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Abstract—People around the globe rely on their blood samples
for their glucose level measurement. There is a demand for non-
invasive, precise and cost-effective solutions to monitor blood
glucose level and control of diabetes. Serum glucose is an accurate
blood glucose measurement method in comparison to capillary
glucose measurement. Presently, the serum glucose is measured
through laboratory setup with an invasive approach. The invasive
method is painful and is not suitable for continuous glucose
measurement. In this paper, we propose a novel wearable non-
invasive consumer device (called iGLU 2.0) which can be used
by consumers for accurate continuous blood glucose monitoring.
This device uses a novel short near infrared (NIR) spectroscopy
developed by us. It is incorporated with Internet-of-Medical-
Things (IoMT) for smart healthcare where the healthcare data is
stored on the cloud and is accessible to the users and caregivers.
Analysis of the optimized regression model is performed and the
system is calibrated and validated through healthy, prediabetic
and diabetic patients. The robust regression models of serum
glucose level is then deployed as the mechanism for precise
measurement in iGLU 2.0. The performance of iGLU 2.0 is
validated with the prediction of capillary blood glucose using
Average Error (AvgE) and Mean Absolute Relative Difference
(mARD) which are calculated as 6.09% and 6.07%, respectively,
whereas for serum glucose, AvgE and mARD are estimated as
4.88% and 4.86%, respectively.

Index Terms—Smart home, smart healthcare, smart wearable,
Internet-of-Medical-Things (IoMT), glucose measurement, capil-
lary and serum glucose, non-invasive device, near infrared (NIR)
spectroscopy, regression model, deep neural network (DNN)

I. INTRODUCTION

The healthcare has evolved from traditional to telemedicine,
connected-health (cHealth), e-health, mobile-health (mHealth),
to smart health (sHealth) [1]. The growth of Information and
Communication Technologies and IoT has made the great
impact on healthcare sector. Smart healthcare system helps
to capture the data of the patient through smart sensors to
assist them from healthcare provider without any geographical
barrier. Overall smart healthcare is evolving with the help
of healthcare Cyber-Physical System (H-CPS) that integrates
IoMT, electronic health record (EHR) which is essentially e-
health, and artificial intelligence (AI) obtained from sensor
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data as well as EHR [2]. The smart healthcare is in demand
where doctors and patients are connected remotely for the in-
stant treatment [3]. The Internet of Medical Things (IoMT) has
revolutionized the solutions of smart healthcare with quality of
care and proper diagnosis [4]. The continues monitoring allows
the patient to determine the critical conditions for possible
corrective actions. The real-time access of the health records
is useful to perform the health analysis and subsequent impact
over the society. The point of care service and medication
has become easier with effective and intelligent consumer
electronics devices in smart healthcare system.

Diabetes is one of the prominent diseases around the world.
Total 422 million diabetic people have been reported in 2019
[5], [6]. Diabetes is a condition where the insulin of the body
is destructed and cells and muscles are unable to consume
the insulin properly [7]. Type-1 Diabetes patient faces the
difficulty to control the blood sugar because of insufficient
insulin generation. However, Type-2 Diabetes is most common
among the people where the body is able to produce limited
insulin only. There are higher chances of heart and kidney
failures as well as blindness if the diabetes is not controlled for
a long time. Hence, it is necessary to have the smart solution
for instant blood glucose diagnosis and frequent monitoring
for diabetes patients (see Fig. 1) to improve quality of life.
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Fig. 1. Glucose Measurement in smart healthcare.

The overall smart healthcare flow with glucose diagnosis
is shown in Fig. 1. The glucose value is measured and the
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data is stored at cloud for the doctor analysis. The rapid
serum glucose measurement (as compared to traditional blood
glucose measurement) is the modern challenge in the smart
healthcare system with continuous monitoring.

The current paper presents a new wearable glucometer
which can measure the blood glucose level in a non-invasive
fashion. The proposed non-invasive blood glucose measure-
ment is based on the principle of Near-Infrared (NIR) optical
spectroscopy whereas the other existing glucose measurement
wearable which use photoplethysmogram (PPG) or other spec-
troscopy techniques have serious accuracy issues. The acquired
data is further processed using regression model to estimate the
glucose value. The proposed wearable glucose measurement
device provides precise serum glucose level using absorption
and reflectance based dual NIR spectroscopy and calibrated
machine learning models.

The rest of the paper is presented in following manner. The
state of art glucose measurement is elaborated in Section II.
Our vision for non invasive glucose measurement along with
its control is covered in Section III. The novel contribution
is detailed in Section IV. Section V explains the machine
learning models for serum and capillary glucose measurement.
The proposed iGLU 2.0 device is described for serum glucose
detection and is presented in Section VI. The error analysis is
performed with analytical modelling in Section VII.

II. THE STATE-OF-ART IN GLUCOSE MEASUREMENT AND
ITS ADVANCEMENT THROUGH THE CURRENT PAPER

A. Consumer Electronics for Smart Healthcare

The quality of life in smart healthcare is improved tremen-
dously through consumer electronics, however the precision
and reliability are the important factors for the different
applications. The wearable medical devices, such as patches,
glasses, wrist gadgets, badges, rings, and bracelets [8], has
enabled easier ways of monitoring the health in daily life.
There has been substantial research carried out in smart
healthcare for consumer electronics on assisting visually im-
paired individuals [9], [10] and detection of fall of elderly
[11]. In addition, consumer electronics in smart healthcare
domain deal with monitoring of physiological signals such as
electroencephalogram (EEG) [12], Electrocardiography (ECG)
[13]–[15], heart rate [16]. The proposed iGLU 2.0 of the
current article is a consumer electronics wearable device and
it is integrated with IoMT framework in smart healthcare
system. It is useful to improve the quality of life through daily
monitoring of the diet at smart homes.

Non-Communicable Disease (NCD) is mainly defined as
noninfectious condition which is gradually being developed
over the period of time termed as chronic disease [17].
Diabetes is one of NCD along with other such as cancer, car-
diovascular disease, and chronic respiratory disease [18]. The
continuous monitoring and telemedicine plays a significant
role for the control of such NCD in smart healthcare system.
The people needs to put concious efforts using various self-
care device to control them in daily life [19]. The non-invasive
approach is useful in smart healthcare to eliminate the process
of pricking in the body which helps for continuous health

monitoring [20]. Non-invasive approaches of measurement are
more advanced compared to the current invasive method to
make the painless device. The portable system of measurement
of the non-invasive measurement device is desirable for smart
healthcare system. The optical method is more reliable, cost-
efficient and accurate according to the analysis of researchers.
There are varieties of various optical techniques for non-
invasive measurement such as photoacoustic spectroscopy,
polarimetric, near infer-red spectroscopy, Raman spectroscopy
and scattering spectroscopy. For the smart healthcare, it is
desirable to have portable and wearable device to be useful in
day to day life. In this way, improvement of the accuracy and
reliability of these devices have been considered as essential
objectives. The idea is to develop for the self-monitoring
system which is to be embedded for continuous monitoring
in smart home environment. Researchers have developed a
flexible textile-based biosensor which is useful to investigate
the glucose level.

B. Consumer Electronics for Glucose-Level Monitoring in
Smart Healthcare

There are a number of non-invasive blood glucose mea-
surement devices developed till date. Some devices are not
effective due to their accuracy issues. There are few adhesive
and disposable solutions are available for the continuous
monitoring. These can be categorized as either semi invasive or
minimum invasive solutions to monitor the glucose level. The
non-invasive stripless solution is also available for continuous
glucose monitoring. There are fluorescent technique based
solution to monitor the glucose value but it is not much
popular. These devices have limited accuracy for glucose
level measurement. Many approaches have failed due to
environmental constraints, error in the measurement due to
body temperature variations, interstitial fluids, body pressure,
sweat and body water variations. Because of these constraints,
most non-invasive devices are unable to provide an accurate
measurement. These devices are also costly in the range of
300-400 USD. There is still not any cost-effective and precise
solution available in the consumer electronics market.

C. Prior Works on Noninvasive Glucose Level Monitoring

Various invasive, semi-invasive and non-invasive approaches
have been explored for glucose measurement [21]. The non-
invasive glucose measurement is performed by wearable using
saliva, skin, sweat and retina. However, the current paper
presents the non-invasive glucometer and can be implemented
as wearable consumer electronics.

Nanoparticles on alkali anodized steel electrode have been
presented for glucose measurement through saliva [22]. Op-
tical biosensor have been presented for glucose measurement
using saliva [23]. Glucose measurement has also been done
using impedance spectroscopy through the skin [24], [25].
Electrical properties of skin, sweat and saliva vary according
to person. So, this approach will not be reliable for glucose
measurement.

Non-invasive glucose measurement approach through retina
has also been represented for precise glucose detection [26].
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Such non-invasive approach is not desirable for frequent
monitoring [27]. Raman spectroscopy has been preented for
precise glucose measurement [28]. The implemented setup
occupied a large area and will not be portable.

Most of non-invasive measurement techniques have limited
precision level. Hence, the device iGLU 1.0 has been rep-
resented for non-invasive capillary glucose measurement [29].
Serum glucose is considered to be more accurate than capillary
blood glucose as per medical aspects. Therefore, it is necessary
to design serum glucose based non-invasive portable device
to accurately measure glucose level to advance the state-of-
the-art and improve quality of life, which is the scope of the
current papers.

III. OUR VISION OF NONINVASIVE GLUCOSE LEVEL
MEASUREMENT AND CONTROL USING NEW WEARABLE

The privacy and security threats of the medical devices
are crucial aspect for any IoMT framework. The wireless
communication and control of wearable iGLU 2.0 devices has
several security vulnerability and are defined in Fig. 2. The
hardware security of devices are imperative because they are
the basic components of connected health system. The data
integrity over the medical information is another significant
security layer. The data of all patients are stored at cloud server
hence privacy and security of health data records are also at
most important. The access control and authentication of end
users of the network is also vital as they have to perform
monitoring and treatment of the patient.
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Fig. 2. Our Long-Term Vision of Security-Assured Noninvasive Glucose-
Level Measurement and Control.

A. Our Vision of Noninvasive Glucose Level Measurement
using New Wearable

The blood glucose level of the particular person in each
prandial state is analysed using CGM. It may be helpful for
the individual to control the glucose value by insulin secretion,
physical activity and after taking medicines. Type 1 diabetic
patients can also define their insulin dosage with help of CGM.
This may decrease the excessive insulin secretion in their
body. The diet plan can be controlled with frequent glucose
monitoring. As the average value of glucose is identified over
a long period, it is helpful to measure the glucose values
over longer period of the time to help in determining the

glycated haemoglobin. Infrared spectroscopy (IR spectroscopy
or Vibrational Spectroscopy) involves the interaction of in-
frared radiation with matter. It covers scattering, absorption
and reflection spectroscopy. The absorption of IR waves
causes the generation of vibrations of the molecular atom
and causes of band spectrum which are usually expressed
by wavenumber cm−1. In NIR spectroscopy, the light in the
range of (700nm − 2500nm) is passed through the object
(earlobe or finger). The passed light through the finger or
earlobe interacted with the components of blood and gets
reflected, absorbed and scattered. The penetration depth will
be varied with a change in wavelength. The value of absorption
coefficient depends upon the change in glucose concentration.
The value of glucose concentration in blood vessel could
be indicated due to change in intensity of transferred light
through the vessel. The change in glucose concentration is
measured through light detector. NIR spectroscopy would also
help for the wearable device as glucose molecule detection
is more precise in this range. In current paper, iGLU 2.0 is
proposed for serum glucose monitoring using short-wave NIR
spectroscopy with calibration and validation using machine
learning models.

B. NIR Spectroscopy versus other Non-Invasive Approaches

Glucose measurement has been done using various non-
invasive approaches, such as impedance spectroscopy, NIR
light spectroscopy and PPG signal analysis [30]. But, apart
from optical detection, other techniques have failed to achieve
the accuracy. PPG signal analysis is based on extracted fea-
tures of logged signal which is not based on principle of
glucose molecular detection [31], [32]. To overcome these
limitations, Sharma et.al also discussed about optical detection
using long NIR wave which is not capable to detect the glucose
molecules beneath the skin as it has shallow penetration [33].
Therefore, small NIR wave has been chosen for real-time
glucose detection [34], [35].

C. Serum Glucose is More Accurate than Capillary Glucose

In the case of invasive approaches, serum glucose and
capillary glucose level are being analyzed for precise blood
glucose values. Capillary glucose can be estimated instantly
but serum glucose couldn’t be identified instantly due to
certain processes. However, it is clinically observed that the
capillary glucose level is always higher than serum glucose
which is not being considered actual blood glucose ever.
Hence, there is a tradeoff between both approaches. But, serum
glucose has always been recommended for diagnosis as an
accuracy point of view. Therefore, serum glucose is always
being reliable compared to capillary glucose for medication.

IV. NOVEL CONTRIBUTIONS OF THE CURRENT PAPER TO
THE STATE-OF-ART

The serum glucose measurement requires well equipped lab-
oratory and storage at specific (frozen) temperature to extract
the serum. Therefore, it is costly and time consuming process
for the instant diagnosis. The paper focuses on development
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of non-invasive continuous glucose measurement solution for
smart healthcare. The proposed solution provides the accurate
serum glucose values for all types of user, such as diabetic,
pre-diabetic, and healthy.

The main challenge is to design a wearable device to
measure the accurate blood serum glucose measurement. The
design of data acquisition mechanism which is required for
continuous glucose measurement. The development of accu-
rate models for the precise prediction of serum glucose is also
challenge. The proposed device should be able to measure the
accurate measurement for pre diabetic and diabetic patients.

To mitigate the above problems, we proposed non-invasive
serum glucose measurement device called iGLU 2.0 in this
paper to determine accurate serum glucose. It is cost effective
solution and is also integrated with IoMT framework for
data storage on the cloud. The device is helpful to measure
continuous values of serum glucose. The process flow of
proposed iGLU 2.0 is defined in Fig. 3.

Estimated Blood 

Glucose Value 

(mg/dl)

Channel-1

Absorption 

of light 

(1300nm)

Data 

Acquisition

circuit

Channel-2

Absorption of 

light (940nm)

Channel-3

Reflectance 

of light 

(940nm)

Trained Regression  

model

A/D Converter

Fig. 3. Top level representation of proposed device (iGLU 2.0).

Novel contribution in current paper include the following:
1) An unique dual NIR spectroscopy that involves ab-

sorption and reflection spectroscopy of 940 nm, and
absorption spectroscopy of 1300 nm has been proposed
for accurate detection of serum glucose level.

2) Novel deep neural network (DNN) and polynomial
regression models have been developed based on real-
life serum data and dual-NIR spectroscopy for precise
glucose level prediction.

3) The acquisition module has been designed to collect
blood glucose measurement samples using NIR LEDs
of 940 nm and 1300 nm spectral wavelength.

4) The continuous glucose measurement system has been
developed which is able to measure the serum glucose
measurement from 80-420 mg/dl for all type of diabetic
people.

V. MACHINE LEARNING (ML) MODELS FOR BLOOD
GLUCOSE LEVEL CALCULATION FROM THE NIR SIGNAL

The regression models are applied to estimate the glucose
concentrations for validation. The value of each sample is
converted for the calibration to have the precise measurement.

There are 113 samples for capillary glucose and 74 samples
of serum glucose to the calibration of the device which are
from prediabetic, diabetic and healthy subjects. The baseline
characteristics are defined in Table I.

TABLE I
BASELINE CHARACTERISTICS OF COLLECTED SAMPLES FOR

CALIBRATION, VALIDATION AND TESTING

Samples Basic Capillary Serum Capillary Serum
Characteristics Glucose Glucose Glucose Glucose

Calibration Validation and Testing
Age (Years) Prediabetic Samples
Male:-18-80 Male:-23 Male:-13 Male:-18 Male:-10
Female:-17-75 Female:-20 Female:-16 Female:-16 Female:-09

Age (Years) Diabetic Samples
Male:-18-80 Male:-30 Male:-18 Male:-14 Male:-15
Female:-17-75 Female:-19 Female:-12 Female:-12 Female:-12

Age (Years) Healthy Samples
Male:-18-80 Male:-09 Male:-08 Male:-07 Male:-05
Female:-17-75 Female:-12 Female:-07 Female:-07 Female:-08

Age (Years) Total Samples
Male:-18-80 Male:-62 Male:-39 Male:-39 Male:-30
Female:-17-75 Female:-51 Female:-35 Female:-35 Female:-29

The process steps for calibration and validation are shown
in Fig. 4. The mARD, AvgE, Mean absolute deviation (MAD)
and Root Mean Square Error (RMSE) are computed to esti-
mate the performance.
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Fig. 4. The process flow for calibration and validation of proposed device.

A. Proposed Method 1: Proposed Deep Neural Network
(DNN) for Glucose Sensor Calibration

Several machine learning-based computation models have
been examined to get optimized regression method in terms
of precise measurement. The fitting model of DNN is used for
the prediction of capillary and serum glucose [25]. Sigmoid
activation functions have been applied for the proposed DNN
models. The model are trained through Levenberg-Marquardt
backpropagation algorithm [36]. The diagram of DNN model
is presented in Fig. 5. Overall accuracy of the DNN model
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was observed to be best with 10 hidden layers. The error
analysis for different layers is shown in Fig. 6. Thus, a total
of 10 hidden layers have been considered for prediction of the
glucose level values.
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Fig. 5. The Deep Neural Network (DNN) model used for calibration.

B. Proposed Method 2: Multiple Polynomial Regression
(MPR) model of Glucose Concentration

Multiple polynomial regression of degree 3 (MPR 3) is
also attempted for capillary and serum glucose prediction. The
regression model of cubic kernel is applied for the predicted
glucose values of iGLU 2.0. The multiple polynomial regres-
sion model (MPR 3) kernel is calibrated as:

y = a1x
3
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3
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3
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2
1x2 + a5x

2
1x3 + a6x1x

2
2

+a7x1x
2
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2
2x3 + a9x2x

2
3 + a10x

2
1 + a11x

2
2 + a12x

2
3

+a13x1x2x3 + a14x1x2 + a15x1x3 + a16x2x3 + a17x1

+a18x2 + a19x3 + ε. (1)

In the above expression, the output voltage values from
three channel are defined as x1, x2 and x3 independent
variables (predictors), whereas the predicted value of the
glucose (mg/dl) is the dependent on variable y. The overall
representation of MPR3 model is shown in Fig. 7. a1-a19
are regression coefficients and ε is a residual error. These
values are dependent on the predictors and the corresponding
response of calibrated model. Proposed MPR3 is multivariate
regression model and total 19 customized interacted variables
based kernel is observed as optimized model.

The correlation plots between predicted and reference glu-
cose concentration are represented in Fig. 8(a) - Fig. 8(h). The
error analysis of the proposed model is reported in Table II.

Proposed MPR 3 model represents better results of calibra-
tion and validation compared to DNN based model. The serum
glucose is found more accurate compared to capillary glucose
using MPR 3.

VI. DESIGN OF THE PROPOSED NOVEL GLUCOMETER FOR
SERUM GLUCOSE MONITORING - THE IGLU 2.0

The proposed glucometer uses the concept of short wave
NIR spectroscopy with two different wavelengths (940 and

m A R D A v g E M A D R M S E m A R D A v g E M A D R M S E
0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0
5 5
6 0
6 5

mA
RD

, A
vg

E (
%

) a
nd

 M
AD

, R
MS

E (
mg

/dl
)

C a p i l l a r y  G l u c o s e

 

S e r u m  G l u c o s e

 1  H i d d e n  L a y e r
 5  H i d d e n  L a y e r s
 9  H i d d e n  L a y e r s
 1 0  H i d d e n  L a y e r s
 1 1 H i d d e n  L a y e r s

Fig. 6. Error analysis of DNN models using different hidden layers.
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1300 nm) and is implemented with three channels. Each
channel has particular wavelength emitter and detector to
detect the glucose.

A. The Proposed Approach for Data Acquisition

The data is acquired and is also logged subsequently using
16 bit ADC with sample rate of 128 samples/sec. The logged
data is calibrated and is further validated through an optimized
model of existing regression techniques for precise measure-
ment. Independent samples are collected from the age group

TABLE II
STATISTICAL ANALYSIS OF CALIBRATION OF DIFFERENT MODELS

Regression mARD AvgE MAD RMSE
Model % % mg/dl mg/dl
Linear SVR (Capillary) 34.40 31.27 65.64 83.50
Serum 39.24 36.21 70.59 83.21

Cubic SVR (Capillary) 31.85 27.32 59.42 79.66
Serum 26.69 32.55 51.92 73.32

Quadratic SVR (Capillary) 33.43 29.73 63.59 81.38
Serum 33.42 10.86 61.35 83.47

Medium Gaussian SVR (Capillary) 31.36 26.82 58.43 77.83
Serum 26.50 24.66 47.75 66.01

Coarse Gaussian SVR (Capillary) 33.71 30.74 64.58 82.10
Serum 40.09 34.75 70.37 81.05

Fine Gaussian SVR (Capillary) 14.31 12.49 27.36 45.06
Serum 12.31 10.45 20.96 31.09

DNN (Capillary) 29.06 22.14 46.47 62.51
Serum 9.11 8.95 19.47 27.95

MPR3 (Capillary) 6.07 6.09 13.28 19.71
Serum 4.86 4.88 9.42 13.57
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Fig. 8. Correlation plot of predicted and referenced blood glucose concentration during calibration of regression models.

of 24-50 which would help to test and to validate our iGLU
2.0. A 2 layer PCB is designed and system is developed to
embed NIR LEDs and detectors.

The circuit is implemented to design the optical detection
mechanism [29]. The components of the circuit such as,
analog-to-digital converter (ADC), emitters and detectors are
integrated with optimized biasing with 5 V DC supply. Passive
components have been chosen to provide better efficiency
of NIR LEDs and detectors. All NIR LEDs and detectors
are connected in photoconductive mode. All detectors have
specifications of daylight blocking filters. The ADC is used
to transfer the data over three channels in serial manner in
decimal form. A microcontroller is used to control the ADC.

B. The Proposed System of the Glucometer

The paper covers the absorptions and reflection based op-
tical detections to detect glucose molecule with the change
in light intensity. The output voltages of the detectors are
dependent on the received light intensity. The voltage output
is logged by placing the fingertip (or earlobe) in between
emitter and detector of NIR LEDs. The coherent averaging
is performed at output voltage samples for reducing the
measurement error. The averaging of overall 1024 samples
is considered for the purpose of the calibration and validation
over the period of the time span of 8 seconds. The block
level diagram of proposed iGLU 2.0 is represented in Fig. 9.
The serum glucose is measured at the laboratory, whereas the
capillary glucose has been measured using invasive glucometer
SD check as gold standard for validation purpose [37]. The
values from serum and capillary glucose are considered as the
reference glucose values (mg/dl). The responses of detectors
(in milivolts) are collected from all three channels at the same
time. The values from the ADC are corresponding to serum
and capillary glucose values.
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Fig. 9. Schematic representation of proposed device (iGLU 2.0).

VII. VALIDATION OF THE PROPOSED DEVICE IGLU 2.0

A. Testing and Error Analysis

There are total 50 different samples of capillary glucose and
37 samples are considered of serum glucose from prediabetic,
diabetic and healthy subjects to validate the iGLU 2.0 device.
Total 46 samples from 20 females and 26 males are tested for
the validation purpose by following medical protocols. The
samples are collected in fasting, post-prandial and random
modes for the validation and testing. The baseline character-
istics are already defined in Table I and the error analysis is
shown in Table III.

Two volunteers are chosen to verify the device stability with
multiple measurements of capilary and serum glucose through
iGLU 2.0. The experiment is performed at fasting and post-
prandial mode and results are shown in Fig. 10.
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TABLE III
STATISTICAL ANALYSIS OF VALIDATION OF PROPOSED MODELS

Regression mARD AvgE MAD RMSE
Model % % mg/dl mg/dl
DNN (Capillary) 23.19 22.14 45.07 59.74
Serum 11.67 10.02 21.81 34.05

MPR3 (Capillary) 7.74 7.70 16.08 22.46
Serum 5.009 4.97 9.74 12.98
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Fig. 10. Predicted and reference blood glucose concentration for validation
of iGLU 2.0 on 2 volunteers.

B. Clarke Error Grid (CEG) Analysis

This error is analysed for predicted blood glucose to validate
the precision level of iGLU 2.0 [38]. The Clarke analysis is
useful to explore the variation between referenced and pre-
dicted glucose concentration with different zones. The gender-
wise samples are arranged to observe the accuracy of iGLU
2.0 with testing and validation which are represented in Fig. 11
and 12, respectively. The results confirm the usage of the our
iGLU 2.0 for clinical purposes. The proposed device has been
compared with previous non invasive approaches in Table IV,
in which “NA” indicates value is missing or not reported in the
existing works. The proposed iGLU 2.0 device has superior
linearity (97%) and high measurement range (80-420 mg/dl)
in comparison with other NIR measurement techniques. The
proposed device provides very good results due to unique
combination of absorption and reflectance spectroscopy for
two specific wavelengths (940 nm and 1300 nm). According
to Table V, the proposed iGLU 2.0 is more accurate in
comparison to other glucose non-invasive monitoring devices.
The results of iGLU 2.0 is the best because it is the only work
which considers the serum glucose measurement. It has been
observed that all samples of serum glucose from proposed
devices exist in zone A and the samples of all other previous
methods are of capillary glucose which exist in zone A and
zone B. The serum blood glucose measurement always has
better precision as compared to capillary measurement. The
proposed iGLU 2.0 device is first ever attempt of the serum
glucose measurement in the era of non-invasive glucometer.
Hence, the accuracy of glucometer is the highest among all
previous non-invasive glucose measurement.

VIII. CONCLUSIONS

This work presented a IoMT enabled wearable consumer
device called iGLU 2.0 for continuous glucose monitoring
for diabetic patients. It is based on the principle of optical
detection and the efficient regression model is developed to
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(b) Male samples of serum glu-
cose
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(c) Female samples of capillary
glucose
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(d) Female samples of serum
glucose samples

Fig. 11. CEG analysis of predicted capillary and serum glucose concentration 
of male and female subjects for iGLU 2.0 device.
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(a) Validation samples of capil-
lary glucose

Reference Concentration [mg/dl]
0 100 200 300 400

P
re

di
ct

ed
 C

on
ce

nt
ra

ti
on

 [
m

g/
dl

]
0

100

200

300

400

A

D

E C

C E

D

B

B

Clarke's Error Grid Analysis

(b) Validation samples of serum
glucose
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(c) Testing samples of capillary
glucose
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(d) Testing samples of serum
glucose samples

Fig. 12. CEG analysis of predicted blood glucose concentration for validation 
and testing of iGLU 2.0 device.

measure the accurate serum glucose measurement. The device
is validated on pre-diabetic, diabetic and healthy patients from
persons aged 17-80 using real healthcare data. It has been
observed that AvgE and mARD represent better results of
calibration and validation for serum glucose compared to cap-
illary glucose. The estimated samples of serum glucose values
are observed at 100% in zone A. The propose glucometer is
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TABLE IV
APPROACHES COMPARISON WITH NON-INVASIVE WORKS

Research Works Spectroscopy Technique Spectra Specific Wavelength Measurement Range Linearity
Singh, et al. [23] Optical - - 32-516 mg/dl 80

Song, et al. [25] Impedance and Reflectance NIR 850-1300 nm 80-180 mg/dl NA

Pai, et al. [39] Photoacoustic NIR 905 nm upto 500 mg/dl NA

Dai, et al. [24] Bioimpedance - - - NA

Beach, et al. [21] Biosensing - - - NA

Ali, et al. [34] Transmittance and Refraction NIR 650 nm upto 450 mg/dl NA

Haxha, et al. [35] Transmission NIR 940 nm 70-120 mg/dl 96

Proposed Work (iGLU 2.0) Absorption and Reflectance NIR 940 and 1300 nm 80-420 mg/dl 97

TABLE V
STATISTICAL AND PARAMETRICAL COMPARISON WITH NON-INVASIVE WORKS

Research Works R mARD AvgE MAD RMSE Samples Used Measurement Device
value (%) (%) (mg/dl) (mg/dl) (100%) model sample cost

Singh, et al. [23] 0.80 - - - - A&B Human Saliva Cheaper

Song, et al. [25] - 8.3 19 - - A&B Human Blood Cheaper

Pai, et al. [39] - 7.01 - 5.23 7.64 A&B in-vitro Blood Costly

Dai, et al. [24] - 5.99 5.58 - - - in-vivo Blood Cheaper

Beach, et al. [21] - - 7.33 - - - in-vitro Solution -

Ali, et al. [34] - 8.0 - - - A&B Human Blood Cheaper

Haxha, et al. [35] 0.96 - - - 33.49 A&B Human Blood Cheaper

Jain, et al. [4] 0.90 5.20 5.14 5.82 7.5 A&B Human Blood Cheaper

Jain, et al. (iGLU) [29] 0.95 6.65 7.30 12.67 21.95 A&B Human Blood Cheaper

Proposed Work (iGLU 2.0) 0.97 4.86 4.88 9.42 13.57 Zone A Human Blood Cheaper

precise and cost-effective solution and is useful to measure
the blood glucose in the range of 80-420 mg/dl. Proposed
iGLU 2.0 has a great potential to provide self care monitoring
solution for smart healthcare.

Our future research is towards the development machine
learning models for required insulin secretion for automatic
insulin delivery of seriously diabetic patients in IoMT frame-
work activated by iGLU 2.0. We will also focus on deter-
mining the impact of continuous glucose-level measurement
with iGLU on other critical health conditions, such as blood
pressure, heart stroke, and epileptic seizure. In the future, we
intend to work on the security and privacy solutions of the
IoMT enabled iGLU device as well as security and privacy of
personal health data.
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