
CSCE 6651: Advanced VLSI Systems 1

CSCE 6651
Advanced VLSI Systems
Instructor: Saraju P. Mohanty, Ph. D.

Lecture 2: General Purpose
Processor Design

NOTE: The figures, text etc included in slides are borrowed
from various books, websites, authors pages, and other
sources for academic purpose only. The instructor does
not claim any originality.

CSCE 6651: Advanced VLSI Systems 2

Lecture Outline

• General Purpose Processor
• Program Execution
• Construction of a Simple MIPS Processor
• Single Cycle Processor
• Multicycle Processor
• Pipelined Processor

CSCE 6651: Advanced VLSI Systems 3

Levels of Representation
High Level Language

Program

Assembly Language
Program

Machine Language
Program

Control Signal
Specification

Compiler

Assembler

Machine Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

lw$15,0($2)
lw$16,4($2)
sw $16, 0($2)
sw $15, 4($2)

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

°
°

ALUOP[0:3] <= InstReg[9:11] & MASK

CSCE 6651: Advanced VLSI Systems 4

Execution Cycle
Instruction

Fetch

Instruction
Decode

Operand
Fetch

Execute

Result
Store

Next
Instruction

Obtain instruction from program storage

Determine required actions and instruction size

Locate and obtain operand data

Compute result value or status

Deposit results in storage for later use

Determine successor instruction

CSCE 6651: Advanced VLSI Systems 5

• Consider implementation of the MIPS architecture
• Simplified to contain only:

– memory-reference instructions: lw, sw
– arithmetic-logical instructions: add, sub, and, or, slt
– control flow instructions: beq, j

• Generic Implementation:
– use the program counter (PC) to supply instruction

address
– get the instruction from memory
– read registers
– use the instruction to decide exactly what to do

The Processor : Datapath and Control

CSCE 6651: Advanced VLSI Systems 6

Two types of functional units:
– elements that operate on data values (combinational)
– elements that contain state (sequential)

More Implementation Details

Registers
Register #

Data

Register #

Data�
memory

Address

Data

Register #

PC Instruction ALU

Instruction�
memory

Address

Abstract / Simplified View:

CSCE 6651: Advanced VLSI Systems 7

Built using D flip-flops (Combinational in nature)

Register File: Read Operation

M �
u�
x

Register 0
Register 1

Register n – 1
Register n

M �
u�
x

Read data 1

Read data 2

Read register�
number 1

Read register�
number 2

CSCE 6651: Advanced VLSI Systems 8

Register File: Write Operation
We still use the real clock to determine when to write

n-to-1�
decoder

Register 0

Register 1

Register n – 1
C

C

D

D
Register n

C

C

D

D

Register number

Write

Register data

0
1

n – 1
n

CSCE 6651: Advanced VLSI Systems 9

Register File: Block Diagram

Read register
number 1 Read

data 1

Read
data 2

Read register
number 2

Register file
Write
register

Write
data Write

• Three Address ports
• One Data Input Port
• Two Data Output Ports
• One Write Control Signal

CSCE 6651: Advanced VLSI Systems 10

Functional Units - I
a: Instruction Memory -- After an instruction address is

put, the instruction residing at the address appears at the
output port

b: Program Counter -- A simple up counter

c: Adder -- A 2’s complement adder

PC

Instruction�
memory

Instruction�
address

Instruction

a. Instruction memory b. Program counter

Add Sum

c. Adder

CSCE 6651: Advanced VLSI Systems 11

Functional Units - II

ALU control

RegWrite

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU

Data

Data

Register
numbers

a. Register File b. ALU

Zero
5

5

5

3

a: Register File -- It’s construction, read, and write operations as
discussed previously

b: ALU (Arithmetic & Logic Unit) -- Recall the ALU design we have
discussed in last two classes and Note the “Zero” output

CSCE 6651: Advanced VLSI Systems 12

Functional Units -III

1 6 3 2
S ig n

e x te n d

b . S ig n -e x te n s io n u n it

M e m R e a d

M e m W rite

D a ta
m e m o ry

W ri te
d a ta

R e a d
d a ta

a . D a ta m e m o ry u n it

A d d re s s

a: Data Memory Unit
Similar to Instruction Memory Unit, only that it can written into as well
Two input ports for address and data, one output port (for data read out)
Two control signals: for Read and Write operations

b: Sign Extension Unit -- Extends 16-bit input operand to 32 bits

CSCE 6651: Advanced VLSI Systems 13

Datapath for Instruction Fetch (Piece I)

P C

Ins tru c tio n�
m e m ory

R ea d�
ad dre ss

Ins tru ctio n

4

A dd

Fetching Instructions and Incrementing the program counter by 4

CSCE 6651: Advanced VLSI Systems 14

Datapath for R-type Instructions (Piece II)
Datapath for R-type Instructions

Instruction
Registers

Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU
Zero

RegWrite

ALU operation3

CSCE 6651: Advanced VLSI Systems 15

Datapath for Load/Store (Piece III)

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data
memory

Write
data

Read
data

Write
data

Sign
extend

ALU
result

Zero
ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

Datapath for load or store -- (1) Register Access; (2) Memory
Address calculation; (3) Read/Write (4) Write into Register
file (if the instruction is a load)

CSCE 6651: Advanced VLSI Systems 16

Datapath for Branch (Piece IV)

16 32
Sign

extend

ZeroALU

Sum

Shift
left 2

To branch
control logic

Branch target

PC + 4 from instruction datapath

Instruction

Add

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

RegWrite

ALU operation3

• Unit “Shift left 2” adds “00” at the low-order end of the sign-extended offset
• Control logic is used to decide whether the incremented PC or branch

target should replace the PC based on the “Zero” output of the ALU

CSCE 6651: Advanced VLSI Systems 17

Datapath Construction Strategy

• Now, we have “pieces” of datapath that are capable of
performing distinct functions

• We want to “stitch” them together to yield a final
datapath that can execute all the instructions (lw, sw,
add, sub, and, or, slt, beq, j)

• We will use multiplexors (or muxes for short) for
stitching the datapath

CSCE 6651: Advanced VLSI Systems 18

Datapath Construction (Merge Pieces II & III)

x

l r

i

r i

Instruction

16 32

Registers
Write�
register

Read�
data 1

Read�
data 2

Read�
register 1

Read�
register 2

Data�
memory

Write�
data

Read�
data

Write�
data

Sign�
extend

ALU�
result

Zero
ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

Instruction Registers
Write
register

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Write
data

ALU
result

ALU
Zero

RegWrite

ALU operation3

Piece II

Piece III
+

CSCE 6651: Advanced VLSI Systems 19

And you will get..

g

16 32

Registers

Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

ALU
result

Zero

Data
memory

Address

Write
data

Read
data

M
u
x

M
u
x

ALU

RegWrite

ALU operation3

MemRead

MemWrite

ALUSrc
MemtoRe

• Rule: Whenever we have more than one input feeding a functional unit,
introduce a multiplexor (this gives rise to a control signal, more later..)

CSCE 6651: Advanced VLSI Systems 20

Datapath Construction … (Now merge Piece I)

PC

Instruction
memory

Read
address

Instruction

16 32

Registers

Write
register
Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Sign
extend

ALU
result

Zero

Data
memory

Address

Write
data

Read
data M

u
x

4

Add

M
u
x

ALU

RegWrite

ALU operation3

MemRead

MemWrite

ALUSrc
MemtoReg

• Just tack the Instruction Fetch and PC increment logic
at the front!

CSCE 6651: Advanced VLSI Systems 21

Datapath Construction (Finally, merge Piece IV)

PC

Instruction
memory

Read
address

Instruction

16 32

Add ALU
result

M
u
x

Registers

Write
register
Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Shift
left 2

4

M
u
x

ALU operation3

RegWrite

MemRead

MemWrite

PCSrc

ALUSrc

MemtoReg

ALU
result

Zero
ALU

Data
memory

Address

Write
data

Read
data M

u
x

Sign
extend

Add

CSCE 6651: Advanced VLSI Systems 22

Final Datapath

MemtoReg

MemRead

MemWrite

ALUOp

ALUSrc

RegDst

PC

Instruction
memory

Read
address

Instruction
[31–0]

Instruction [20–16]

Instruction [25–21]

Add

Instruction [5– 0]

RegWrite

4

16 32Instruction [15–0]

0
Registers

Write
register
Write
data

Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Sign
extend

ALU
result

Zero

Data
memory

Address Read
data M

u
x

1

0

Mu
x

1

0

M
u
x

1

0

M
ux

1

Instruction [15–11]

ALU
control

Shift
left 2

PCSrc

ALU

Add ALU
result

• Data flows through various “paths” under the influence of control signals
• There are seven control signals (of type Read, Write, or Mux Select)

CSCE 6651: Advanced VLSI Systems 23

Defining the Control..

ALU's operation based on instruction type and function code.
We will design two control units:

(1)ALU Control to generate appropriate function select signals for the ALU

(2)Main Control to generate signals for functional units other than the ALU

• Selecting the operations to perform (ALU, read/write, etc.)
• Controlling the flow of data (multiplexor inputs)
• Information comes from the 32 bits of the instruction
• Example: add $8, $17, $18

Instruction Format:
000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct

CSCE 6651: Advanced VLSI Systems 24

• e.g., what should the ALU do with this instruction
• Example: lw $1, 100($2)

35 2 1 100

op rs rt 16 bit offset
• ALU control input

000 AND
001 OR
010 add
110 subtract
111 set-on-less-than

• Why is the code for subtract 110 and not 011?

Defining the ALU Control.. Contd.

CSCE 6651: Advanced VLSI Systems 25

• Must describe hardware to compute 3-bit ALU control input
– Given instruction type

00 = lw, sw
01 = beq,
10 = arithmetic

– function code for arithmetic

• ALU Control inputs – How are they determined?

ALUOp
computed from instruction type

ALU Control Design

Instruction Instruction Funct Desired ALU Control
Opcode ALUOp Operation Field ALU Action Operation

LW 00 load word XXXXXX add 010
SW 00 store word XXXXXX add 010

Branch equal 01 branch equal XXXXXX subtract 110
R-type 10 add 100000 add 010
R-type 10 subtract 100010 subtract 110
R-type 10 AND 100100 and 000
R-type 10 OR 100101 or 001
R-type 10 set on less than 101010 set on less than 111

CSCE 6651: Advanced VLSI Systems 26

ALU Control - Truth Table & Implementation

A L U O p F u n c t f ie ld O p e ra tio n
A L U O p 1 A L U O p 0 F 5 F 4 F 3 F 2 F 1 F 0

0 0 X X X X X X 0 1 0
X 1 X X X X X X 1 1 0
1 X X X 0 0 0 0 0 1 0
1 X X X 0 0 1 0 1 1 0
1 X X X 0 1 0 0 0 0 0
1 X X X 0 1 0 1 0 0 1
1 X X X 1 0 1 0 1 1 1

Describe it using a truth table (can turn into gates):

Operation2

Operation1

Operation0

Operation

ALUOp1

F3

F2

F1

F0

F (5– 0)

ALUOp0

ALUOp

ALU control block

CSCE 6651: Advanced VLSI Systems 27

Designing the Main Control

PC

Instruction
memory

Read
address

Instruction
[31–0]

Instruction [20–16]

Instruction [25–21]

Add

Instruction [5–0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
RegDst

ALUSrc

Instruction [31–26]

4

16 32Instruction [15–0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

Shift
left 2

M
u
x

1

ALU
result

Zero

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15–11]

ALU
control

ALU
Address

CSCE 6651: Advanced VLSI Systems 28

Control Signals and their Effects

Signal Name Effect When deasserted Effect when asserted
RegDst The register destination number for the Write The register destination number for the Write

register comes from the rt field (bits 20-16) register comes from the rd field (bits 15-11)
RegWrite NONE The register on the Write register input is

written with the value on the Write data input
ALUSrc The second ALU operand comes from the The second ALU operand is the sign-extended

second register file output (Read data 2) lower 16 bits of the instruction
PCSrc The PC is replaced by the output of the adder that The PC is replaced by the output of the adder

computes the value of PC + 4. that computes the branch target
MemRead None Data Memory contents designated by the address

input are put on the Read data output
MemWrite None Data memory contents designated by the address

input are replaced by the value on the Write data input
MemtoReg The value fed to the register Write data input The value fed to the register Write data input comes

comes from the ALU from the data memory.

CSCE 6651: Advanced VLSI Systems 29

Main Control: Truth Table & Implementation
Instruction RegDst ALUSrc

Memto-
Reg

Reg
Write

Mem
Read

Mem
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

R -fo r m a t Iw s w b e q

O p 0
O p 1
O p 2
O p 3
O p 4
O p 5

In p u ts

O u tp u ts

R e g D s t

A L U S rc

M e m to R e g

R e g W rite

M e m R e a d

M e m W rite

B ra n ch

A L U O p 1

A L U O p O

CSCE 6651: Advanced VLSI Systems 30

So far … a Single Cycle Implementation
• Calculate cycle time assuming negligible delays except:

– memory (2ns), ALU and adders (2ns), register file access (1ns)

MemtoReg

MemRead

MemWrite

ALUOp

ALUSrc

RegDst

PC

Instruction
memory

Read
address

Instruction
[31–0]

Instruction [20–16]

Instruction [25–21]

Add

Instruction [5–0]

RegWrite

4

16 32Instruction [15–0]

0
Registers

Write
register
Write
data

Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Sign
extend

ALU
result

Zero

Data
memory

Address Read
data M

u
x

1

0

M
u
x

1

0

M
u
x

1

0

M
u
x

1

Instruction [15–11]

ALU
control

Shift
left 2

PCSrc

ALU

Add ALU
result

CSCE 6651: Advanced VLSI Systems 31

How does the single cycle datapath works?

• Let us understand this by highlighting the portions of the
datapath when an R-type instruction is executed

• For an R-type instruction we go through the following
phases:

Phase 1: Instruction Fetch
Phase 2: Register File Read
Phase 3: ALU execution
Phase 4: Write the Result into the Register File

• NOTE: All the four phases are completed in only ONE
clock cycle and hence it is a “single cycle implementation”

CSCE 6651: Advanced VLSI Systems 32

R-type Instruction – Phase 1 (Instruction Fetch)

PC

Instruction
memory

Read
address

Instruction
[31–0]

Instruction [20–16]

Instruction [25–21]

Add

Instruction [5–0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
RegDst

ALUSrc

Instruction [31–26]

4

16 32Instruction [15–0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data1

Read
data2

Read
register 1

Read
register 2

Sign
extend

Shift
left 2

M
u
x
1

ALU
result

Zero

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15–11]

ALU
control

ALU
Address

CSCE 6651: Advanced VLSI Systems 33

R-type Instruction – Phase 2 (Register Read)

PC

Instruction
memory

Read
address

Instruction
[31–0]

Instruction [20–16]

Instruction [25–21]

Add

Instruction [5–0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
RegDst

ALUSrc

Instruction [31–26]

4

16 32Instruction [15–0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data1

Read
data2

Read
register 1

Read
register 2

Sign
extend

Shift
left 2

M
u
x
1

ALU
result

Zero

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15–11]

ALU
control

ALU
Address

CSCE 6651: Advanced VLSI Systems 34

R-type Instruction – Phase 3 (ALU execution)

PC

Instruction
memory

Read
address

Instruction
[31–0]

Instruction [20–16]

Instruction [25–21]

Add

Instruction [5–0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
RegDst

ALUSrc

Instruction [31–26]

4

16 32Instruction [15–0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data1

Read
data2

Read
register 1

Read
register 2

Sign
extend

Shift
left 2

M
u
x
1

ALU
result

Zero

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15–11]

ALU
control

ALU
Address

CSCE 6651: Advanced VLSI Systems 35

R-type Instruction – Phase 4 (Write the Result)

PC

Instruction
memory

Read
address

Instruction
[31–0]

Instruction [20–16]

Instruction [25–21]

Add

Instruction [5–0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
RegDst

ALUSrc

Instruction [31–26]

4

16 32Instruction [15–0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data1

Read
data2

Read
register 1

Read
register 2

Sign
extend

Shift
left 2

M
u
x
1

ALU
result

Zero

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15–11]

ALU
control

ALU
Address

CSCE 6651: Advanced VLSI Systems 36

How do we handle jump?

Shift�
left 2

PC

Instruction�
memory

Read�
address

Instruction�
[31– 0]

Data�
memory

Read�
data

Write�
data

Registers
Write�
register

Write�
data

Read�
data 1

Read�
data 2

Read�
register 1

Read�
register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU�
result

Zero

Instruction [5– 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
Jump
RegDst

ALUSrc

Instruction [31–26]

4

M�
u�
x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign�
extend

16 32Instruction [15–0]

1

M�
u�
x

1

0

M�
u�
x

0

1

M�
u�
x

0

1

ALU�
control

Control

Add ALU�
result

M�
u�
x

0

1 0

ALU

Shift�
left 226 28

Address

CSCE 6651: Advanced VLSI Systems 37

Where we are headed
• Single Cycle Problems:

– what if we had a more complicated instruction like
floating point?

– wasteful of area

• One Solution:
– use a “smaller” cycle time
– have different instructions take different numbers of

cycles
– a “multicycle” datapath:

CSCE 6651: Advanced VLSI Systems 38

Single Cycle Implementation: Summary

• All instructions are executed in only clock cycle
• We built a single cycle datapath from scratch
• We designed appropriate controller to generate correct correct

signals
• All instructions are not born equal; that some require more work,

some less => disadvantage of single cycle implementation is that
the slowest instruction determines the clock cycle width

• In reality, no body implements single cycle approach
• Suggestion: STARE, STARE, STARE at the single cycle datapath

to familiarize yourself
• Given the single cycle datapath, you should be able to “highlight”

active portions of the datapath for any given instruction (just as
we did for an R-type instruction in the class)

CSCE 6651: Advanced VLSI Systems 39

Single Cycle Implementation - Recap
• Single Cycle Problems:

– what if we had a more complicated instruction like
floating point?

– wasteful of area
– Cycle width determined by the slowest instruction

• One Solution:
– use a “smaller” cycle time
– have different instructions take different numbers of

cycles
– a “multicycle” datapath:

CSCE 6651: Advanced VLSI Systems 40

Multicycle Approach – High Level View

PC

Memory

Address

Instruction
or data

Data

Instruction
register

Registers
Register #

Data

Register #

Register #

ALU

Memory
data

register

A

B

ALUOut

CSCE 6651: Advanced VLSI Systems 41

Single Cycle, Multiple Cycle, vs. Pipeline

Clk

Cycle 1

Multiple Cycle Implementation:

Ifetch Reg Exec Mem Wr

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Load Ifetch Reg Exec Mem Wr

Ifetch Reg Exec Mem
Load Store

Pipeline Implementation:

Ifetch Reg Exec Mem WrStore

Clk

Single Cycle Implementation:

Load Store Waste

Ifetch
R-type

Ifetch Reg Exec Mem WrR-type

Cycle 2Cycle 1

CSCE 6651: Advanced VLSI Systems 42

Basic Idea

What do we need to add to actually split the datapath into stages?

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

Instruction

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
dataAddress

Data
memory

1

ALU
result

M
u
x

ALU
Zero

IF: Instruction fetch ID: Instruction decode/
register file read

EX: Execute/
address calculation

MEM: Memory access WB: Write back

CSCE 6651: Advanced VLSI Systems 43

Corrected Datapath

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0

Address

Write
data

M
u
x

1
Registers

Read
data1

Read
data2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Data
memory

1

ALU
result

M
u
x

ALU
Zero

ID/EX

CSCE 6651: Advanced VLSI Systems 44

Datapath with Control

PC

Instruction
memory

In
st

ru
ct

io
n

Add

Instruction
[20–16]

M
em

to
R

eg

ALUOp

Branch

RegDst

ALUSrc

4

16 32Instruction
[15–0]

0

0

M
u
x

0

1

Add Add
result

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x
1

ALU
result

Zero

Write
data

Read
data

M
u
x

1

ALU
control

Shift
left 2R

eg
W

rit
e

MemRead

Control

ALU

Instruction
[15–11]

6

EX

M

WB

M

WB

WBIF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M
u
x

0

1

M
em

W
rit

e

Address
Data

memory

Address

CSCE 6651: Advanced VLSI Systems 45

Pipelining Summary

• Pipelining doesn’t help latency of single task, it helps throughput of
entire workload

• Multiple tasks operating simultaneously using different resources
• Potential speedup = Number pipe stages
• Pipeline rate limited by slowest pipeline stage
• Unbalanced lengths of pipe stages reduces speedup
• Time to “fill” pipeline and time to “drain” it reduces speedup
• Three types of pipeline hazards: structural, data, and control/branch
• Stalling helps any kind of hazard
• Data hazard solutions: Stalling, Data forwarding, Hazard detection
• Control or Branch Hazard solutions: Stalling, Branch Prediction,

Delayed Branching

