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Abstract—Agriculture Cyber-Physical System (A-CPS) is be-
coming increasingly important in enhancing crop quality and
productivity by utilizing minimum cropland. This paper intro-
duces the innovative idea of the Internet-of-Agro-Things (IoAT)
with an explanation of the automatic detection of plant disease
for the development of ACPS. Majority of the crops were
infected by microbial diseases in conventional agriculture. Also,
the constantly mutating pathogens cannot be known to the
knowledge of the farmer, due to which, there arises a demand
to develop a disease prediction system. To prevent this, we use a
trained Convolutional Neural Network (CNN) model to perform
an analysis of the crop image captured by a health maintenance
system. The image capturing along with continuous sensing and
intelligent automation is performed by the solar sensor node. The
sensor node houses a developed soil moisture sensor which has a
high longevity compared to its peers. A real time implementation
of the proposed system is demonstrated using a solar sensor node
with a camera module, a microcontroller and a smartphone
application using which a farmer can monitor the field. The
prototype was deployed for three months and has achieved a
robust performance by remaining rust-free and sustaining the
varied weather conditions. An accuracy of 99.24% is achieved
by the proposed plant disease prediction framework.

Index Terms—Smart Agriculture, Agriculture Cyber-Physical
System (A-CPS), Internet-of-Agro-Things (IoAT), Solar Energy,
Sensor Node, Automatic Crop Disease Prediction, Machine
Learning, Convolutional Neural Network (CNN)

I. INTRODUCTION

Food is one of the quintessential assets in life, needed by
each and everyone alike for survival. Although, not everyone
is entitled to having a sumptuous meal daily. The World
Health Organisation estimates that two-thirds of the world
population is starving. The technologically advanced solution
to this age-old problem is Smart Agriculture, which helps in
maximizing the output of farmland using minimal resources.
The recent developments in Information and Communication
Technologies (ICT) have led to the development of robust
ACPS. Whilst focussing on maximizing food production, heed
must be paid to the loss of crops to various diseases. Around
137 different pathogens and pests cause a loss of 10 to 40

V. Udutalapally is with Department of Computer Science and Engineering,
IIIT Naya Raipur, Chhattisgarh, India e-mail: venkannau@iiitnr.edu.in

S. P. Mohanty is with Department of Computer Science and Engineering,
University of North Texas, USA e-mail: saraju.mohanty@unt.edu

V. Pallagani is with Department of Computer Science and Engineering, IIIT
Naya Raipur, Chhattisgarh, India e-mail: vishal16100@iiitnr.edu.in.

V. Khandelwal is with Department of Computer Science and Engineering,
IIIT Naya Raipur, Chhattisgarh, India e-mail: vedant16100@iiitnr.edu.in

percent in the staple crops, which cater to around 50% of the
calorie intake of the human population. And the constantly
mutating pathogens cannot be known to the knowledge of
the farmer, due to which, there arises a demand to develop a
disease prediction system. The crop disease prediction system
assists the farmer in timely detection of the crop diseases.

With the significant population growth around the world and
reduction of amount of farmland available, the Precision Farm-
ing (PF) or Precision Agriculture (PA) is becoming important
to increase crop output and farm efficiency while reducing the
misapplication of products [1], [2]. Precision agriculture is
an innovative and resourceful method of continuous real-time
observation of the agricultural fields and thereby providing
efficient management methods to respond to the variations that
prevail among the crops. The adoption of these techniques has
increased the net benefit of up to $75/hectare and is expected
to increase the contribution of agriculture in the world GDP
by 8% [3]. The significant advantages of precision agriculture
are yield monitoring [4], remote sensing, and obtaining data
in real-time for better management decisions. The advantages
mentioned above can be achieved by employing the use of a
solar-powered device, i.e., the sensor node [5].

Smart Farming (SF) or Smart Agriculture (SA) is the use
of information and communication technologies (ICT) for
optimization of complex farming/agriculture systems [2], [6].
Smart agriculture makes use of an aggregation of data from
sensors to monitor various parameters of agriculture/farming
including the varying environmental conditions, crop health
and soil moisture to understand the intra- and inter-field
variations [7]. Smart agriculture helps in devising a cost-
effective, energy efficient [8] automated system for various
agricultural appliances, such as water pumps for irrigation,
and thereby reducing the workload of the farmer. The bigger
umbrella concept of Agriculture Cyber-Physical System (A-
CPS) thus can evolve just similar to healthcare Cyber-Physical
System (H-CPS), transportation Cyber-Physical System (T-
CPS) and energy Cyber-Physical System (E-CPS) making the
system of systems smart city [9], [10].

The Agriculture Cyber-Physical System (A-CPS) is in
essence driven by the Internet of Things (IoT) which is the in-
terconnected network of various computing devices embedded
in daily life appliances to the Internet, thus enabling them to
communicate with each other [11], [12]. Due to the popularity
and advantages of IoT, it has even penetrated the field of
agriculture. The percentage contribution of agriculture in the
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world Gross Domestic Product (GDP) as of 2016 is 3.7% [13].
Thus research in smart farming or smart agriculture made by
using A-CPS based on IoT is the need of the hour.
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Fig. 1: Selected Challenges of Smart Agriculture.

The major challenges of smart agriculture include contin-
uous monitoring, energy harvesting, automatic irrigation, and
disease prediction (See Fig. 1) [14]. An important issue that
arises in farming is the loss of crops to various diseases.
Around 80% of the crops get destroyed by various agents
such as bacteria, viruses, weather conditions, etc. in spite of
the farmer toiling hard throughout the year. Thanks to the
modern analysis systems and deep learning techniques, we can
identify the chances of a plant being infected and thus notify
the farmer in advance. Thus, crop disease prediction will be
in line with the end goal of smart agriculture i.e. achieving
maximum output by utilizing the least amount of resources.

Henceforth, the paper is organized as follows: Novel con-
tributions of the current paper is summarized in Section II.
IoT based A-CPS architecture is described in Section III.
Section IV discusses the related prior research. The proposed
methodology is briefly explained in Section V. The proposed
novel CNN model for automatic plant disease prediction and
solar-power end-device for IoAT are explained in Section VI
and Section VII. The proposed sCrop device is solar powered
device description is given in VIII. Later in Section IX, the
result analysis of the proposed method is presented. Finally,
Section X concludes the paper with discussions on future
directions.

II. CONTRIBUTIONS OF THE CURRENT PAPER

Existing works in smart agriculture works are primarily
on optimization of food production. Plant growth is the key
detrimental factor for obtaining adequate fodder, however, it
is also the primary obstacle for increasing productivity. The
growth of the plant is affected by various factors such as biotic
stress, excessive irrigation, soil salinization, and diseases.
Biotic stress is seen in the plants due to less availability of
moisture in the soil. Thus, a robust solution for indispensable
autonomous irrigation systems is the need of the hour. Adding
on to it, a disease prediction system would help increase the
food productivity.

A. Problems Addressed in the Current Paper
The literature survey points out that the existing solutions

make use of non-renewable sources of energy to power the

sensors. Also, most of the existing solutions look at the
problem of automated irrigation and crop disease prediction
as two different areas of research. The prototype presented
in this paper unifies the afore-mentioned to develop a robust
smart agriculture system. Our solution aims at solving the
problem of corrosion in the existing soil moisture sensors.
The longevity of the commercially-off-the-shelf available soil
moisture sensors is limited as they are made up of either iron
or copper which are highly corrosive. The available moisture
sensor’s probes are short in length, which restricts their usage
for trees with bigger roots. Also, shorter sensory probes lead to
lesser accurate moisture readings. In general, the sensor nodes
are powered using a battery which gets exhausted as time
progresses. This leads to the problem of repetitive replacement
of the battery, which in turn, causes an increase in the cost of
the solution. Further, most of the disease prediction systems
require the application to be connected to the Internet, which
might not be available at the disposal of a farmer. Thus, having
an on-system computation is ideal for the farmer.

B. The Challenges in Solving the Problem

Developing a robust, cost-efficient and cutting-edge system
keeping in mind the economic and technical considerations of
a farmer is a challenging task. The initial problem that was
encountered was the calibration of the developed soil moisture
sensor was a gritty task as the aim was to for sure reach the
current baseline, if not perform better than the existing soil
moisture sensor. The power conversion from the solar cell to
the sensor node must be performed with utmost care as the
sensors in the node operate at a much lower voltage compared
to the solar cell output. Once the embedding system circuitry
was taken care of, emphasis was laid on training an efficient
deep learning model for plant disease classification keeping in
mind the curse of dimensionality.

C. Novel Solutions Proposed in the Current Paper

This paper proposes a novel concept of Internet-of-Agro-
Things (IoAT) to build agriculture cyber-physical systems (A-
CPS). The proposed system efficiently mitigates the mentioned
challenges. The major contributions of the current paper
are the following:

• To develop a novel cyber-physical system for the agri-
cultural domain coupled with a deep learning model for
recognizing plant diseases.

• The deep learning model is fine tuned by adding addi-
tional fully connected layers to facilitate better feature
mapping and class label assignment.

• An energy-efficient and accurate IoT enabled A-CPS
system, which houses the durable soil moisture sensor
and camera module is developed.

• The A-CPS system, equipped with Edge Device Layer
and Cloud Layer Services help in sensor data analysis,
helping obtain actionable insights leading to intelligent
automated irrigation.

• Finally, the IoAT based solar powered automatic irriga-
tion system and the CNN model integrated plant disease
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detection is successfully developed and validated in dif-
ferent extreme conditions in the result analysis.

III. INTERNET-OF-AGRO-THINGS BASED AGRICULTURE
CYBER-PHYSICAL SYSTEM (A-CPS) - OUR VISION

IoAT involves developing futuristic applications for smart
agriculture. Prominence is given to farmer-friendly and
energy-efficient solutions. An IoAT system includes an end-
to-end prototype that can arrive at meaningful predictions
by assimilating the spatial and temporal sensed values. This
leads to a cyber-physical system (CPS) being the crux of
an IoAT solution. A CPS encompasses a blend of enormous
computational hardware, software, and physical sensory com-
ponents. The constituents of a CPS communicate with each
other seamlessly and help in the real-time monitoring of the
environmental variables. The paper presents a cyber-physical
system for the agricultural domain, i.e. A-CPS. The breakdown
of the proposed A-CPS as seen in Fig. 2 is as follows:

• sCrop Device Layer: The device layer comprises the
solar sensor node and the mobile application. The solar
sensor node is the core component of the A-CPS, which
consists of an interconnected network of sensors, coordi-
nating with each other to sense real-time environmental
changes. The sCrop device communicates with the upper
layers in wireless. The actionable insights, for automating
irrigation, are executed in the agriculture device layer.
Further, the sCrop application acts as an interface for the
farmer to visualize the disease predictions and irrigation
timeline of the IoAT prototype.

• sCrop Edge Layer: The sensor data is relayed to the
edge nodes for immediate analysis. The communication
between various devices in the edge device layer takes
place with the help of state-of-the-art technologies such
as 5G, WiFi, etc. These technologies help the edge device
layer to perform computations with reduced latency. The
layer can be used to train low computation machine learn-
ing models, often being of low accuracy. This improves
generating insights for achieving irrigation automation in
our developed prototype.

• sCrop Cloud Layer: The cloud acts as a database
for the sensory data coming from the device layers.
Additionally, the cloud is also a host for serving the
computation-intensive Machine learning models. It has
high-end computational resources at its disposal to pro-
cess the incoming sensor data. The meaningful insights
obtained from the analysis are sent to the sCrop mobile
application with the help of the gateway.

Thus, A-CPS goes hand in hand with deep learning models to
develop a robust IoAT system. An IoAT system in its entirety
helps the farmer in getting additional information, which is
obtained by analyzing the temporal sensor data from A-CPS.

IV. RELATED PRIOR RESEARCH

Technology in smart agriculture is mainly focused on
making agriculture efficient and easy for farmers. The tech-
nology of smart agriculture mainly focuses on Automatic
smart irrigation as stated in [15]–[19]. The sensors used to

collect different environmental parameters for achieving smart
agriculture are stated in [15], [17]–[21]. The need for an
efficient energy source is proposed in [22]. The use of efficient
routing protocols for wireless communication of data packets
from the sensor nodes to the server is discussed in [23].
A disease prediction solution emphasizes on the size of the
dataset used [19], [24], [25] i.e number of disease being
predicted and the accuracy achieved [26]–[28]. Considering
their drawbacks, sCrop, a hybrid solution is proposed. To the
author’s knowledge, smart agriculture systems presented in the
existing literature have not been using solar based sensor nodes
for reliability. The disease prediction system presented in the
existing literature has not achieved a higher accuracy over 38
different diseases among various crops. The summary of the
comparison of sCrop with the existing solution is given in
Table I.

V. PROPOSED ARCHITECTURE OF NOVEL IOAT

A. Proposed Novel Internet-of-Agro-Things (IoAT) for Sus-
tainable Disease Prediction

This section discusses the proposed three stage pipeline
for novel sCrop Architecture for Sustainable Crop Disease
Prediction, as shown in Fig.3. The different stages in the
pipeline is explained below:

• Sensory Block: This block is used for data sensing and
communication. It consists of a sensor node, powering
module, and solar sensor node data hub. The sensor node
is powered using the powering module, which is used to
measure various parameters sensed by the data hub and
send the data to the Storage and Data Analysis block. The
powering module consists of a solar panel and a battery to
power the node at the time with zero or no solar energy.
The data hub consists of a camera module that constantly
clicks the crop images and a moisture sensor is used to
measure the soil moisture content of the field.

• Storage and Data Analysis Block: This block is en-
trusted with data storage and edge computing. It consists
of two modules. The Cloud Storage and Analytics module
is used to store the data received from sensory blocks,
in a cloud database and get actionable insight from
the data. The Edge Computing and Intelligent Access
Module automates the process of irrigation based on
crops selected by the farmer and helps in preventing
Biotic Stress Control in crops.

• End-User Block:This block consists of Crop Disease
Prediction Module which is used to predict eh crop
disease based on the image stored in cloud. And a sCrop
User Interface which is used to notify farmers about the
infected crop and also for farmers to select the cultivating
crop and live track irrigation.

B. Novel sCrop Thing for Sustainable Crop Disease Predic-
tion in IoAT

A solar sensor node is a collection of different sensors
interfaced to tackle a specific problem and is connected to
the internet. They are compact devices that can be easily
deployed over a wide area, forming a connected network and
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Fig. 2: Internet-of-Agro-Things (IoAT) based Agriculture Cyber-Physical System (A-CPS) - Our Vision.

TABLE I: Comparison of Existing Solutions with IoAT.

Smart Agriculture Works Soil Moisture
Sensor

Solar
Powered

Approaches Used Device Cost

Soil Crop-field Monitoring [15] No No NA High
Smart Irrigation [16] No No NA High
Toward Making the Field Talk [18] No No NA Moderate
Agriculture Intelligent System [21] No No NA High
Ricetalk: Rice Blast Detection [19] No No AI Technologies Very High
Semi Automatic Leaf Disease [27] NA NA SVM Negligible
Leaf Rust Disease Detection [24] NA NA Regression

Algorithms
Negligible

Prediction of Potato Disease [25] NA NA Deep CNN Negligible
Early Disease Detection [28] NA NA KNN, LR, RF Negligible
Current paper: sCrop Yes Yes CNN Low

coordinating with each other, and help in the monitoring and
controlling of that area. Due to the above advantages, the solar
sensor nodes are ideal for the Smart Agriculture System. The
proposed method makes use of a solar powered sensor node,
overcoming the drawbacks of using a battery causing tempo-
rary termination of the system and decreasing the maintenance
cost. The solar powered node makes use of the abundantly
available solar power and ensures the continuous working of
the node.

The solar sensor node also helps in automating the irrigation
process based on the soil moisture content of the soil. To
measure soil moisture values, a developed soil moisture sensor
is used. The developed sensor uses stainless steel probes
to overcome the drawbacks of existing off-the-shelf sensors
which are prone to corrosion and are not durable and inaccu-
rate for the long run. To monitor and predict the infected crop,

we have proposed a disease prediction system. The system
monitors the crop, by predicting the disease over the images
captured over regular intervals. The cameras attached to the
solar node feed in images of the crops to the Deep Learning
(DL) model to predict the plant diseases, if any [29]. Deep
Learning neural networks are used due to their compression
strategy that leads to highly accurate and efficient models [30].
To provide an easy interface for the farmer to monitor his field,
an app, IoAT is designed.

VI. PROPOSED NOVEL CNN MODEL FOR AUTOMATIC
PLANT DISEASE PREDICTION

This section outlines the approach behind development of
the crop disease prediction model using deep learning tech-
niques. Details about the dataset used and the preprocessing
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Fig. 3: System Level Working Flow of the Proposed IoAT.

techniques are elaborated. Furthermore, the process of training
the CNN model with its associated analysis is discussed.

A. Method for Automatic Disease Prediction

The CNN model based automatic disease prediction ap-
proach is shown in Fig.4. The captured leaf images are given
as input to the trained model for disease identification and the
output of the model is sent to the farmer user interface.

Input: Crop Leaf 
Image  (Retrieve 

Image from cloud)

Start

Develop CNN Model 
for Disease Prediction

Prediction 
Result?

Output: Leaf 
not Infected 

+ Confidence 
Percentage
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Highlighted Infected Area + Confidence Percentage

Develop Mobile Interface to Provide Information 
Crop Diseases to the Farmer

End

Not
Infected

Automatic Capturing of
leaf image after 24 hours

Infected

Fig. 4: Proposed Method for Disease Prediction in IoAT.

B. Dataset used

Dataset is the most critical factor which affects the perfor-
mance of the DL model. The Plant Village dataset [31] consists
of 54,306 healthy and unhealthy crop’s leaf images, which
can identify 38 different diseases. The training set consists
of examples from the dataset which are used for learning to
fit the parameters for training the image classifier model. The
validation set is used to fine-tune the parameter of the classifier
being trained. For testing the trained model, we use image sets
of both healthy and diseased crop diseases.

C. Image Preprocessing and Augmentation

The real world scenario of capturing leaf images is loaded
with obstacles/noise. Thus, preprocessing techniques are em-
ployed to gain consistency and achieve better feature extrac-
tion. The preprocessing that the images undergo is the color
gamette conversion from (R,G,B) as shown in Fig. 5a to the L
channel i.e. the Lab color space. Under the Lab color space the
L represents the image in grayscale, a represents the image in
green-red color spectrum and b represents the image in blue-
yellow color spectrum as shown in Fig. 5b, Fig. 5c, and Fig.
5d respectively. By obtaining images in the L channel, the
depth calculation to distinguish the boundary of leaves from
the background is potent. Once the preprocessing techniques
are applied to extract superior features, the task at hand is data
augmentation.

The exclusive objective of using augmentation techniques
is to notably increase the heterogeneity of the data available
for training the model, without going through the gruesome
process of collecting new data. Furthermore, the distortions
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to the images help in reducing overfitting. The augmentation
techniques performed on the images Fig. 6a include perspec-
tive transformations Fig. 6b affine transformations Fig.6c and
rotations Fig. 6d. Perspective transformation helps in achieving
a birds-eye view of an image. A 3x3 and 2x3 matrices are
required for perspective and affine transformations simulta-
neously. Besides this, rotations of the images on different
axes by varying the degrees is considered as well for data
augmentation.

(a) R,G,B (b) L color channel

(c) a color channel (d) b color channel

Fig. 5: Preprocessing images

(a) original image (b) Perspective
Transformation

(c) Affine Transformation (d) Rotation

Fig. 6: Image Transformations

D. Proposed CNN Model Training

There are several well-known state-of-the-art architectures
such as AlexNet, EfficientNet, RestNets, and many others.
For the proposed disease prediction, we have chosen three
state-of-the-art architectures that require fewer computations
and are suitable for both deployment and research. The steps
for proposed disease prediction is described in Algorithm 1.
Better performance has been achieved with ResNet 50. The
basic building block of ResNet 50 is the convolution block
and identity block. It allows skipping connections, which helps
in designing deeper CNN (up to 150 layers) and uses batch
normalization. The comparison of the performance of models
is discussed in Section VII (E).

Algorithm 1: The Proposed Algorithm for Disease
Prediction
Requires: Crop’s Leaf Image input from cloud
Ensures: Disease prediction result
Notions: CI: Crop Image, OUTPUT CI: Crop image
from previous layer processing, **: Data flow is
happening between the cloud database.

while TRUE do
ReadFromCameraModule(CI)**;
SendCloud(CI)**;
ReadCloudtoMobileApp(CI)**;
IntializeInputLayer(Pre-Processed(CI));
Input(OUTPUT CI, conv block);
Input(OUTPUT CI, max pool);
PredictionStatusUpdate(OUTPUT,
Infected/Healthy)

end

To further add on to the advantages of ResNet 50 and
increase the prediction accuracy of IoAT, an additional three
fully connected layers with a softmax activation function is
added. When we give the crop image as input to the ResNet
50, where it passes throught batch normalisation, and conv
and identity blocks. After which it act as input to the fully
connected layers, after which by using the Softmax Activation
layer it is classified as Healthy / Infected or Diseased crop,
along with the name of the disease. Therefore, ResNet 50
architecture is used transfer learning and the architecture
designed for IoAT is given in Fig. 7.

The choice of using CNN for training and the advantage
of using transfer learning is briefed about. The model has
been trained using Google Cloud Services. The specification
of which are TPUv2-8, 8 cores and 64 GB processing memory.
The different layers of a CNN and their output shape is shown
in Table II. The Convolutional layers are the most essential
building block of CNN. Each convolutional layer has I maps
of equal size, Ix and Iy , and a kernel of size KLx and KLy , if
shifted over a certain region of the input image. The skipping
factors Fx and Fy define how many pixels the filter/kernel skip
in X and Y direction between subsequent convolutions. The
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size of the output map is defined in the following expression:

Inx =
In−1
x −KLn

x

Fn
x + 1

+ 1 (1)

Iny =
In−1
y −KLn

y

Fn
y + 1

+ 1. (2)

In the above expression, n indicates the layer. Each map in
the layer Cn is connected to most In−1 maps in layer Cn−1.

TABLE II: Different layers of a CNN and its output.

Layer Output Shape
Conv2d 1 (None, 256, 256,32)

Activation 1 (None, 256, 256,32)
BatchNormalization 1 (None, 256, 256,32)

MaxPooling2D 1 (None, 85, 85,32)
Dropout 1 (None, 85, 85,32)
Conv2D 2 (None, 85, 85, 64)

Activation 2 (None, 85, 85, 64)
BatchNormalization 2 (None, 85, 85, 64)

Conv2D 3 (None, 85, 85, 64)
Activation 3 (None, 85, 85, 64)

BatchNormalization 3 (None, 85, 85, 64)
FullyConnectedLayer 1 (None, 85, 85, 64)
FullyConnectedLayer 2 (None, 85, 85, 64)
FullyConnectedLayer 3 (None, 85, 85, 64)

SoftmaxLayer 1 (None, 1, 2, 19)

In spite of a plethora of classification techniques being
available, CNN is best suited for image classification because:

• The capability of capturing and learning relevant features
efficiently from the image is a major advantage of CNN,

which is calculated by the following expressions:

G [m,n] = (f ∗ h )[m,n] (3)

=
∑
j

∑
k

h [j, k] f [m− j, n− k]. (4)

In the above expressions, the input image is denoted by
f , and the kernel or filter (small matrix of numbers) is
denoted by h. The indexes of rows and columns of the
result matrix are denoted by m and n.

• The final features obtained from CNN are invariant to
occlusions. This is achieved because the system does
feature extraction by convoluting the image and filters
to generate invariant features which are passed into the
next layer.

• CNN is found to perform better with unstructured data
such as images in comparison with other classifiers such
as Support Vector Machine (SVM).

• The advantage of training the model for a specific appli-
cation on top of an existing pre-trained model is adding
to the current knowledge. This is known as Transfer
Learning and CNN makes use of it to make the model
more intelligent. The network is represented using the
following expressions:

H (x) = F (x) + x (5)
F (x) = W2 ∗ relu (W1 ∗ x+ b1) + b2. (6)

In the above expressions, H(x) is a mapping function,
F (x) and x simultaneously represent the stacked non-
linear layers and the identity function. W2 and W1
represent the weight matrices, and b1 and b2 are the bias
terms.

Based on the above features of CNN, the proposed architecture
was implemented. The model validation and error analysis of
the proposed framework is discussed in the next section.
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E. Model Validation and Error Analysis

This section briefs about the performance measures of the
trained image classifier. The deep learning model is trained
using three different architectures to compare and select the
best performing architecture. The accuracy produced by using
each of the three architectures, i.e., sCrop, ResNet 34, and
AlexNet, is described in Table III.

TABLE III: Comparison of accuracy’s of model architectures.

Architecture Accuracy for epochs = 4

ResNet 34 94.97%
AlexNet 90.63%

Current Paper (IoAT-sCrop) 99.24%

During our experiment we have trained the model with
higher epochs, such as 8, 9 and 10. However, the change in
the accuracy from epochs 4 to 10 is 0.01 and size of model
was increasing by an average of 12 MB. Thus, considering
the memory and accuracy tradeoffs, we have considered 4
epochs in sCrop. As sCrop provides the best accuracy, it
has been chosen as the pre-trained model architecture for
production. Since the accuracy achieved is taxing, there arises
a demand for performing a check on the overfitting of data.
To accomplish this analysis, the dataset is split into varying
percentages of training and validation, which is presented in
Table IV.

TABLE IV: Test for overfitting of data.

Train
Split(%)

Validation
Split(%)

Accuracy for
epochs = 4

80% 20% 99.24%
60% 40% 96.19%
40% 60% 95.27%
20% 80% 93.37%

As the accuracy is consistently above 90% even when the
train split is just 20%, it can be concluded that there has been
no overfitting. Along with that we have also compared out
findings with variopus other models, such as Siamese Network
gives an accuracy of 96.16 % when trained over the same
dataset. Along with that we attanined an accuracy of 96.34%
with Vanilla CNN and 97.63% with keras layers and adam
optimized. The confusion matrix, as shown in Fig. 8, is used as
an evaluation metric for the performance of the trained model
on the test data. It is calculated between the different class
labels of the actual and predicted values of the test dataset. The
number of misclassifications in predicting the actual class label
for various diseases images can be seen in red circles in Fig.
8. From the figure, a total of 72 images among the complete
dataset are found to have been misclassified, whereas a total
of 7580 images have been tested and classified correctly. A
total of 200 images of 38 different diseases belonging to 14
different crops is tested using the developed IoAT mobile app.
Out of 200 images, 197 images were identified correctly with
the developed IoAT mobile app.

Fig. 8: Confusion Matrix for the trained model.

The experimental prediction results of the crop’s leaf image
sent by the OV7670 Camera module is shown in Fig. 9. An
example of the identification of a healthy tomato image is
shown in Fig. 9a, whereas the affected portion in the Fig.
9b is highlighted with a bounding box and identified as an
infected image.

(a) healthytomato (b) infectedtomato

Fig. 9: Prediction results of crop leaf images.

VII. PROPOSED METHODS FOR AUTOMATIC CROP
SELECTION AND LIVE IRRIGATION TRACKING

A. Proposed Method for Crop Selection

This is the most important module of the developed IoAT
app. It enables the farmer to choose the crop which is being
cultivated in the field, from the already available list of crops.
The selected crop details are sent to the cloud storage. This
module updates all the threshold values used in the system
for the best growth of the cultivated crop. Fig. 10 shows the
method of crop selection used in IoAT.

B. Proposed Method for Live Irrigation Tracking

It enables the farmer to view live irrigation updates on all
the parts of the field. Tracking allows the farmer to monitor
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Fig. 10: The Proposed Method for Crop Section.

the accuracy of the irrigation. The live irrigation data shown is
requested from the Thing-Speak cloud. The data so received
by the cloud is updated in the application in graphical format.
Data is updated in the cloud storage with a latency of 15
seconds and is retrieved from the cloud to the app with a
complete latency of 30 seconds (15 seconds ↪→ cloud +
15 seconds ↪→ mobile app). Algorithm 2 describes the data
flow for the process of automatic irrigation.

Algorithm 2: The Proposed Algorithm for Irrigation
Automation
Requires: Sensor Input and Data from Cloud
Ensures: Relay ON/OFF
Notions: TEMP: DHT11 Temperature Data, SM: Soil
Moisture Value DATE TIME S: Date and Time
Stamp.

(val)*: 1 - ON; 0 - OFF
**: Data is being sent to a different cloud database
while TRUE do

ReadFromSensor(var CurrentTEMP,var
CurrentSM);

ReadFromCloud(var ThresholdSM);
if var CurrentSM <= var ThresholdSM then

WaterPump = (1)*;
SendToCloud(DATE TIME S)**;

else
if var SM > var RSM then

WaterPump = (0)*;
SendToCloud(DATE TIME S)**;

end
end
delay(9000(ms));

end

The aforementioned algorithm is implemented using a solar

powered sensor node. The details of the energy module and
calibration of the sensor node is discussed in the succeeding
section.

VIII. PROPOSED NOVEL SCROP THING FOR IOAT

The proposed sCrop device is a solar-powered consumer
electronics as presented in Fig. 11. Use of solar energy
harvester for sustainable IoT in which sensor node powers
itself is envisioned. The solar-powered energy module of IoAT
consists of various sensors for achieving real-time monitoring
of the environmental and crop variables, powering units,
memory control slots, and the security module connected
to the microcontroller bus. The advanced microcontroller
bus architecture (AMBA) facilitates communication between
various constituent components of the IoAT energy module.
The sensor security module predominantly helps in protecting
the programme theft in the microcontroller. Hamming weights
are assigned to the suspicious penetrated code and a simple
string match is performed with the reference implementation
to prevent malicious code modification.

We leverage that idea in our current sCrop work. The sensor
node is powered using an efficient and robust powering mod-
ule. The power module consists of a solar cell and a battery
for backup power. Photons from the sun strike the silicon
atoms in the crystal structure, which transfers enough energy to
silicon electrons to escape from the parent atom. The electrons
move and flow from n-type to p-type electrodes, converting
solar energy to electrical power. The voltage generated from
the solar panel varies based on the change in the amount of
sunlight, as shown in Table V. The voltage generated from
the solar panel is used to power the solar sensor node using a
voltage regulator. It is also used to charge the battery using a
junction rectifier diode, which will be used to power the node
in the night and gloomy days. The powering core which houses
a solar panel and rechargeable battery feeds the unregulated
voltage as an input to the series pass element in the voltage
regulator core. The amplifying circuit present in the voltage
regulator core outputs regulated voltage required to power the
microcontroller and various sensors.

We propose a novel soil moisture sensor for the sCrop
device introduce in the current paper. The soil moisture sensor
overcomes the drawbacks of the existing sensors, such as
corroding of rods, faulty values, shorter probe length and
robustness. The probes of the developed sensor are made
of Stainless Steel (iron + (> 10.5 %). Chromium is a very
active element that reacts with oxygen in the air and forms a
protective layer of Cr2O3 (Chromium oxide), which prevents
corrosion. The rods are placed in the holes, which are 1 inch
apart from each other on an insulator. The length of the sensor
varies according to the range of the roots of the crop plant.

The powered microcontroller is interfaced with a camera
module and a self-made robust soil moisture sensor. The
camera module is used to capture the image of the leaf and
send it to cloud storage. It is a cheap camera module which can
be easily interfaced with the microcontroller using a DEMUX
and is capable of capturing an image in VideoGraphicsArray
(VGA) format. It also comes with a FIFO buffer, which
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Fig. 11: The Proposed Solar Energy Module of the Sensor of IoAT.

TABLE V: Variation in output Voltage value.

Conditions Output Voltage (in Volts)
Sunny 16.3

Moderately Sunny 14.4
Overcast 8.33

Shady/Dark 0.89

enables the oldest entry to be processed further in the data
buffer.

The time interval between measuring soil moisture of the
field is kept high enough to avoid faulty values because of the
time delay in processing and sending the values to the cloud
storage. The two probes are given 5 V and gnd respectively,
because of which after dipping the probes in the soil, the
medium between them(soil) will be conductive, and probes
receive some electron. To measure the moisture level of the
soil, we calculate the resistance between the two probes using
the concept of dielectric permittivity. The 10kohm resistor be-
tween the pins A0 and gnd creates a reference resistance for us
to calculate the resistance between the probes. For calibrating
the soil moisture sensor, 100 grams(gm) soil was mixed with
100 milliliters (ml) of water, and the moisture content of the
soil was calculated using the following expressions

Sm =

(
WW −DW

DW

)
, (7)

Smp = 100× Sm. (8)

In the above expressions, Sm refers to the soil moisture
level, Smp is the percentage of soil moisture content, WW is
the weight of the wet soil, DW is the weight of the dry soil.
The soil moisture sensor calculates the % moisture content
using the following expression:

Smps = k2(0.008985×MV + 0.207762), (9)

where Smps is the percentage of soil moisture content, k =
2.718282, and MV is the analog reading of the soil moisture
sensor from the microcontroller. The calibration values of the
soil moisture sensor are, given in Table VI. The Table shows
the same change in the values of the soil moisture sensor and
calculates soil moisture values, which shows the efficiency of
the sensor.

TABLE VI: Comparison of self-made and existing soil
moisture sensor values.

Parameters Self-Made Sensor
Values

Calculated
Values

Inside Dry Soil 1 1023
2 1022
4 1021

Inside Water 250 673
260 650
260 623

Inside Wet Soil 537 534
482 489

The proposed solar-power module can be integrated with
hardware-assisted security feature as presented in our work
called “Eternal-Thing” [5] that combined security and energy
harvesting. We can also integrate our proposed solar-power
module with our intelligent battery modules that improve
battery life to further improve sustainability [32].

IX. EXPERIMENTAL PROTOTYPING AND VALIDATION

A. Experimental Prototyping of IoAT Using

This section describes about the hardware and software
requirements necessary for the proposed system design. The
prototype of IoAT device is shown in Fig. 12. The experi-
mental prototype of sCrop is given in Fig. 12a showing no
irrigation, as the soil moisture level measured is greater than
the threshold soil moisture content. Whereas, in Fig. 12b, the
irrigation is actuated as soon as it detects a soil moisture level
less than the threshold.
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(a) Prototype setup with no irrigation.

(b) Less soil moisture level, prototype setup with irrigation.

Fig. 12: IoAT Experimental Prototype.

The hardware constituents of the prototype include ESP-
8266 as the micro-controller [33], interfaced with the soil
moisture, temperature, humidity, and camera sensors [34]. The
developed soil moisture is durable, accurate and cost-effective
when compared with its peers. The sensory probes of the
soil moisture sensor are made of stainless steel and variable
length, to prevent corrosion and be adaptable to any root
length. The software requirements include Arduino Integrated
Development Environment (IDE), ThingSpeak cloud database,
and Python IDE.

The IoAT mobile application, as shown in Fig. 13 , provides
various options for selecting the crop, track live irrigation
status and crop disease predictions. The requirements for the
development of the application are Android Studio, PyTorch
and Keras. PyTorch and Keras helps in deploying the trained
CNN model in the mobile application.

B. Experimental Validation

For experimental purposes, the proposed system is deployed
with one solar sensor node and two functionalities of the pro-
totype are validated, i.e.automatic irrigation using solar sensor
node and disease prediction. The experiment is performed by

Fig. 13: Proposed sCrop App for User Interface.

deploying the prototype in a real agricultural field as shown in
the Fig.14. During the experiment, we found the peak power
comsumption by our node to be 20 mA. As we have made sure
of using a the sensors with low power consumption, we can
run a fully charged 1000mAH battery for about 48-55 hours
fully functional. Even with a high enviornment temperature,
the circuit temperature didn’t cross the threshold temperature
of the node. The first functionality is tested in three scenarios
for a period of three months: Morning / Evening Hours, Noon
/ Peak Hours, and Dusk / Night Hours. Following which, the
disease prediction is discussed. The experiment is carried out
in the field of size 50X50 m2.

1) Morning/ Evening Hours: This experiment is carried out
in two time slots, i.e., Slot 1 (5 AM - 7 AM and 3 PM - 5
PM) and Slot 2 (7 AM - 11 AM and 5 PM - 6:30 PM). Slot 1
consists of an overcast sky that powers the solar panel, which
generates a total of 8.33 V, stepped down to 3.3 V to power
the node. Similarly, Slot 2 generates a total of 14.4 V. Once
the soil moisture reading is less than the threshold Fig. 14a,
the water pump is turned on for 45 minutes Fig. 14b. The
sensor node data along with a time stamp is sent to the cloud.
A similar pattern is observed in the change of moisture value
during the Slot 2 experiment.

2) Noon / Peak Hours: This experiment is carried out in the
time slot of 11 AM - 3 PM during which the sunlight is at its
maximum luminosity. The solar panel generates a total of 16.3
V, out of which, 3.3 V is used to power the microcontroller
and 12.9 V is used to recharge the backup battery. The solar
sensor node senses the value of the soil moisture content to
be more than the threshold value. The experimental setup for
the condition described above is represented in Fig. 15. The
significance of this experiment is to notify the farmer as this
time-slot doesn’t require irrigation and thus he needn’t be at
the field. He can monitor all other changes via the app.

3) Dusk / Night Hours: This scenario, shown in Fig. 16, is
considered for the time duration 7 PM - 4 AM during which
there is no sunlight. The solar panel generates a total of 0.89
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(a) Morning Hours with no irrigation.

(b) Less soil moisture level, morning hours with irrigation.

Fig. 14: Experimental setup (Morning Hours).

Fig. 15: Experimental Setup (Noon Hours).

V, hence, the backup battery power is used to control the
microcontroller. The solar sensor node senses the value of the
soil moisture content to be more than the threshold. All the
environmental variables along with the time-stamp are updated
in the cloud. The experiment has been carried out during night
time and hence, the quality of the image appears dark.

Fig. 17 shows optimised soil moisture values when au-
tomation is used instead of traditional irrigation approach.
The x-axis denotes the duration and the y-axis denotes the
soil moisture content. From the comparison, it is visible that
without automation there is an excess in the irrigation which
might lead to biotic stress and diseases. However, the IoAT

Fig. 16: Experimental Setup (Night Hours).

system being equipped with disease prediction provides real-
time protection for the crops.
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Fig. 17: A complete day soil moisture value change
comparison between automated irrigation scenario and with

automated irrigation scenario.

C. Comparative Perspective with Related Works

The proposed IoAT solution is developed to overcome the
drawbacks of existing solutions in terms of energy efficiency,
cost-effectiveness and robustness of sensors. The proposed
IoAT solution is solar powered which makes it energy efficient
and overcomes the drawbacks of [15]–[19], [21]. The devel-
oped soil moisture sensor overcomes the drawbacks of [16],
[19]. Unlike [15]–[17], [19], [21], the proposed solution does
not require any additional hardware to connect to the cloud
database. The trained CNN plant disease classifier overcomes
the low accuracy drawback in [19], [24], [25], [28] and usage
of high computational resources in [25], [27].

X. CONCLUSION AND FUTURE WORKS

In this paper, a solar enabled smart agriculture system
coupled with crop disease prediction is proposed to aid the
farmer in making agriculture more profitable and less arduous.
The deployment of the proposed method is demonstrated in
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real-time. A developed soil moisture sensor, DHT11 sensor,
and a camera module integrated with the NodeMCU comprise
the solar sensor node. The solar sensor node is powered by a
solar panel, and this sets the proposed solution on an energy-
efficient side when compared with the existing solutions. The
soil moisture values help in the automation of the water pump
for irrigation, and the camera snapshots of the crops are sent
to the ThingSpeak cloud for storage and further processing.
Besides, the IoAT app is provided for tracking the irrigation
process and helps in analyzing the crop images from IoT cloud
to predict the disease, if any.

In the future aspects of the proposed solution, the developed
IoAT app can be made available for usage in various regional
languages for the ease of use by the farmer and a multi-
platform app can also be developed enabling app usage in
Android and iOS. A database for various other crop diseases
can be built and used to train the model, increasing the
efficiency of the solution and enabling coverage of more
number of crops and their diseases. Security and privacy issues
in the smart agriculture also needs research within the energy
consumption constraints [35]–[37].
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