Sequencing and Control
Instructor: Saraju P. Mohanty

PART 1

*The control units

*Algorithm State Machines

*Some Design Examples

eHardwired Vs Microprogrammed control

eHardwired control design
Sources

*[Logic and Computer Design Fundamentals by M. M. Mano and
C. R. Kime.

eDr. Valavanis lectures

Dept. of CSEE CDA 4203: Computer System Design USEHF R

UNIVERSITY OF
SOUTH FLORIDA

The Control Unit

eBinary information stored in a digital computer can be classified as
either data or control information.

*Register timing in a synchronous digital system is controlled by a
master clock generator.

*Clock pulses are applied to all ff and registers in the system, including
those 1n the control unit.

*To prevent continuous clock pulses from changing the state of all
registers on every clock cycle, some registers have a load control
signal that enables and disables the loading of the register.

The control unit that generates the signals for sequencing the
operations in the datapath 1s a sequential circuit with states that dictate
the control signals for the system.

eUsing status conditions and control inputs the sequential control unit
determines the next state in which additional microoperations are
activated.

Dept. of CSEE CDA 4203: Computer System Design w

UNIVERSITY OF
SOUTH FLORIDA

The Control Unit ...

Based on the overall system design, there are two distinct types of
control units used in digital systems, one for a programmable system
and the other for a nonprogrammable system.

In a programmable system, a portion of the input to the processor
consists of a sequence of instructions. Each instruction specifies the
operation the system is to perform.

Instructions are stored in memory (RAM or ROM).

To execute instructions in sequence, necessary to provide the address in
memory of the instruction to be executed. Address comes from a register
called the program counter (PC).

Executing an instruction means activating the necessary sequence of
microoperations in the datapath required to perform the operation
specified by the instruction.

Dept. of CSEE CDA 4203: Computer System Design USK B

UNIVERSITY OF
SOUTH FLORIDA

Algorithm State Machines (ASM)

e Data-processing task can be defined by register transfer operations
controlled by a sequencing mechanism. Such a task can be
specified as a hardware algorithm that consists of a finite number
of procedural steps which perform the data processing task.

e A flowchart 1s a convenient way to specify a sequence of
procedural steps and decision paths for an algorithm.

A special flowchart is used, called algorithmic state machine
(ASM) chart.

e A state machine 1s another term for a sequential circuit.

e The ASM resembles a conventional flowchart, but there are
differences in terms of interpretation (ASM also describes the
timing relationship between the states).

Dept. of CSEE CDA 4203: Computer System Design USEHF R

UNIVERSITY OF
SOUTH FLORIDA

Algorithm State Machines: ASM chart elements

Name l

Register operation
or autput

IDLE l 000

R+0
RUN

| |

(a) State box

Binary
code

(c) Decision box

(b) Example of state box

IDLE

e) Example of decision and condition output box

From decision box

Register operation
ar autput

(d) Conditional output box
Fig. 8-1 ASM Chart Elements

Three basic elements

eState box
edecision box

econditional output box

Register transfer indicates
that the output signal RUN 1s
to be 1 during the time that
the control is in state IDLE.
RUN is 1 for any state box in
which it appears and it 1s O
for any state box in which it
does not appear.

Dept. of CSEE

CDA 4203: Computer System Design

USKF B

UNIVERSITY OF
SOUTH FLORIDA

Algorithm State Machines: ASM block

An ASM block consists of one state box and all of the decision and
conditional output boxes connected between the state box exit and
entry paths to the same or other state boxes.

. o *The ASM chart is a really a
e e form of state diagram for the
AVAIL sequential circuit part of the

control unit.
St o @ *Each state box is equivalent

to a node 1in the state diagram.
A0
C > eThe decision box is

: equivalent to input variable.
Em . Outputs of the register
MULO 4 MULT transfer and boxes are

equivalent to the output of the
Flg. 8.2 ASM Block sequential circuit.

Dept. of CSEE CDA 4203: Computer System Design USKF B

UNIVERSITY OF
SOUTH FLORIDA

Algorithm State Machines: Timing Considerations

-
=

Entry ASM BLOCK
IDLE)

AVAIL

Exit Exit
MULD ¥ MUL1

*The timing of the events related to state
IDLE 1s shown.

*All the FFs are assumed to be positive
edge-triggered.

Clock cycle 1 Clock cycle 2 Clock cycle 3
Clock
START
Qo
State IDLE X MUL1
AVAIL \
A 0034 X 0000

Fig. 8-3 ASM Timing Behavior

Fig. 8-2 ASM Block

Dept. of CSEE CDA 4203: Computer System Design USKEF B

UNIVERSITY OF
SOUTH FLORIDA

Design example: Binary multiplier

Multiply two unsigned numbers, n-bits each. The product can
have up to 2n bits.

23 10111 Multiplicand
19 10011 Multiplier
10111
10111
00000
00000
10111

437 110110101 Product

F1g. 8-4 Hand Multiplication Example

Dept. of CSEE CDA 4203: Computer System Design USE B

UNIVERSITY OF
SOUTH FLORIDA

Design example: Binary multiplier ...

With digital hardware: Instead of having digital circuit that adds n
binary numbers simultaneously, it is less expensive to provide a
circuit that sums only two numbers. So each time a copy of the
multiplicand or 0’s are determined to enter into the addition, they
are 1mmediately added to a partial product, stored in a register in
preparation for the shift action to follow.

Instead of shifting copies of the multiplicand to the left, partial
product formed 1is shifted to the right — leaves partial product and
the copy of multiplicand in the same relative position as the left
shift. More important, adder i1s needed for only n bit positions
instead of 2n bit positions. Addition always takes place in the same
n position.

When corresponding bit in multiplier 1s 0, no need to add all 0’s.

Dept. of CSEE CDA 4203: Computer System Design USKH E

UNIVERSITY OF
SOUTH FLORIDA

Design example: Binary multiplier ...

23
19

437

10111 Multiplicand

10011 Multiplier

00000 Initial partial product

10111 Add multiplicand, since multiplier bit is 1

10111 Partial product after add and before shift

010111 Partial product after shift

10111 Add multiplicand, since multiplier bit is 1
1000101 Partial product after add and before shift®

1000101 Partial product after shift

01000101 Partial product after shift

001000101 Partial product after shift

10111 Add multiplicand, since multiplier bit is 1

110110101 Partial product after add and before shift

0110110101 Product after final shift

a. Note that overflow temporarily occurred.

Fig. 8-5 Hardware Multiplication Example

Dept. of CSEE

CDA 4203: Computer System Design USKE BE

UNIVERSITY OF
SOUTH FLORIDA

Design example: Binary multiplier ...

Multiplier Datapath: Counter P requires [log,n] bits in order to count processing of n bits of
multiplier. Multiplicand is loaded into register B from IN, multiplier into Q from IN , partial
product is formed in A and stored in A and Q. Dual use of Q is possible because we use a
right shift of the multiplier in Q to examine each successive multiplier bit. Right shift vacates
space one bit at a time in Q. This space accepts the lower part of the partial product from A as
it is generated. N-bit binary adder is used for adding B to A. C FF stores C_, from the
addition and it is reset to 0 during right shift.

n—1

}

Counter P

r Ioggn—‘
Y

I Zero detect

G (Go)

Control Qg

Cout

1™

unit

|

Control signals

K
Multiplicand
Register B
n
k4 ;
Parallel adder
n ng-
-
Multiplier
Shift register A > Shift register Q
n{
.Y Product)
ouT

Fig. 8-6 Block Diagram for Binary Multiplier

To count # of add-shift or
shift, P 1s provided.
Initially set to n-1 and
counted down after the
formation of each partial
product.

Unit in initial state until
G becomes 1, then
system performs
multiplication.

Dept. of CSEE

CDA 4203: Computer System Design

USKF B

UNIVERSITY OF
SOUTH FLORIDA

Design example: Binary multiplier ...
Basic components)

l———J

a2 |2 m [Ca
Cya Sig Slg Si1 Sl.j
Fig. 3-28 4-Bit Ripple Carry Adder
o |
e —% —
— [=
I—l__J'
o] — | o - _ =R
! I—'—"-I — =hit
[= — Lcaa
I—l__r" — 1 =
N o
. I | o . i o —
I T = [b] Symbol
I—I_-r"
.
: %—n T
—l_‘-\--‘I — L=
|—|_-"
- Fia. 5-& Shift Reast=r with Parall=l Load
Dept. of CSEE CDA 4203: Computer System Design USKE BE

UNIVERSITY OF
SOUTH FLORIDA

Design example: Binary multiplier ...
(Basic components)

)

Fikakik

b—

Fig. 5-2 4-Bit Register with Parallel Load

C.

-k £

K
&#H

[

|
FREPRY .

[H Symbel

00

|]

vyl vyl vyl y
00

[]

il
i

Carry
Durtrt £

[m) Legps chagpare
Fig. 5-12 4-Bit Binary Counter with Parallel Load

Dept. of CSEE CDA 4203: Computer System Design USK BE

UNIVERSITY OF
SOUTH FLORIDA

Design example: Binary multiplier ...
(ASM chart for multiplier)

IDLE

S
Ce 0, A+ O
Ps+n-1

r

RALILO

<

A A+ B
C—Con

MUL1 T

C+0,CA|QesrC|A|Q,
P—P_1

Initially multiplicand in B, multiplier in Q.
When ASM in state IDLE and G=0 no action.
Process starts when G=1. ASM moves from
IDLE to MULO, C and A are cleared to 0, P
loaded with constant n-1. In MULO decision is
made based on Q,, the LSB of Q. If 1 contents
of B added to those of A with result transferred
to A and carry to C. If 0, A and bit C unchanged.
In both cases, next state is MULI.

Fig. 8-7 ASM Chart for Binary Multiplier

In MULI a right shift is performed on
combined contents of C, A, Q. Shift

expressed by five simultaneous transfers
C<0, An-1)€C, A<sr A, Q(n-1)<A(0),
Q< srQ

Define combined register CIIAIIQ, re-write
then as ClIAIIQ < sr CIIAIIQ

Dept. of CSEE CDA 4203: Computer System Design USK B

UNIVERSITY OF
SOUTH FLORIDA

Implementing Control Units

e Two basic approaches of implementing control unit:
—Hardwired
— Microprogramming
e Hardwired control: Less costly for small control units,
offers faster speed and useful for high-performance

systems. Design involves a finite state machine, which 1s
implemented using combinational logic, registers, etc..

e Microprogramming control: More useful for complex
instructions, slower than the hardwired control. The
control unit 1s designed as a program that implements the
machine 1nstruction 1n terms of simpler
microinstructions.

Dept. of CSEE CDA 4203: Computer System Design w

UNIVERSITY OF
SOUTH FLORIDA

Design example: Binary multiplier ...
(Hardwired Control)

T Block Diagram Control Control
Module Microoperation Signal Name Expression
Register A: A<D [nitialize IDLE-G

A<A+B Load MULO- 0,
ClA|Q «sr ClA|Q Shift_dec MULI
Register B: B<IN Load_B LOADB
Flip-Flop C: (0 Clear_C IDLE- G +MULI
CeC,, Load —
Register 0 (<IN Load_() LOADQ
C|A|Q «sr C|A| 0 Shift_dec —
Counter P: Pen-1 Initialize —
PeP-1 Shift_dec —
Table 8-1 Control Signals for Binary Multiplier

Co OCJA&AJO- wC&I
Pe P-4

//\\ Dividing the ASM to two parts
o 7 i

S * A table that defines the control signals

Fig. 8-7 ASM Chart for Binary Multipliar * A simplified ASM chart

Dept. of CSEE CDA 4203: Computer System Design w

UNIVERSITY OF
SOUTH FLORIDA

Design example: Binary multiplier ...

(Hardwired Control)

DLE | 00

MULO | 01

MULT | 10

~_

Fig. 8-8 Sequencing Part of ASM Chart for the Binary Multiplier

State diagram of a
sequential circuit
without outputs
specified, except that
representations used 1in
diagram are different.

It may be difficult to
perform such separation
for large circuits. So
two techniques used:
(1) Sequence register
and decoder method
(2) One Flip-Flop per
state method

Dept. of CSEE CDA 4203: Computer System Design USK Bk

UNIVERSITY OF
SOUTH FLORIDA

Design example: Binary multiplier ...
(Hardwired Control: Sequence Register and Decoder)

Present

MNext

Initialza

LD—EW c

LeLULER IOLE

&0

]

LTS
MULT s dac

(A e =]

state Inputs state Decoder Outputs
Name M M, G Z M, M, IDLE MULO MUL1
IDLE 0 0 0 x 0 0 1 I 0

0 0 Iox 0 1 1 0 0
MULO 0 1 X x 1 0 0 1 0
MULLT 1 0 X 0 0 1 0 0 1

1 0 X 1 0 0 0 0 1
— | 1 x X X X X * X

Table 8-2 State Table for Sequence Register and
Decoder Part of Multiplier Control Unit

Co Clock

D—L-:ud

Fig. -2 Control Unit for Binary Multiplier Using a Sequence Register and a Decoder

Two FFs are used for MO and M1

Binary states: 00-IDLE, 01-MULO, and 10-MULI1

Don’t care (X) when the input is not used to determine the next state.

Outputs of the sequencing par are determined by the state names.

A 2-to-4-line decoder 1s used.

Dept. of CSEE

CDA 4203: Computer System Design

USF K

UNIVERSITY OF
SOUTH FLORIDA

