L cture 2: General Pu rPOSE
Processor Design

CSCE 6651
Advanced VLS| Systems

Instructor: Saraju P. Mohanty, Ph. D.

NOTE: The figures, text etc included in slides are borrowed
from various books, websites, authors pages, and other
sources for academic purpose only. The instructor does

not claim any originality.
CSE CSCE 6651: Advanced VLSI Systems r(

UNIVERSITY,r
ORTHTEXAS 1

Lecture Outline

e General Purpose Processor

 Program Execution

e Construction of a Simple MIPS Processor
e Single Cycle Processor

 Multicycle Processor

* Pipelined Processor

UNIVERSITY,r
ORTHTEXAS 2

[

CSE CSCE 6651: Advanced VLSI Systems

Levels of Representation

temp = v[k];
High Level Language v[K] = v[k+1];
Program
vlk+1] = temp;
Compiler
lw$15,0($2)
Assembly Language IWw$H16 4($2)
Program ’
sw $16,0(%$2)
Assembler SW $15, 4($2)
0000 1001 1100 0110 1010 1111 0101 1000
Machine Language 1010 1111 0101 1000 0000 1001 1100 0110
Program 1100 0110 1010 1111 0101 1000 OOOO 1001

I | 0101 1000 0000 1001 1100 0110 1010 1111

LMachine Interpretation

||| Control Slgn_al || ALUOP[0:3] <= InstReg[9:11] & MASK

Specification

CSE CSCE 6651: Advanced VLSI Systems

UNIVERSITY,r
ORTHTEXAS 3

CSE

v

Instruction
Fetch

v

Instruction
Decode

v

Operand
Fetch

v

Execute

v

Result
Store

v

Next
Instruction

Execution Cycle

Obtain instruction from program storage

Determine required actions and instruction size

Locate and obtain operand data
Compute result value or status

Deposit results in storage for later use

Determine successor instruction

[

UNIVERSITY,r

CSCE 6651: Advanced VLSI Systems ORTHTEXAS 4

| Processor : Datapath and Control

e Consider implementation of the MIPS architecture

e Simplified to contain only:
— memory-reference instructions: Iw, sw
— arithmetic-logical instructions: add, sub, and, or, slt
— control flow instructions: beq, |

* Generic Implementation:

— use the program counter (PC) to supply Instruction
address

— get the Instruction from memory
— read registers
— use the instruction to decide exactly what to do

CSE CSCE 6651: Advanced VLSI Systems r(

UNIVERSITY,r
ORTHTEXAS 5

More Implementation Detalls

Abstract / Simplified View:

L Data

——)
Register #
PC t==»{ Address Instruction | Registers AL Address
Instruction] Register #
memory W‘_> Datal |
Register # memory S —
»| Data

Two types of functional units:
— elements that operate on data values (combinational)
— elements that contain state (sequential)

UNIVERSITY,r
ORTHTEXAS 6

CSE CSCE 6651: Advanced VLSI Systems

Register File: Read Operation

Built using D flip-flops (Combinational in nature)

Read register(d
number 1 A

Register 0 ">
Register 1 -$ > MO
—— » ull —» Read data 1
Register n — 1 — > X
Registern |—& »u
Read register(d
number 2 A
5
—>| MO
—3| ul] » Read data 2
»| X
U

UNIVERSITY,r
ORTHTEXAS 7

CSE CSCE 6651: Advanced VLSI Systems

[

Register File: Write Operation

We stlll use the real clock to determine when to write

Write
.—
0 —C
Register 0
1 » D
.—
_ n-to-100 | -)_ C
Register number ™| decoder | - Register 1
@ P
n—1 2
n
.—
Daul:
Registern — 1
® » D
e
Reglster n
Register data ¢ >

UNIVERSITY,r
ORTHTEXAS 8

CSE CSCE 6651: Advanced VLSI Systems

[

Register File: Block Diagram

Read register

number 1 Read
data 1

Read register Three Address ports
number 2

g o One Data Input Port
Write cgistertiie « Two Data Output Ports
One Write Control Signal

register

Read
Write data 2

data Write

UNIVERSITY,r

CSCE 6651: Advanced VLSI Systems ORTHTEXAS 0

[

Functional Units - |

a: Instruction Memory -- After an instruction address is
put, the instruction residing at the address appears at the
output port

b: Program Counter -- A simple up counter
c: Adder -- A 2's complement adder

Instruction]

address —
INStruction fe—> >Add Sum
Instruction
memory a—
a. Instruction memory b. Program counter c. Adder

UNIVERSITY,r
NORTH TEXAS 10

CSE CSCE 6651: Advanced VLSI Systems

discussed

Functional Units - ||

a. Register File -- It's construction, read, and write operations as

previously

b: ALU (Arithmetic & Logic Unit) -- Recall the ALU design we have
discussed in last two classes and Note the “Zero” output

(2| Read
register 1
Read
Register O | Read data 1
numbers register 2
c Registers
Write
—> .
L register Read
- data 2
Write
Data {—» data
RegWrite

CSE

a. Register File

CSCE 6651: Advanced VLSI Systems

> Data

ALU control

NN

Zerol—p

ALU ALUL_,
result

UNIVERSITY,r
NORTH TEXAS 11

Functional Units -II|

a. Data Memory Unit
Similar to Instruction Memory Unit, only that it can written into as well
Two input ports for address and data, one output port (for data read out)
Two control signals: for Read and Write operations

b: Sign Extension Unit -- Extends 16-bit input operand to 32 bits

MemWrite
| Address Read |y
data 16 _ 32
| Sign
_ D at extend
—| W rite ata
data memory
MemRead
a. Data memory unit b. Sign-extension unit

UNIVERSITY,r
ORTHTEXAS 12

[

CSE CSCE 6651: Advanced VLSI Systems

Readl]

PC address

InNStruction fr———————————-

Instruction]
memory

UNIVERSITY,r
dUHEX%lS

CSE CSCE 6651: Advanced VLSI Systems

[

path for R-type Instructions (Piece Il)

Datapath for R-type Instructions

ALU operation
Read 3 1\ p
register 1
Read e Zero
Instruction register 2

~ Reaqisters >ALU ALU
\r/gg'tseter result

|
Write ala
data

RegWrite

UNIVERSITY,r
ORTHTEXAS 14

[

CSE CSCE 6651: Advanced VLSI Systems

Instruction

CSE

atapath for Load/Store (Piece lll)

Datapath for load or store -- (1) Register Access; (2) Memory
Address calculation; (3) Read/Write (4) Write into Register

file (if the instruction is a load)

A 4

3 LU operation
Read
register 1 Read .
Read data 1
register 2 Zero|—>
. Registers ALU ALu
\r/(\a/grglitseter result
dstgazd 1
| Write
data
RegWrite|
16 _ 32
Sign
v lextend

I MemWrite
Read
Address data
Data
) memory
Write
data
MemRead

CSCE 6651: Advanced VLSI Systems

[

UNIVERSITY,r
ORTHTEXAS 15

i Datapath for Branch (Piece V)

. Unlt “Shlft left 2” adds “00” at the low-order end of the sign-extended offset

« Control logic is used to decide whether the incremented PC or branch
target should replace the PC based on the “Zero” output of the ALU

PC + 4 from instruction datapath =

> Add Sum Branch target
ALU operation
Read ’
Instruction register 1 Read R
Read data 1
register 2
Registers 5ALU Zero To bralnlch_
Write control logic
register Read R
Write data 2
data
RegWrite
16 . 32
Ny | SION
N lextend

UNIVERSITY,r
ORTHTEXAS 16

[

CSE CSCE 6651: Advanced VLSI Systems

Datapath Construction Strategy

 Now, we have “pieces” of datapath that are capable of
performing distinct functions

« We want to “stitch” them together to yield a final
datapath that can execute all the instructions (lw, sw,
add, sub, and, or, slt, beq, |)

« We will use multiplexors (or muxes for short) for
stitching the datapath

UNIVERSITY,r
ORTHTEXAS 17

CSE CSCE 6651: Advanced VLSI Systems

[

f@bath Construction (Merge Pieces Il & III)

Read ALU operation
register 1 dgtgaf

Read

reg?stehze Isters >ALU o

Write J ALY
reqgister Reafi

Write data

_ data

| RegWrite

I 3 ALU operation
Piece || [Reaan
register 1 Read] MemWrite
+ Read] data 1
Instruction ‘ register 2 Zerof—»
- . Registers >ALU ALU
Plece I I I Wn'tetlj result »| Address Féea?g]
register Readl .
; data 2 "
Writell _‘ Datall

™| data
) memory
RegWrite .| Write[d
16

" | data
CSE CSCE 6651: Advanced VLSI Systems

L]

| SignO
" | extend

MemRead

[

UNIVERSITY,r
NORTH TEXAS 18

And you will get..

Rule: Whenever we have more than one input feeding a functional unit,
iIntroduce a multiplexor (this gives rise to a control signal, more later..)

Read Registers
q _ 3
register 1 \
. Read Read)
register 2 data 1 Zerol_,
Write Read| ... ;J\ >ALU ALUL o | Address ~ Read */L
™ register data 2 M result | data v
U NN .
i : U b,
s \(;\:;tl;e X X / : Data x|
T\ : »Write memory E*U
= | data i
E 16 Sign |32 I
—>{ extend |-\r** :
UNIVERSITY,

NORTH TEXAS 19

CSE CSCE 6651: Advanced VLSI Systems

path Construction ... (Now merge Piece I)

o Just tack the Instruction Fetch and PC increment logic
at the front!

>Add

4 w—
.| Read Registers .
register 1 AN
PCHée{ Read Read ;
address Read data 1 >
_ register 2 ata Zero
Instruction _ ALU
Write Read DALU ALU Address Readl,
register data 2 result data M
Instruction - u
—p| VVrite Data X
memory data . memory >
l | N Write
data
16 l
\
T 'y
UNIVERSITY,r

[

CSE CSCE 6651: Advanced VLSI Systems

ORTHTEXAS 20

ath Construction (Finally, merge Piece V)

PCSrﬁL
p— >
>Add l . ML
X
4= >Ad result ./
—p-
Registers :
Read ’ 3| ALU operation MemWrite
' ALUSIc |
N [-Yol® | Rccleé;\d register 1 Read ol
address Read data 1 MemtoReg
register 2
Instruction
Write Read| o) Address ~ Readl,
. register data 2 M data| M
Instruction : u U
memory - \d/\g[';e N X Data X
: ,| Write Memory
RegerteI data
16 : 32
\ Sign
™ extend MemRead
UNIVERSITY,r

ORTHTEXAS 21

[

CSE CSCE 6651: Advanced VLSI Systems

Final Datapath

« Data flows through various “paths” under the influence of control signals
 There are seven control signals (of type Read, Write, or Mux Select)

PCSr
> \ l ”11
>Add M
X
/= > Add result 2
Reg}/Vrite r
Instruction [25—21] | Read
mead “[register 1 Read R MemWrite
address Instruction [20— 16] _| Read data 1 ALUSIC : MemtoReg
Instruction L 1 register 2 Read it
[31-0] M f=| Write data 2 1) PA reoult | Address Readb—a(T
_ . ul |register M data M
Instruction Instruction [15—11] | x Write : X X
memory * 0] Pldata Redisters | Y)(() X
Wiite _Data 0
RegDst “ldata MeMOry
Instruction [15—0] 16 [sign 32 !
v\ extend MemRead
Instruction [5— 0]
ALUOp

CSE

CSCE 6651: Advanced VLSI Systems

UNIVERSITY,r
ORTHTEXAS 22

[

Defining the Control..

« Selecting the operations to perform (ALU, read/write, etc.)
« Controlling the flow of data (multiplexor inputs)
 Information comes from the 32 bits of the instruction
« Example: add $8, $17, $18

Instruction Format:

000000 |10001 10010 01000 |OOO0O FOOOOO

op rs It rd shamt |funct

ALU's operation based on instruction type and function code.
We will design two control units:
(1) ALU Control to generate appropriate function select signals for the ALU

(2) Main Control to generate signals for functional units other than the ALU

CSE CSCE 6651: Advanced VLSI Systems r(

UNIVERSITY,r
ORTHTEXAS 23

Il Defining the ALU Control..
. e g., what should the ALU do with this instruction

« Example: Iw $1, 100($2)

Contd.

\35 2 1 100
op rs rt 16 bit offset
 ALU control input
000 AND
001 OR
010 add

110 subtract

111 set-on-less-than
 Why Is the code for subtract 110 and not 0117

CSE

CSCE 6651: Advanced VLSI Systems

UNIVERSITY
RTHTEXAS 24

[

ALU Control Design

 Must describe hardware to compute 3-bit ALU control input
— Given instruction type

00 = Iw, sw T~ ALUOp

01 = beq, computed from instruction type
10 = arithmetic /

— function code for arithmetic

 ALU Control inputs — How are they determined?

Instruction Instruction Funct Desired ALU Control

Opcode ALUOp Operation Field ALU Action Operation
LW 00 load word XXXXXX add 010
SW 00 store word XXXXXX add 010
Branch equal 01 branch equal | XXXXXX subtract 110
R-type 10 add 100000 add 010
R-type 10 subtract 100010 subtract 110
R-type 10 AND 100100 and 000
R-type 10 OR 100101 or 001
R-type 10 setonless than 101010 set on less than 111

UNIVERSITY,
CSCE 6651: Advanced VLSI Systems NORTH 1EXAS 25

Il Control - Truth Table & Implementation

Describe it using a truth table (can turn into gates):

ALUODPp Funct field Operation
ALUOpPI1|ALUOpPO|F5[F4|F3|F2|F1(|FO
0 0 X | X[X | X | X [X 010
X 1 X | X[X | X | X [X 110
1 X X1 X]10[0]1]0/{fO 010
1 X X |1 X100 110 110
1 X X |1 X 10 1 {010 000
1 X X |1 X 10 1 (0 1 001
ALUOp 1 X X1 X[11]0 1 [O 111
v ALU control block
.ALUOpO
ALUOp1
Operation2
P Operation
DOperationl
T\ OperationO
|/
UNIVERSITY,r

[

CSCE 6651: Advanced VLSI Systems ORTHTEXAS 26

Designing the Malin

Control

N\
>Add

»| Read
address

Instruction
[31-0Q]

Instruction
memory

CSE

» 0
M
> u
X
ALU .
>Add result "¢
Instruction [31-26]
» Control
Instruction [25-21] | Read
" | register 1 Read
Instruction [20-16] | Read datal ’
| register 2
+(0) ~ Registers Reag 1 > AU oL
M| Wite data 2 ! resuit »| Address Readl ()
u register M data "
i u
Instruction [15-11] | * White “ u
o\ data Data X
—>{1
. memory 0
| Wite
| data
Instruction [15-0] {6 Sign 32
N\ |extend ALU
control
Instruction [5-0]

CSCE

I/ Control Signals and their Effects

Signal Name|Effect When deasserted Effect when asserted
RegDst The register destination number for the Write | The register destination number for the Write
register comes from the rt field (bits 20-16) register comes from the rd field (bits 15-11)
RegWrite [NONE The register on the Write register input is
written with the value on the Write data input
ALUSrc The second ALU operand comes from the The second ALU operand is the sign-extended
second register file output (Read data 2) lower 16 bits of the instruction
PCSrc The PC is replaced by the output of the adder that| The PC is replaced by the output of the adder
computes the value of PC + 4. that computes the branch target
MemRead None Data Memory contents designated by the address
Input are put on the Read data output
MemWrite None Data memory contents designated by the address
Input are replaced by the value on the Write data input
MemtoReg The value fed to the register Write datainput ~ The value fed to the register Write data input comes

CSE

comes from the ALU from the data memory.

UNIVERSITY,
CSCE 6651: Advanced VLSI Systems NORTH 1EXAS 28

Control: Truth Table & Implementation

Memto- | Reg | Mem | Mem
Instruction | RegDst | ALUSrc Req Write | Read [Write| Branch | ALUOp1 | ALUpPO
R-format 1 0 0 1 0 0 0 1 0
Iw 0 1 1 1 1 0 0 0 0
SW X 1 X 0 0 1 0 0 0
Inputs beq X 0 X 0 0 0 1 0 1
Op5_‘ @ —l P
Op4 >— * * ®
Op3 ® ®
Op2 7. 7: ® ®
Opl T P P T
OpoO
00 g 000 He1l-} 000 é)g
L t [; Outputs
R-format lw Sw beq
RegD st
®
) ALUSTC
[
l ¢ MemtoReg
) RegW rite
I MemRead
¢ MemW rite
[Branch
l ALUOp1
¢ ALUOPO UNIVERSITY,r
E CSCE 6651: Advanced VLSI Systems ORTHTEXAS 29

ifar ... a Single Cycle Implementation

. Calculate cycle time assuming negligible delays except:
— memory (2ns), ALU and adders (2ns), register file access (1ns)

PCSr

> \ " 1

>Add l > u

X

A 0

— >Add result
RegWrite o
l
Instruction [25—21] | Read
Read “|register1 Read Mem\Write
PC - ’
1™~ address Instruction [20-16] [Read data 1 ALUSTC l MemtoReg
Instruction 1 | register 2 Read
[31-0] vl Wit a2 L Address Readlp(y
_ _ U register M data M
Instruction Instruction [15—11] | x Wite u u
memory * *10| P|data Redisters — é X
Write Dat 0
RegDst »(data Mmemory
Instruction [15—0] 1\6 Sign | 32
v\ extend MemRead

Instruction [5—0]

CSE CSCE Wﬁkg "

ill does the single cycle datapath works?

e Let us understand this by highlighting the portions of the
datapath when an R-type instruction is executed

e For an R-type instruction we go through the following
phases:

Phase 1: Instruction Fetch

Phase 2: Register File Read

Phase 3. ALU execution

Phase 4: Write the Result into the Register File

« NOTE: All the four phases are completed in only ONE
clock cycle and hence it is a “single cycle implementation”

[

UNIVERSITY,r
ORTHTEXAS 31

CSE CSCE 6651: Advanced VLSI Systems

4
M Read
address
Instruction
[31-0]
Instruction
mernmory

CSE

e Instruction — Phase 1 (Instruction Fetch)

0
N M
> u
X
la >Addresult .
Instruction [31—26]
> Control
Instruction [25-21] [read
| register 1 Read
Instruction [20-16] | Read data 1
| | register 2
0 _ Registers Read e >ALU AL
M Whte data? "0 result » Address Read 1
u register M data M
u
Instruction [15-11] | X - u
[] o1 , Mte X Data X
a 1 memory 0
,| Wite
data
Instruction [15-0] L [s |
 Nextend ALU
control
Instruction [5-0]
UNIVERSITY,r

CSCE 6651: Advanced VLSI Systems

[

ORTHTEXAS 32

pe Instruction — Phase 2 (Register Read)

0
N M
> u
X
ALl
>Add result L
4 .
Instruction [31—26]
Control
Instruction [25-21] Read
> ;RSde}’d&ss register 1 Read
Instruction [20-16] Read data 1
. register 2
|ﬂStr[léKitl0(fﬁ 0 Registers Read 5 >A|-U AL Read
_ M Wite data 2 resut »| Address Sl
Instruction u register M cta M
mel X u
iad 1 > Wite X Data)l:
data > 1 ry 0
| Wite
"| data
16 } 32
Sgn

A
* lextend ALU

control
Instruction [5-0]
CSE CSCE 6651: Advanced VLSI Systems |i éﬁtNoRTHTEG}{AS 33

CSE

4
Read
address
Instruction
[31-0]
Instruction
menory

0
M
> u
X
AL
>Add result L
Instruction [31—26]
Control
Instruction [25-21] Read
register 1 Read
Instruction [20-16] Read data 1
| register 2
| 0 ~ Registers Regq >ALU AL
M Wite data2 |0 result »| Address Read
u register M / data
u
nstruction [15-11] | X -
[] 1 R \é\gte X Data
a —» 1
_ memory
o Wite
data
nstruction [15-0] L | sgn |
* lextend ALU
control
Instruction [5-0]

CSCE 6651: Advanced VLSI Systems

Ii @NORTHTE&A:S 34

OXCzl—‘

4
Read
address
Instruction
[31-0]
Instruction
memory

CSE

0
M
u
X
AL
I% >Ad d result L
Instruction [31—26]
Control
Instruction [25-21] Read
register 1 Read
Instruction [20-16] Read data 1
| register 2
0 ~ Registers Read >ALU AL
M Wite dta2 T ° result »| Address Read
u register M data
u
nstruction [15-11] | X ;
[| 1 \é\gtlte X Data
a —»|{ 1
) memory
»| Wite
data
nstruction [15-0] i6 [Sign 2
"l extend ALU
control
Instruction [5-0]

CSCE 6651: Advanced VLSI Systems

Ii ESNORTHTEGXA:S 35

OXCzl—‘

How do we handle jump?

Instruction [25—0] \ @%\ Jump address [31-0]
\ \
26 @28 9 Lo
PC+4 [31-28] > '\le '\Lf
- \ X X
> ALU
BAdd result 1 0
>Add \
Jump
4 ey
Instruction [31—26]
» Control
Instruction [25—21] Read]
| Read g '
M s | register 1 Readl ,
Instruction [20—16] | ReadD data 1
. "| register 2
Instr[gcltloaﬂ LG ~ Registers Read 5 AU ALY Read]
| M Wite[] data 2 > result »| Address cad (1
Instruction u register M data M
memor ’ X u
y Instruction [15-11] 1 | WriteD N Datal])li
data » 1 memory 0
Write
"| data
Instruction [15-0] {6 | SignO ¥
N lextend

Instruction [5-0] r

CSE

Where we are headed

e Single Cycle Problems:

— what If we had a more complicated instruction like
floating point?

— wasteful of area

 One Solution:
— use a “smaller” cycle time

— have different instructions take different numbers of
cycles

— a “multicycle” datapath:

UNIVERSITY,r
ORTHTEXAS 37

CSE CSCE 6651: Advanced VLSI Systems

[

CSE CSCE 6651: Advanced VLSI Systems

Blllgle Cycle Implementation: Summary

All instructions are executed in only clock cycle
We built a single cycle datapath from scratch

We designed appropriate controller to generate correct correct
signals

All instructions are not born equal; that some require more work,
some less => disadvantage of single cycle implementation is that
the slowest instruction determines the clock cycle width

In reality, no body implements single cycle approach

Suggestion: STARE, STARE, STARE at the single cycle datapath
to familiarize yourself

Given the single cycle datapath, you should be able to “highlight”

active portions of the datapath for any given instruction (just as
we did for an R-type instruction in the class)

UNIVERSITY,r
ORTHTEXAS 38

Il¥ingle Cycle Implementation - Recap

e Single Cycle Problems:

— what If we had a more complicated instruction like
floating point?

— wasteful of area
— Cycle width determined by the slowest instruction

 One Solution:
— use a “smaller” cycle time

— have different instructions take different numbers of
cycles

— a “multicycle” datapath:

UNIVERSITY,r
ORTHTEXAS 39

CSE CSCE 6651: Advanced VLSI Systems

[

I8l 1ticycle Approach — High Level View

CSE

— PCJ—O» Address

Memo

=>| Data

Instruction
or data

Instruction
register

-I‘ Memory
data

register

Data
Register #
Registers

Register #

Register #

>ALU ALUOuUt~¢

CSCE 6651: Advanced VLSI Systems

[

UNIVERSITY,r
ORTHTEXAS 40

Blole Cycle, Multiple Cycle, vs. Pipeline

| | | |

Cycle 1 S :

Slngle Cycle Implementation: : Cycle 2 :
Load I Store : Waste

: Cycle 1} Cycle 2} Cycle 3; Cycle 4; Cycle 5: Cycle 6; Cycle 7 Cycle 8 Cycle 9 SCycIei 10

Clk | I I 1 | | I 1 | | __

Multiple Cycle Implementation: : :
 Load : Store ! R-type
Ifetchl Regu Exec I Mem I Wr I Ifetchl Regu Exec I Mem I Ifetch

Pipeline Implementation:

Load Ifetchl Reﬂ Exec II\/Iem I Wr |

Store Ifetchl Reﬂ Exec I Mem I Wr

CSE R-type Ifetchl ReM Exec I Mem I Wr

UNIVERSITY,r
CSCE 6651: Advanced VLSI Systems

ORTHTEXAS 41

[

Basic ldea

IF: Instruction fetch ID: Instruction decode/ EX: Execute/ MEM: Memory access | WB: Write back
register file read address calculation

|—\><C§o

>add ‘ \

, Add

4 / > Add result
Shift
left 2

Read
PC Address register 1 Read R \
| Read data 1

register 2 Zero
Instruction Registers Read ALU
»| Wit dota 2 0 reéllilgJ Address %2?519 1
Instryction register M M
] u Data U
mernory > White X mermnory X
data > 1 0

»| Wite
data
16) 32
\\ Sign |\

What do we need to add to actually split the data
CSE CSCE 6651: Advanced VLSI Systems

h into stages?

UNIVERSITY,r
NORTH TEXAS 42

Corrected Datapath

CSE

Address

MEMMWB

0
M
u
X
1
—_— IFID IDIEX EXVNEM
Add > > :\
Add S
4 Awd result "
Shift
left 2
S —,| Read
—>| PC—#=>| Address 5 register 1 Read| %\
3 L Ldl
g » Read 2 daal Zero >
; £ "| register >
Instryction N Registers Read AU A
mernory Wite data?2 v >0 result >
"| register M
u
Wite X
data 1
Write
" data
16 . 32
Ny SON N
\ lextend| N

Ox:zl—‘

PCSrc

Datapath with Control

v

PC

—(0 DX
M
u "|WB LEX/MEM
] - .
| Control M WB| MEMWEB
- | S L
R IF/ID EX M WB
>Add > \
. Add
4 / I >Add result "
% Shift Branch
& left 2 L
ALUSrc ;
5 »| Read g
Address ES register 1 Read \ -
>
§ —s | Read 2 daat Zero > —
Instruction = register 2 -
memory [~ _ Registers Read N ifo ALU ALy Read
Write data 2 result > » Address eadi—,
register M Data data
u
Write X memory
> data 1
. | Wite
data
Instruction >
[15-0] S Sign MemRead
N | extend
Instruction
[20-16] R
Instruction > I
[15-11] .
CSCF 6651 Advanced VI Si Systems

MemtoReg

OXCZH

Pipelining Summary

* Pipelining doesn’t help latency of single task, it helps throughput of
entire workload

« Multiple tasks operating simultaneously using different resources

« Potential speedup = Number pipe stages

* Pipeline rate limited by slowest pipeline stage

e Unbalanced lengths of pipe stages reduces speedup

 Time to “fill” pipeline and time to “drain” it reduces speedup
 Three types of pipeline hazards: structural, data, and control/branch
« Stalling helps any kind of hazard

« Data hazard solutions: Stalling, Data forwarding, Hazard detection

e Control or Branch Hazard solutions: Stalling, Branch Prediction,
Delayed Branching

UNIVERSITY,r
ORTHTEXAS 45

CSE CSCE 6651: Advanced VLSI Systems

