaluation of the objective and
constraint functions. The speed of the evaluation greatly determines the speed of the optimization. The
system model can consist of accurate but slow SPICE models or the efficient and layout-accurate proposed
Verilog-AMS-PAMs. In this PLL optimization example, we compared the results of both.
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Figure 10: A generic AMS system optimization flow employing a metaheuristic algorithm.

6.1 A Specific Optimization Algorithm - Differential Evolution

DE is a powerful direction-free algorithm that can handle nonlinear and non-differentiable objective
functions. Thus, it is suitable for AMS optimization problems. In DE, the iterative process of finding the
best design is described as an evolutionary development. The evolution starts with a population of candidate
designs that are typically generated randomly but distributed over the entire design space. These candidate
designs evolve from generation to generation following a specific scheme. This scheme consists of three
steps: mutation, crossover, and selection. Every candidate design in every generation will experience this
process. The DE algorithm customized for our PLL optimization is shown in Algorithm 4.

For a candidate design, mutation creates a mutant design by adding the difference, with a scale factor
F , of two other designs that are randomly chosen from the current population to a third randomly chosen
design. Crossover attempts to increase the population diversity by introducing a trial design. Based on a
pre-determined crossover rate CR and randomly generated numbers, the design variable values of the trial
design are either from the candidate design or the mutant design. Selection evaluates the objective function
for the candidate design and the trial design. The one with better performance is selected to be a member of
the next generation and the inferior one is discarded. In the algorithm, the function randuni[0, 1] generates
a uniformly distributed random number ∈ [0, 1] and randint[1, D] produces a random integer uniformly
distributed ∈ [1, D].
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Algorithm 4 A Specific Optimization Algorithm using iVAMS 1.0 - Differential Evolution Algorithm.
1: Read DE parameters: scale factor F , crossover rate CR
2: Read current generation of K candidate designs

Xg = {x1,g,x2,g, ...,xK,g}

3: for i = 1 to K do
4: Randomly choose three integers, r1, r2, r3 and ensure:

r1 6= r2 6= r3 6= i and {r1, r2, r3} ⊂ [1,K]

5: Generate a mutant design v = {v1, v2, ..., vD}:

v = xr1,g + F · (xr2,g − xr3,g)

6: Initialize a trial design u = {u1, u2, ..., uD}:

u← xi,g

7: for j = 1 to D do
8: if randuni[0, 1] ≤ CR or j = randint[1, D] then
9: uj ← vj

10: end if
11: end for
12: Evaluate PD(u), PD(xi,g), TL(xi,g), FT,max(xi,g), and FT,min(xi,g) by running AMS simulation
13: Constraint1 ← TL(xi,g) ≤ TL,min

14: Constraint2 ← FT,max(xi,g) ≥ FT,max

15: Constraint3 ← FT,min(xi,g) ≤ FT,min

16: Initialize next generation of K candidate designs:

Xg+1 ← Xg

17: if PD(u) ≤ PD(xi,g) and constraints are satisfied then
18: xi,g+1 ← u
19: end if
20: end for
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Table 5: Comparison of the optimization runtime

Optimization Runtime (hours)
DE-Verilog-AMS-PAM 5.06

DE-SPICE 45.55
Runtime Reduction 88.9 %

6.2 An Optimization Case Study - PLL Optimization

The ranges of the two design variables, WP and WN , for the PLL optimization are both defined to be 5–25
µm. The response surface of the PLL power dissipation constructed from 900 simulation samples is shown
in Fig. 11. It reveals that this optimization task is not a particularly challenging problem. Still, it can serve
to illustrate the effectiveness of Verilog-AMS-PAM in assisting AMS system optimization.

5
10

15
20

25

5
10

15
20

25
100

200

300

400

500

600

700

800

W
N

 (µm)W
P
 (µm)

P
o
w

e
r 

(µ
W

)

Figure 11: A response surface of PLL power dissipation constructed from 900 simulation samples.

The flow shown in Fig. 10 was used in the PLL optimization. Two optimization runs were performed.
The first run, termed DE-Verilog-AMS-PAM, employed the DE algorithm shown in Fig. 4 and used the
LC-VCO Verilog-AMS-PAM in the PLL simulations for the evaluation of power, lock time, and tuning
range. The second run, termed DE-SPICE, employed the same DE algorithm but used the LC-VCO layout
netlist consisting of SPICE models in the PLL simulations. Both runs had the same classic DE setting [48]:
F = 0.8, CR = 0.9, K = 20, and DE/rand/1/bin. Both DE-Verilog-AMS-PAM and DE-SPICE ran
until the 100th generation was reached. Fig. 12 plots the best candidate designs in each generation. In both
cases, the algorithm converged in 12 generations, so only 50, instead of 100, generations are plotted Fig. 12.
Table 5 compares the runtime of the two optimization runs.

DE-Verilog-AMS-PAM and DE-SPICE found the same optimal design with 323 µW power dissipation.
Table 6 compares the baseline design and the optimal design. A 46 % power savings was achieved through
the DE algorithm. The lock time was also slightly improved by 1.5 %. Fig. 13 shows that the PLL simulation
with the the optimal design relocks from 2180 MHz to 2300 MHz.

6.3 Computation Time Comparison Against Macromodels

Section 6 has shown the speed advantage of Verilog-AMS-PAM against SPICE models. For a typical AMS
simulation flow, the block can be replaced with a macromodel with added parasitic effects. In order to
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Table 6: Comparison of the baseline and optimized designs

Baseline Optimal Reduction
WP /WN (µm/µm) 20 / 10 12.38 / 5 –

Power (µW) 602 323 46 %
Lock time (ns) 335.4 330.4 1.5 %

Tuning Range (MHz) 2170–2304 2160–2394 –
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Figure 13: Simulation showing that the PLL first locks to 2180 MHz and then relocks to 2300 MHz.
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make sense of the overall computation time with Verilog-AMS-PAM compared against that with traditional
macromodels in the optimization of a large-scale mixed-signal system that requires long transient analyses,
it is necessary to decompose their computation time. For each iteration, a flow with macromodels usually
requires parameter re-extraction. Assuming the optimization requires Ni iterations to reach the optimal
design and the traditional macromodel is used, there are Ni sets of circuit parameters to be extracted and Ni

transient analyses to be performed. Let text and tsim denote the computation time for each extraction and
transient analysis. The total computation time for the macromodel based optimization is

tMA = Ni · text +Ni · tsim. (4)

If the optimization is based on the Verilog-AMS-PAM, the total computation time can be expressed

tPAM = Ns · text + tgen +Ni · (tini + tsim), (5)

where Ns is the number of design samples used to construct Verilog-AMS-PAM, tgen is the time for
generating Verilog-AMS-PAM, and tini is the time that the AMS simulator takes to initialize and compile
the Verilog-AMS-POM before running each transient analysis. Generally, tgen and tini are very small. For
example, in the presented case study, tgen is less than one minute, and tini is less than one second. This is
also true for more complex designs such as those in [45]. Therefore, they can be neglected from Equation 5
which can then be reduced to

tPAM = Ns · text +Ni · tsim. (6)

With Equations (4) and (6), the computational time difference between macromodel based and Verilog-
AMS-PAM based optimization can be estimated as:

tD = tMA − tPAM = (Ni −Ns) · text. (7)

Assuming that the Verilog-AMS-PAM is constructed using 200 samples (orNs = 200), that the optimization
takes Ni = 1200 iterations, and that extracting circuit parameters for each design takes 60 seconds (text =
60s), the computation time reduction by using the Verilog-AMS-PAM based technique is tD ≈ 16.7 hours.
Note that: 1) It has been assumed in this analysis that Ni > Ns, which is usually true since the response
surface of the system is very likely more complex than a circuit block; 2) The time for re-doing layout
or estimating parasitics, which would consume much more time for macromodel based flow, has not been
included in the analysis. Equation (7) also reveals that Verilog-AMS-PAM is suitable for optimization
algorithms that require large number of iterations but can converge to exceptional final designs.

7 Conclusions and Future Research

A method for fast mixed-signal system design space exploration using layout-accurate behavioral models
has been proposed. A flow for creating circuit block behavioral models that accurately include physical
design parasitics has been presented. Through a PLL case study, Verilog-AMS-PAM assisted AMS
system verification and design space exploration have been demonstrated. The PLL optimization example
demonstrates that the proposed Verilog-AMS-PAM is compatible with advanced optimization algorithms
for AMS design optimization. For more complex designs or stringent operating conditions, more circuit
parameters, such as mismatch characteristics, can be modeled as long as they can be extracted from circuit
simulations.

Future research includes enhancing the capability of the Verilog-AMS-PAM based method of handling
large and complex AMS systems. Such a system can be divided into multiple sub-systems each containing a
number of circuit blocks. In such a case, creating behavioral models for various abstraction levels becomes
necessary. At the block level, response surfaces can be sampled using SPICE simulations to ensure accuracy.
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This, however, is impractical because each SPICE simulation at this scale is very expensive. A potential
solution is to create high-level Verilog-AMS-PAMs for each sub-system and to sample the response surfaces
with Verilog-AMS simulation. This way the modeling speed can be greatly improved with minimum
accuracy compromise thanks to the layout-level accuracy of Verilog-AMS-PAM.

The next version of iVAMS, iVAMS 2.0 will include the integration of non-polynomial metamodels
(such as machine learning based models) in Verilog-AMS [1, 31, 49].
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