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CSCI 5330
Digital CMOS VLSI Design

Instructor: Saraju P. Mohanty, Ph. D.

Lecture 12 : Circuit Families

NOTE: The figures, text etc included in slides are borrowed 
from various books, websites, authors pages, and other 
sources for academic purpose only. The instructor does 
not claim any originality.
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Outline

• Pseudo-nMOS Logic
• Dynamic Logic
• Pass Transistor Logic



Dept. of Comp. Sc. & Eng. CSCI 5330 : Digital CMOS VLSI Design 3

Introduction
• Usual case: Static CMOS gates using 

complementary NMOS and PMOS
• Alternative CMOS logic configurations are called 

logic families.
• What family to be used? Depending on the 

application, use the family that needs least 
design effort and least logical effort.

• Most common alternatives of SCMOS:
– ratioed circuits
– Dynamic circuits
– Pass-transistor circuits
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Static CMOS Circuit

• Advantages of static CMOS circuit:
– Good noise margin
– Fast operation
– Low power
– Insensitive to device variation
– Easy to design
– Widely supported by existing CAD tools
– Readily available as various cell libraries
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Static CMOS Circuit
• What makes a circuit fast?

– I = C dV/dt    ->  tpd ∝ (C/I) ∆V
– low capacitance
– high current
– small swing

• Logical effort is proportional to C/I
• Static CMOS have large logical effort and high 

voltage swing 0 Vdd.
• PMOS are the enemy!

– High capacitance for a given current
• Can we take the PMOS capacitance off the 

input? Various circuit families try to do this…
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Static CMOS Circuit : Asymmetric Gates

Resettable buffer optimized for 
data input

• When one I/P is less critical 
than another.

• Circuit should be optimized 
for I/P-O/P delay at the 
expensed of reset.

• This reduces the diffusion 
capacitance and parasitic 
delay at the expense of 
slower response to reset.
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Static CMOS Circuit : Skewed Gates

• When one I/P transitions is more important than other

• HI-skew: favor the rising output transitions

• LO-skew: favor the falling output transitions
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Static CMOS Circuit : P/N Ratios

• P/N ratio of library cells should be chosen on the basis of 
area, power, and reliability, not average delay.

• For a NOR gate, reducing size of the PMOS significantly 
improves both the delay and area.
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Static CMOS Circuit : MTCMOS

• MOS with lower VT produces more ON current but also 
leaky exponentially more OFF current.

• Low VT are faster and may be used in critical path of a 
circuit.
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Ratioed Circuits

• Use weak pull-up devices and stronger pull-
down devices.

• I/P capacitance improves, and logical effort 
improves, but depends on ratio of pull-up and 
pull-down strength.

• Strong pull-up : VOLmax is too high
• Weak pull-up : slow rising delay
• Dissipate more static power.
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Ratioed Circuits : Pseudo-NMOS

• In the old days, NMOS 
processes had no PMOS

– Instead, use pull-up 
transistor that is always ON

• In CMOS, use a PMOS 
that is always ON

– Ratio issue
– Make PMOS about ¼

effective strength of 
pulldown network
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Ratioed Circuits : Pseudo-NMOS Gates

• Design for unit current on output to 
compare with unit inverter.

• pMOS fights nMOS
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Ratioed Circuits : Pseudo-NMOS Design

• Ex: Design a k-input AND gate using pseudo-
nMOS.  Estimate the delay driving a fanout of H

• G = 1 * 8/9 = 8/9
• F = GBH = 8H/9
• P = 1 + (4+8k)/9 = (8k+13)/9
• N = 2
• D = NF1/N + P = 

In1

Ink

Y

Pseudo-nMOS
1

1 H

4 2 8 13
3 9

H k +
+



Dept. of Comp. Sc. & Eng. CSCI 5330 : Digital CMOS VLSI Design 14

Ratioed Circuits : Pseudo-NMOS Power

• Pseudo-NMOS draws power whenever Y = 0
– Called static power     P = I•VDD

– A few mA / gate * 1M gates would be a problem
– This is why NMOS went extinct!

• Use pseudo-NMOS sparingly for wide NORs
• Turn off PMOS when not in use
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Ratioed Circuits : Ganged CMOS
• Pair of inverters ganged together and the pair computes 

NOR function.

• When 01 or 10 : acts pseudo-NMOS circuit

• When 00 : both PMOS are ON in parallel pulling the O/P 
high much faster

• When 11 : both PMOS are OFF reducing static power 
consumption 
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Cascode Voltage Switch Logic (CVSL) 

• Performance as good as 
ratioed circuits, but reduced 
static power consumption.

• Uses both true and 
complementary I/P signals 
and computes both true and 
complementary.

• For any given pattern: One 
of the pull-down network will 
be ON and other will be 
OFF. 

AND/NAND gate

4-input XOR gate
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Dynamic Circuit

• Dynamic gates uses a clocked pMOS pullup
• Two modes: precharge and evaluate
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Dynamic Circuit : Footed

• What if pulldown network is ON during 
precharge?

• Use series evaluation transistor to prevent fight.
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Dynamic Circuit : Logical Effort
Inverter NAND2 NOR2
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• Pull-down MOS width are chosen to give unit resistance.
• Precharge occurs when gate is idle which is often slow.
• Footed gates have higher logical effort.
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Dynamic Circuit : Monotonicity problem

• Dynamic gates require monotonically rising 
inputs during evaluation
– 0 -> 0
– 0 -> 1
– 1 -> 1
– But not 1 -> 0

φ Precharge Evaluate

Y

Precharge

A

Output should rise but does not

violates monotonicity
 during evaluation

A

φ



Dept. of Comp. Sc. & Eng. CSCI 5330 : Digital CMOS VLSI Design 21

Dynamic Circuit : Monotonicity Woes

• But dynamic gates produce monotonically falling 
outputs during evaluation

• Illegal for one dynamic gate to drive another!
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Dynamic Circuit : Domino Gates

• Follow dynamic stage with inverting static gate
– Dynamic / static pair is called domino gate
– Produces monotonic outputs
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Dynamic Circuit : Domino Optimizations
• Each domino gate triggers next one, like a string of 

dominos toppling over
• Gates evaluate sequentially but precharge in 

parallel
• Thus evaluation is more critical than precharge
• HI-skewed static stages can perform logic
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Dynamic Circuit : Dual-Rail Domino

• Domino only performs noninverting functions:
– AND, OR but not NAND, NOR, or XOR

• Dual-rail domino solves this problem
– Takes true and complementary inputs 
– Produces true and complementary outputs

invalid11
‘1’01
‘0’10
Precharged00
Meaningsig_lsig_h

Y_h

f

φ

φ

inputs

Y_l

f



Dept. of Comp. Sc. & Eng. CSCI 5330 : Digital CMOS VLSI Design 25

Dynamic Circuit : Dual-Rail Domino

• Given A_h, A_l, B_h, B_l
• Compute Y_h = A * B, Y_l = ~(A * B)
• Pulldown networks are conduction complements

Y_hφ

φ

Y_l
A_h

B_hB_lA_l

= A*B= A*B

Example: AND/NAND
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Dynamic Circuit : Dual-Rail Domino

• Sometimes possible to share transistors

Y_hφ

φ

Y_l
A_l

B_h

= A xor B

B_l

A_hA_lA_h= A xnor B

Example: XOR/XNOR

• Dual-rail domino can be viewed as a dynamic 
form of CVSL, sometimes called DCVS.
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Dynamic Circuit : Leakage

• Dynamic node floats high during evaluation
– Transistors are leaky (IOFF ≠ 0)
– Dynamic value will leak away over time
– Formerly miliseconds, now nanoseconds!

• Use keeper to hold dynamic node
– Must be weak enough not to fight evaluation
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Dynamic Circuit : Charge Sharing

• Dynamic gates suffer from charge sharing noise.
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Dynamic Circuit : Secondary Precharge

• Solution: add secondary precharge transistors
– Typically need to precharge every other node

• Big load capacitance CY helps as well
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Dynamic Circuit : Noise Sensitivity

• Dynamic gates are very sensitive to noise
– Inputs: VIH ≈ Vtn

– Outputs: floating output susceptible noise
• Noise sources

– Capacitive crosstalk
– Charge sharing
– Power supply noise
– Feedthrough noise
– And more!
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Dynamic Circuit : Domino Summary

• Domino logic is attractive for high-speed circuits
– 1.5 – 2x faster than static CMOS
– But many challenges:

• Monotonicity
• Leakage
• Charge sharing
• Noise

• Widely used in high-performance 
microprocessors
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Pass Transistor Circuits

• Use pass transistors like switches to do logic
• Inputs drive diffusion terminals as well as gates

• CMOS + Transmission Gates:
– 2-input multiplexer
– Gates should be restoring
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Pass Transistor Circuits : LEAP

• LEAn integration with Pass transistors
• Get rid of PMOS transistors

– Use weak PMOS feedback to pull fully high
– Ratio constraint
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Pass Transistor Circuits : CPL

• Complementary Pass-transistor Logic
– Dual-rail form of pass transistor logic
– Avoids need for ratioed feedback
– Optional cross-coupling for rail-to-rail swing
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Differential Circuits
• Derived from basic CVSL 

using NMOS pull-down 
network.

• Differential Split Level 
(DSL) : DSL places 
NMOS transistors in 
series with basic CVSL 
pull-down networks.

• Cascode Nonthreshold 
Logic (CNTL) : A 
transistor and a shunting 
capacitor added to the 
bottom of each pull-down 
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Sense-Amplifier Circuit

• Sense amplifiers magnify 
small differential I/P 
voltage into larger O/P 
voltage. 

• These circuits are also 
derived from CVSL.

• Used in memories in which 
differential bitlines have 
high capacitive load.

• Offer potential for reducing 
delay in heavily loaded 
logic circuit as well.
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Sense-Amplifier Circuit : SSDL
• Sample Set Differential Logic (SSDL) modifies dual-rail 

domino logic by adding a clocked sense amplifier and 
modifying the clocking.

• SSDL uses sample and set instead of precharge and 
evaluation phases.

• Keeper is helpful to restore the high level.



Dept. of Comp. Sc. & Eng. CSCI 5330 : Digital CMOS VLSI Design 38

Sense-Amplifier Circuit : ECDL
• Improves on SSDL to eliminate static power dissipation.

• The sense amplifier is made from a pair of cross-coupled 
clocked inverters.

• Cycle is of two phases : enable and disable
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Sense-Amplifier Circuit : LCDL
Latched CMOS Differential Logic (LCDL): 

• Adds a sense amplifier directly to the output nodes of a 
dual-rail domino gate

• Includes n-latches on the outputs
• Risk of amplifying noise as sense-amplifier and dual-rail 

gate fire at same time.
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Sense-Amplifier Circuit : DCSL

Differential Current Switch Logic (DCSL):
• Due to O/P transitions in every cycle the differential 

circuit can consume more dynamic power.
• DCSL reduces the power consumption of internal nodes 

and offer high speed by swinging the pull-down networks 
through a small voltage.
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BiCMOS Circuit
• For equal capacitance BJT can deliver much higher 

output current than a CMOS.
• Can be used to build gates with low logical effort and are 

good for driving large capacitive loads.
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Comparison of Circuit Families
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Silicon-on-Insulator (SOI) Circuit Design
• Low power high performance circuit design 

possible.
• SOI has higher manufacturing costs
• SIO transistors have some unusual behavior
• SIO Vs conventional bulk technology : source, 

drain and body are surrounded by insulating 
oxide rather than the conductive substrate, well 
or bulk.

• Insulator eliminates most of the parasitic 
diffusion capacitance.

• Any change in body voltage modulates Vt as 
body can not be connected to Vdd or GND.
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SOI Circuit Design
• SOI : partially depleted (PD) or fully depleted (FD)
• FD SOI : body is thinner than channel depletion width, thus 

body charge is fixed and its voltage remains constant
• PD SOI : body is thicker and its voltage can vary 

depending on amount of charge (vary through body effect)
• FD SOI are difficult to manufacture due to thin body
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SOI Circuit Design : Floating Body Voltage

• Paths for flow into the body:
– Reverse biased junctions, Ddb

and Dsb carry small diode leakage
– The impact of ionization current is 

modeled as Iii
• Paths for exit from the body:

– As Dsb junction become forward 
biased due to increase in body 
voltage

– Same thing happens due to 
capacitive coupling of gate-body 
and drain-body.

(PD SOI)
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SOI Circuit Design : Advantages

• Source and drain abut against oxide on bottom 
and side walls not facing the channel, thus 
eliminating parasitic capacitances of these sides.

• Thus, smaller parasitic delay and lower dynamic 
power consumption.

• Potential for lower threshold voltages faster 
transistor especially for low Vdd operations

• Immune to latch-up effect
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SOI Circuit Design : Disadvantages
• PD SOI suffer from history effect 

i.e. change in body voltage 
modulates the Vt and adjusts the 
delay.

• Presence of parasitic bipolar 
transistor within each transistor.

• BJT can cause pass-gate leakage : 
Pulse current flows from drain to 
source when the source is pulled 
low even though transistor is OFF.

• Self heating as oxide is a thermal 
insulator as well. 


