Lab 7: More FSM Design

TA: Andrew White
Oct 22, Oct 29, Oct 31

1 Overview

This lab is a continuation of FSM design using VHDL.

2 VHDL Constructs

2.1 Enumerated Types

As the name describes, VHDL-VHSIC Hardware Description Language is
used to describe the hardware or circuit in terms of either behavior, struc-
ture, or in terms of the data-flow through the system. In FSM design, it is
often convenient to abstract the behavior of the circuit from the implemen-
tation. User specified enumerated types are one way to aide in this. Rather
than use arrays of type std_logic or bit, new types can be created whose
values are symbolic of the FSM they are describing. The syntax for this is
given in Figure 1 and an example in Figure 2.

type type_name is (type_definition);

Figure 1: Syntax for a type definition.

2.2 State Encoding With Enumerated Types

When defining new enumerated types, it is important to note that the en-
coding of each successive value will be in binary. For example, in Figure 2

—Define the type
type fsm_states is (stInit, st1, st2, st3)
— Declare a signal of the new type
signal curstate : fsm_states

Figure 2: Example of type used in four state FSM.



attribute enum_encoding : string;
attribute enum _encoding of type_name : type is
“valuel_encode value2_encode ...”;

Figure 3: Syntax for enumerated type value encoding.

where there are four states, stInit will be encoded as value 00 and st3 will
be encoded as 11. As discussed in the last lab, binary state encoding might
not be desirable. VHDL allows us to define an attribute that can be set to
allow for the encoding of the values of an enumerated type to be changed.
This attribute is defined and set in the declarative region of the architecture
with the type definition. The syntax is given in Figure 3 and an example for
the type example in Figure 2 is given in Figure 4. State encoding is most
often unspecified and left to the synthesis tool to handle. For the Xilinx
tools, this is set under Synthesis/Implementation Options.

3 Lab

3.1 Description

For this lab, you are to design a FSM that controls a four-way intersection.
The FSM will control traffic for an intersection of two streets, the main road
running north-south (N'S) and the cross road running east-west (EW). The
traffic controller will give the outputs (green, yellow, and red)for one traffic
light for each street (the light outputs for a street will be used for the traffic
lights of both directions of that street). The intersection uses two sensors
to indicate when a car is present on a particular street; sensor_INS for cars
on the street running north-south, and sensor EW for cars on the street
running east-west.
The behavior of the traffic controller is as follows:

attribute enum_encoding : string;
attribute enum _encoding of fsm states : type is “00 01
11 107;

Figure 4: Example of type used in four state FSM.



e When the controller starts, the main road’s traffic lights display a
green light and the cross road displays a red light.

e When the sensor for the cross road is triggered, the main road’s traffic
lights will cycle from green to yellow and then to red.

e Once (after) the main road’s traffic lights have turned red, the cross
road’s traffic lights will turn green.

e The cross road’s traffic lights will remain green until the sensor for the
main road is triggered. Then the cross road’s traffic lights will cycle
to red. Once (after) the traffic lights for the cross road have turned
red, the main road’s traffic lights will turn green.

e This behavior will repeat for as long as the FSM is running.

The functionality of this traffic controller is very limited and will be
added to in future labs. Do not discard this FSM.

3.2 Procedure

Create a Moore FSM designed to implement the traffic controller described
above. Define and use an enumerted state type, where you define your own
values that are suffecient to cover all states in your FSM. In this lab you
may leave the state encoding for your defined type as the default binary
encoding.

Your FSM will have four inputs: clock, reset, sensor_NS, and sensor_[EW.
The FSM will have six outputs: green NS, yellow_NS, red NS, green_ EW,
yellow EW, and red EW. The sensor inputs will be asserted to signify that
a car has reached the intersection. Only the sensor of the road whose traffic
is stopped needs to be monitored. When a road’s traffic light turns green,
it’s sensor should be deasserted after a short period to signify that there
are no cars waiting. For this lab, the sensor inputs will be generated in the
test bench, so it is important that you plan when to assert and deassert the
sensor inputs. To test the circuit, use the VHDL test bench included as a
template to create a test bench for your FSM as done in previous labs. In
following labs we will make this traffic sensor more robust and handle traffic
in a more effecient manner.

3.3 Report

The lab report will consist of a state diagram either neatly hand-drawn or
created using a drawing program (visio, paint, xfig, etc), the VHDL code of



the FSM, the test bench used, and the simulation waveform. The waveform
should be clearly labeled where a car arrives and noted that the appropriate
traffic light is triggered. Test the FSM for several transitions of traffic from
the two streets to show proper functionality.



