
Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Logic Circuits and Logic Functions
Instructor: Saraju P. Mohanty

• Variables and Functions
• Logic Gates and Networks
• Boolean Algebra
• Synthesis using, AND, OR, NOT, NAND, NOR
• Karnaugh Map
• Strategy for Minimization
• Multiple-Output Circuits
• Analysis of Circuits

Note: The slides are from text or reference book authors or publishers.

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

IEEE Standard Graphics Symbols
Commonly
used

IEEE

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Variables, Functions, Gates and Networks

• A logic expression describes the output as a logic
function of input variables.
Example: z = f(x1,x2) = x1 + x2

• NOT, complement, or inversion represent the same
thing.
Example: z’ = f’(x1,x2) = (x1+x2)’

• Logic operations are implemented using logic gates.
Each gate has more than one input (s).

• Logic circuits are implemented by a network of logic
gates.

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Analysis Vs Synthesis of Logic Networks

• Two basic issues of digital system design:
– Analysis
– Synthesis

• Analysis: Given an existing network determine
its behavior, the function it performs.

• Synthesis: Design a network that implements a
desired functional behavior.

• Analysis process is more straightforward and
simple than synthesis process.

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Analysis of Logic Networks : Example

x 1

x 2

1 1 0 0 → → →

f
0 0 0 1 → → →

1 1 0 1 → → →

0 0 1 1 → → →

0 1 0 1 → → →

(a) Network that implements f x 1 x 1 x 2⋅+ =

A

B

1
0

1
0

1
0

1
0

1
0

x 1

x 2

A

B

f
Time

(c) Timing diagram

x
1

x
2

f x
1

x
2

, ()

0
1
0
1

0
0
1
1

1
1
0
1

(b) Truth table

A B

1 0

1 0

0 0

0 1

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Boolean Algebra

• To describe the operational properties of digital circuits
mathematical notation specifying each gate operation is
introduced, which is a class of mathematical system
called “Boolean Algebra”.

• For simplicity, the algebra dealing with binary variables
and logic properties is Boolean Algebra.

• A “Boolean Function” has binary variables, an equal sign
and algebraic expression.

• Boolean Function can be represented as a truth table as
well.

• For n variable function the number of rows of the truth
table will be 2n.

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Boolean Algebra : Boolean Function ……..

• For a given value of binary variables the Boolean
function can be equal to either “0” or “1”.

• Example : F = X + Y’Z

• The two parts of the algebraic expression, such as “X”
and “Y’Z” are called terms of the function.

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Combinational Logic Circuit ??

• In logic circuits the variables are given as input and
the functional value is taken as output.

• The gates are interconnected by wires that carry logic
signals.

• Thus, the variables are combined by the logic
operations, which gives rise to the name
“combinational logic”.

• NOTE: Sequential variables are stored over time and
as well as combined.

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Boolean Algebra : Some Identities

•Nine identities involve single variable.

•Seven identities involve two or more than two variables.

•The duals of an algebraic expression is obtained by
interchanging the OR and AND operations, and replacing
“1”s by “0”s and “0”s by “1”s.

Left and right
column expressions
are duals of each
other, for example
10 and 11 are duals
each other.

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Boolean Algebra: Algebraic Manipulations

•When Boolean expressions is implemented with logic
gates, each term requires a gate, and each variable within
the term becomes an input to the gate.

•Example: Lets consider the implementation of X+Y’Z

•Algebraic manipulations are useful for simplifying digital
circuits.

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Boolean Algebra: Terms and Literals

Literal is a single variable within a term that may or may
not be complemented.

3 terms and 8 literals

2 terms and 4 literals

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Boolean Algebra: Simplifications
Both (a) and (b) give the same result F:

F = X’YZ+X’YZ’+XZ = X’Y(Z+Z’)+XZ = X’Y+XZ
But, (b) needs fewer number of gates, so is area efficient.

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Boolean Algebra: Complement of a Function

•Complement of a function is obtained by interchanging
“0”s to “1”s and “1”s to “0”s.

•It can be obtained algebraically by applying DeMorgan’s
theorem.

•The general DeMorgan’s theorem: Complement of a
function can be obtained by interchanging AND and OR
operations and complementing each variable and
constant.

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Boolean Algebra : DeMorgan’s Theorem

DeMorgan’s Theorem for n variables

•(X1+X2+X3+……+ Xn)’ = X1
’X2

’…..Xn
’

•(X1X2X3……Xn)’ = X1
’+X2

’+…..+Xn
’

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Boolean Algebra: Complementing Example

Find complement of the function, F = X’YZ’ + X’Y’Z

Method 1: (Using DeMorgan’s theorem)

F’ = (X’YZ’ + X’Y’Z)’ = (X’YZ’)’ (X’Y’Z)’

= (X +Y’+Z) (X+Y+Z’)

Method 2: (Using Duality)

We have, F = X’YZ’ + X’Y’Z = (X’YZ’) + (X’Y’Z) (use
parentheses to avoid confusion)

Dual of F = (X’+Y+Z’) (X’+Y’+Z)

Complementing each literal : (X+Y’+Z) (X+Y+Z’) = F’

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Standard Forms of Boolean Functions

• Standard forms help in simplifying the Boolean expressions
and frequently results in more desirable logic circuits.

• Standard forms contain product terms and sum terms.
– product terms (example X’YZ)
– sum terms (example X+Y+Z’)

• In Boolean algebra, product means logical AND operation
and sum means logical OR operation.

• Two standard forms Standard forms of Boolean functions
are:
– Sum-of-Products (SOP)
– Product-of-Sums (POS)

• Product terms are called minterms and sum terms are called
maxterms.

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Standard Forms: Minterms

• A product term in which all the variables appear exactly
once, either complemented or uncomplemented is
called a minterm.

• Property: It represents exactly one combination of the
binary variables in a truth table. It has the value 1 for
that combination and 0 for all others.

• For n variables there are 2n distinct minterms.
• Example: Given two variables X, Y, the four minterms

are X’Y’, X’Y, XY’ and XY.
• The symbol for a minterm is mj ,where j denotes the

decimal equivalent for which the minterm has the value
of 1.

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Standard Forms: Minterms (for 3 variables)

The binary numbers from 000 to 111 are listed under variables. For
each binary combination there is a related minterm. Each term is the
product of exactly 3 literals. A literal is a complemented variable if the
corresponding bit of the related binary combination is 0 and it is
uncomplemented variable if it is 1. The table is shown above can be
extended for any n variables.

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Standard Forms: Maxterms

• A sum term that contains all the variables in complemented
or uncomplemented form is called a maxterm.

• For n variables there are 2n distinct maxterms.
• Each maxterm is the logical sum of the variables, with each

variable being complemented if the corresponding bit of the
binary number is 1 and uncomplemented if it is 0.

• The symbol for a maxterm is Mj where j denotes the
decimal equivalent of the binary combination for which the
maxterm has the value 0.

• Example: Given two variables X, Y, the four maxterms are
(X+Y), (X+Y’), (X’+Y), and (X’+Y’).

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Note: Mj = mj
’

Standard Forms: Maxterms (for 3 variables)

The binary numbers from 000 to 111 are listed under variables. For
each binary combination there is a related maxterm. Each term is the
sum of exactly 3 literals. A literal is a complemented variable if the
corresponding bit of the related binary combination is 1 and it is
uncomplemented variable if it is 0. The table is shown above can be
extended for any n variables.

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Standard Forms: Sum-of-Minterms

A function of three variables A Boolean function can be
expressed algebraically by
logically summing all the
minterms that produce a “1”
in the function. This
expression is called a “sum
of minterms”. The function
shown in the left side, can
be expressed as follows.

F = m0 + m2 + m5 + m7

= Σ m(0,2,5,7)

The symbol Σ denotes logical sum (OR).

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Standard Forms: Product-of-Maxterms

A function of three variables.
A Boolean function can be
expressed algebraically by
finding logical product of all
the maxterms that produce a
“0” in the function. This
expression is called a
“product of maxterms”. The
function shown in the left
side, can be expressed as
follows.

F = M1 . M3 . M4 . M6

= П M(1,3,4,6)
The symbol П denotes logical product (AND).

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Standard Forms: SOP, POS

Product-of-Sums (POS) is
the simplified form of
Product-of-Maxterms. A POS
expression is equal to 0 only
if one or more of the sum
terms in the expression is
equal to zero.

Sum-of-Products (SOP) is
the simplified form of the
Sum-of-Minterms. An SOP
expression is equal to 1 only
if one or more of the product
terms in the expression is
equal to one.

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Map Simplification

• We need to express a function in simplified form to
reduce the number of gates needed for its
implementation, thus reducing the overall area of the
chip to be fabricated.

• A function has an unique truth table representation, but it
can have various algebraic representations.

• Boolean expressions can be simplified by algebraic
manipulations, but this is a complicated procedure.

• The map procedure is much simpler.
• The map is known as Karnaugh map or K-map.
• The K-map is a diagram made up of squares, with each

square representing one minterm (or a maxterm) of the
function.

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Map Simplification : Three Variable Map

There are eight minterms for a Boolean function with three
variables. Hence, the K-map consists of eight squares, one for
each minterm.

Example: F(X,Y,Z) = Σ m(2,3,4,5)

After simplification we obtain,
F(X,Y,Z) = X’Y + XY’

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Map Manipulations

• While combining the squares in K-maps it is necessary
to ensure that all the minterms are included.

• To minimize the number of terms in the simplified
function any redundant term has to be avoided. So, the
procedure of merging the squares need to be
systematic.

• Three terms introduced to systematize the combining
procedure are listed below.
– Implicant
– Prime Implicant
– Essential Prime Implicant

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Map Manipulations: Terminology

• An implicant is a product term (product of one or more
literals) that could be used to cover minterms of the
function. All the rectangles on a map made up of
squares containing 1’s correspond to implicants.

• A prime implicant is an implicant that is not a part of any
other implicant of the function. Equivalently, prime
implicant is a set of squares that is not a subset of any
set containing larger number of squares.

• An essential prime implicant is a prime implicant that
covers at least one minterm that is not covered by any
other prime implicant.

• NOTE: Some of the implicants are prime implicants and
some of the prime implicants are essential prime
implicants.

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Map Manipulations : Terminology Example

NOTE: Implicants are, all single minterms + all groups of two / four /
sixteen minterms.

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Map Manipulations: Simplification using Prime Implicants

Rule: Determine all prime
implicants. The simplified
function is the logical sum of all
the essential prime implicants
and other prime implicants
needed to include the remaining
minterms not included in the
essential prime implicant.

The terms A’D and BD’ are essential prime implicants since minterms 1
and 3 are covered by A’D only, and minterms 12 and 14 are covered by
BD’ only. As the minterms 4,5,6 and 7 are already included in A’D and
BD’, the remaining prime implicant A’B is not an essential prime
implicant. The simplified expression is F = A’D + BD’.

NOTE: In this example, we do not need A’B since essential prime
implicants cover all the minterms.

Example:

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

• OR, AND, NOT are basic gates and can implement all
logic functions. NAND and NOR are universal gates and
can also implement all types of logic functions.

• What is a good choice ??
The deciding factors are :
– Cost
– Possibility of extending the gate to more than two

inputs
– ..and so on.

• NAND and NOR are more popular choices.

What Gates to be used in design ??

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Two-Level Circuits Implementation

Sum-of-products form : AND gate is first level and OR gate
is second level. SOP is more convenient for NAND
implementations.

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

NAND Circuits AND, OR, NOT

NOTE: This will be helpful for logic conversion.

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Two-Level NAND Implementation: General Procedure

• Simplify the function and express it in SOP form.

• Draw a NAND gate for each product term of the
expression that has at least two literals. These literals
become the inputs for the NAND gates. This group of
gates is the 1st level.

• Draw a single gate using AND-NOT or the NOT-OR
configuration at the 2nd level with inputs coming from the
output of the 1st-level.

• A product term with single literal requires a NOT at the
first level. If the single literal is a complement then it can
be directly connected as the input of the 2nd-level NAND.

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Two-Level NAND Implementation: Example

Example : Implement F(X,Y,Z) = Σm(1,2,3,4,5,7) using NAND gates.

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Multilevel NAND Implementation: General Procedure
• Simplify the function and express it in sum-of-products.
• Implement the function using AND, OR, and NOT gates.
• Use the following steps to convert from AND-OR

implementation to NAND-NAND implementation.
• Convert all AND gates to NAND gates with AND-NOT

graphic symbols.
• Convert all OR gates to NAND gates with NOT-OR

graphic symbols.
• Check all the bubbles in the diagram. For every bubble

that is not counteracted by another bubble along the
same line, insert a NOT gate or complement the input
literal from its original appearance.

NOTE: We can develop similar procedure for NOR.

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Multilevel NAND Implementation: Example

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Exclusive-OR : ODD Function

• XOR performs the function F=XY’+X’Y.

• The term “exclusive-OR” is more appropriate for two-variable case.

• In general sense the XOR function is known as odd function.

• Why odd function ? The binary values of all the minterms have odd
number of 1’s.

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

XOR : Parity Generation and Checking

•As discussed before, parity bit is an extra bit added to
the sequence to make it either even or odd parity.

•Used for error detection during transmission of binary
information.

•Odd (and even) functions are used for parity bit
generation and checking.

•Parity Generator is a circuit that generates parity bit at
the transmitter.

•Parity Checker is a circuit that checks parity bit at the
receiver.

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Parity Generator Circuit using XOR
Design of a even parity generator is discussed. The input
message is 3-bits. The parity bit generated as 1 if the
number of 1’s in the 3-bit message is odd, else the
generated bit is 0.

Similarly, the design of a parity checker can be considered.

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Combinational Circuit ??
Consists of input variables, output variables, logic gates
and interconnections. For n input variables 2n possible
input implementations. Thus, it can be specified by a truth
table. Also by m (m≤2n) Boolean functions, one for each
possible output variable.

A combinational circuit has no feedback paths and no storage elements.

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Analysis of Combinational Circuits

Functional verification of the logic circuit.
Three Ways

• Derivation of Boolean Functions:
– Label all gate outputs that are function only of input variables or their complements.

Determine the Boolean functions for each gate output.
– Label gates being functions of input variables and previously labeled gates. Find the Boolean

functions for the outputs of these gates.
– Repeat the previous process until circuit outputs are obtained in terms of input variables.

• Derivation of the truth table:
– For n inputs list the binary numbers in a table from 0 to 2n-1.
– Break circuit into small single-output blocks by labeling each block output with an arbitrary

symbol.
– Obtain the truth table for the blocks depending on input variables only
– Proceed until columns for all circuit outputs are determined.

• Logic Simulation:
– Enter circuit as a netlist or schematic
– Specify inputs as a file contents the simulator can read, or by entering inputs interactively

into the simulator.
– Proceed with simulation.

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Combinational Analysis : Boolean functions

Gate output that are functions of input only : T1=B’C and T2=A’B

Other gates Outputs of : T3=A+T1=A+B’C, T4=T2XOR D, and T5=T2+D

Outputs : F2=T5=A’B+D and F1=T3+T4 = A+B’C+BD’+B’D

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Combinational Analysis : Truth Table

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Combinational Analysis : Simulation

To verify the correctness check the output waveform values
against the truth table of full adder.

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Combinational Circuits :Design Procedure

• Step 1: From circuit specifications determine required
number of inputs and outputs, assign letter symbol.

• Step 2: Derive truth table that defines required
relationship between inputs and outputs.

• Step 3: Obtain simplified Boolean functions for each
output as a function of input variables.

• Step 4: Draw the logic diagram.

• Step 5: Verify design correctness.

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Combinational Design Example

Design a combinatorial circuit with 3 inputs and 1 output, where
the output must be logic 1 when the binary value of the inputs is
less than 011 (3) and logic 0 otherwise. Use only NAND gates.
(Input: X, Y, Z. Output: F)

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Combinational Design Example : Code Converter

•For a combinatorial circuit with two or more outputs, each
output must be expressed separately as a function of all
the input variables.

•Example of a multi-output circuit is a code converter that
translates info from one binary code to another. Inputs
provide the elements bit combination as specified by the
first code, the outputs generate the corresponding bit
combination of the second code.

•Illustration via an example:

BCD to the seven signals required to drive a
seven-segment light- emitting diode (LED)
display.

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Comb Example: BCD-to-Seven-Segment Decoder

It accepts a decimal digit in BCD and generates the
appropriate outputs for the selection of segments that
display the decimal digit.

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Comb Example: BCD-to-Seven-Segment Decoder …

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

•One possible way of simplification results in the following
Boolean expressions:

a= A’C+A’BD+B’C’D’+AB’C’
b= A’B’+A’C’D’+A’CD+AB’C’
c= A’B+A’D+B’C’D’+AB’C’
d= A’CD’+A’B’C+B’C’D’+AB’C’+A’BC’D
e= A’CD’+B’C’D’
f= A’BC’+A’C’D’+A’BD’+AB’C’
g= A’CD’+A’B’C+A’BC’+AB’C’

•14 AND gates 7 OR gates. 27 product terms, 6 common
terms.

Comb Example: BCD-to-Seven-Segment Decoder …

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Comb Example: BCD-to-Seven-Segment Decoder …

Dept. of Comp. Sc. & Eng. CSCI 4330 or 5330 : Digital System Design with VHDL

Comb Example: BCD-to-Seven-Segment Decoder …
•The circuit shown in the previous slide is logic diagram of MC14511B
from http://onsemi.com shown in the figure below.

•Lamp test (LT), blanking (BI), and latch enable (LE) inputs are used to
test the display, to turn–off the display, and to store a BCD code,
respectively.
•Applications: It can be used with LED, incandescent, fluorescent, gas
discharge, or liquid crystal.

