
CSCE 5610: Computer Architecture 1

CSCE5610 Computer System Architecture
CSCE4610 Computer Architecture

Instructor: Saraju P. Mohanty, Ph. D.

Lecture 4: Metrics

NOTE: The figures, text etc included in slides are borrowed
from various books, websites, authors pages, and other
sources for academic purpose only. The instructor does
not claim any originality.

CSCE 5610: Computer Architecture 2

What is Performance?

• As a computer user, you define the performance!
• Different users have different definitions of performance!
• You are already familiar with some performance metrics:

Clock Frequency:
My computer runs at 1000MHz, yours only at
300MHz, so my computer is better than yours!

Millions of Instructions Per Second (MIPS):
In a second, my computer can execute 10 million
instructions, while yours only 5 million instructions in a
second, so my computer is better than yours!

CSCE 5610: Computer Architecture 3

Defining Performance: Airplane Example

Plane

Boeing 747

BAD/Sud
Concodre

Speed

610 mph

1350 mph

DC to Paris

6.5 hours

3 hours

Passengers

470

132

Throughput
(passenger x mph)

286,700

178,200

CSCE 5610: Computer Architecture 4

Which airplane performs better?
" X is n times faster than Y" means

ExTime(Y) Performance(X)
-------------- = ---------------------- = n
ExTime(X) Performance(Y)

• Time of Concorde vs. Boeing 747?
• Throughput of Boeing 747 vs. Concodre?

CSCE 5610: Computer Architecture 5

• Measure, Report, and Summarize
• Make intelligent choices
• See through the marketing hype
• Key to understanding underlying organizational

motivation
• We are interesting in answering questions of the

following nature:
– Why is some hardware better than others for different programs?

– What factors of system performance are hardware related?
(e.g., Do we need a new machine, or a new operating system?)

– How does the machine's instruction set affect performance?

Why measure performance?

CSCE 5610: Computer Architecture 6

Metrics of performance

Compiler

Programming
Language

Application

Datapath
Control

Transistors Wires Pins

ISA

Function Units

(millions) of Instructions per second – MIPS
(millions) of (F.P.) operations per second – MFLOP/s

Cycles per second (clock rate)

Megabytes per second

Answers per month
Operations per second

CSCE 5610: Computer Architecture 7

• Response Time (latency)
— How long does it take for my job to run?
— How long does it take to execute a job?
— How long must I wait for the database query?

• Throughput
— How many jobs can the machine run at once?
— What is the average execution rate?
— How much work is getting done?

• If we upgrade a machine with a new processor what do we
increase?
If we add a new machine to the lab what do we increase?

Computer Performance

CSCE 5610: Computer Architecture 8

• “time” command on UNIX gives us program execution
time statistics
Example: Type “time ls” to time the listing of the current
directory.

• Elapsed Time
– counts everything (disk and memory accesses, I/O , etc.)
– a useful number, but often not good for comparison purposes

• CPU time
– doesn't count I/O or time spent running other programs
– can be broken up into system time, and user time

• Our focus: user CPU time
– time spent executing the lines of code that are "in" our program

Program Execution Time
Total Execution time of your application is
the TRUE measure of performance. Why?
Because that is what we are really interested in!

CSCE 5610: Computer Architecture 9

• For some program running on machine X,

PerformanceX = 1 / Execution timeX

• "X is n times faster than Y"

PerformanceX / PerformanceY = n

Problem:
– machine A runs a program in 20 seconds
– machine B runs the same program in 25 seconds
Which machine is better?
What are their performance values?

Now lets define performance..

CSCE 5610: Computer Architecture 10

Clock Cycles
• Instead of reporting execution time in seconds, we

often use cycles

• Clock “ticks” indicate when to start activities (one
abstraction):

• cycle time = time between ticks = seconds per
cycle

• clock rate (frequency) = cycles per second (1 Hz =
1 cycle/sec)
A 200 Mhz. clock has a
cycle time

time

seconds
program

=
cycles

program
×

seconds
cycle

1

200 ×106 ×109 = 5 nanoseconds

CSCE 5610: Computer Architecture 11

So, to improve performance (everything else
being equal) you can either
___reduce_____ the # of required cycles for a
program, or
__reduce______ the clock cycle time or, said
another way,
__increase______ the clock rate.

How to Improve Performance

seconds
program

=
cycles

program
×

seconds
cycle

CSCE 5610: Computer Architecture 12

• Could assume that # of cycles = # of instructions

This assumption is incorrect,

different instructions take different amounts of time on different machines.

Why? hint: remember that these are machine instructions, not lines of C code

time

1s
t i

ns
tru

ct
io

n

2n
d

in
st

ru
ct

io
n

3r
d

in
st

ru
ct

io
n

4t
h

5t
h

6t
h ...

How many cycles are required for a program?

CSCE 5610: Computer Architecture 13

• Multiplication takes more time than addition
• Floating point operations take longer than integer

ones
• Accessing memory takes more time than

accessing registers
• Important point: changing the cycle time often

changes the number of cycles required for various
instructions (more later)

time

Different numbers of cycles for different
instructions

CSCE 5610: Computer Architecture 14

• Our favorite program runs in 10 seconds on computer A,
which has a 4GHz. clock. We are trying to help a
computer designer build a new machine B, that will run
this program in 6 seconds. The designer can use new
(or perhaps more expensive) technology to substantially
increase the clock rate, but has informed us that this
increase will affect the rest of the CPU design, causing
machine B to require 1.2 times as many clock cycles as
machine A for the same program. What clock rate
should we tell the designer to target?“

An Example

Page-247, Interface book

CSCE 5610: Computer Architecture 15

• A given program will require
– some number of instructions (machine instructions)
– some number of cycles
– some number of seconds

• We have a vocabulary that relates these quantities:
– cycle time (seconds per cycle)
– clock rate (cycles per second)
– CPI (cycles per instruction)

a floating point intensive application might have a
higher CPI

– MIPS (millions of instructions per second)
this would be higher for a program using simple

instructions

Now that we understand cycles

CSCE 5610: Computer Architecture 16

Performance

• Performance is determined by execution time
• Do any of the other variables equal

performance?
– # of cycles to execute program?
– # of instructions in program?
– # of cycles per second?
– average # of cycles per instruction?
– average # of instructions per second?

• Common pitfall: thinking one of the variables is
indicative of performance when it really isn’t.

CSCE 5610: Computer Architecture 17

• Suppose we have two implementations of the
same instruction set architecture (ISA).
For some program,
Machine A has a clock cycle time of 250ps and a
CPI of 2.0
Machine B has a clock cycle time of 500ps and a
CPI of 1.2
What machine is faster for this program, and by
how much?

CPI Example

NOTE: If two machines have the same ISA which of our
quantities (e.g., clock rate, CPI, execution time, # of instructions,
MIPS) will always be identical? Page-248, Interface book.

CSCE 5610: Computer Architecture 18

• A compiler designer is trying to decide between two code
sequences for a particular machine. Based on the
hardware implementation, there are three different classes
of instructions: Class A, Class B, and Class C, and they
require one, two, and three cycles (respectively).

The first code sequence has 5 instructions: 2 of A, 1 of B,
and 2 of C. The second sequence has 6 instructions: 4 of
A, 1 of B, and 1 of C.

Which sequence will be faster? How much?
What is the CPI for each sequence?

of Instructions Example

Page-252, Interface Book.

CSCE 5610: Computer Architecture 19

• Two different compilers are being tested for a 4GHz
machine with three different classes of instructions: Class
A, class B, and class C, which require one, two, and three
cycles (respectively). Both compilers are used to produce
code for a large piece of software.

The first compiler's code uses 5 billion class A instructions, 1
billion class B instructions, and 1 billion class C instructions.

The second compiler's code uses 10 billion class A
instructions, 1 billion class B instructions, and 1 billion class
C instructions.
Which sequence will be faster according to execution time?
Which sequence will be faster according to MIPS?

MIPS example

Page-268, Interface Book

CSCE 5610: Computer Architecture 20

Why Do Benchmarks?
• How we evaluate differences

–Different systems
–Changes to a single system

• Provide a target
–Benchmarks should represent large class of important

programs
–Improving benchmark performance should help many

programs
• For better or worse, benchmarks shape a field
• Good ones accelerate progress

–good target for development
• Bad benchmarks hurt progress

–help real programs v. sell machines/papers?
–Inventions that help real programs don’t help benchmark

CSCE 5610: Computer Architecture 21

Programs to Evaluate Performance
• (Toy) Benchmarks

–10-100 line
–e.g.: sieve, puzzle, quicksort

• Synthetic Benchmarks
–attempt to match average frequencies of real workloads
–e.g., Whetstone, dhrystone

• Kernels
–Time critical excerpts Real programs
–e.g., gcc, spice

CSCE 5610: Computer Architecture 22

• Performance best determined by running a real application
– Use programs typical of expected workload
– Or, typical of expected class of applications

e.g., compilers/editors, scientific applications,
graphics, etc.

• Small benchmarks
– nice for architects and designers
– easy to standardize
– can be abused

• SPEC (System Performance Evaluation Cooperative)
– companies have agreed on a set of real program and

inputs
– valuable indicator of performance (and compiler

technology)

Benchmarks

CSCE 5610: Computer Architecture 23

SPEC ‘89
• Compiler “enhancements” and performance

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 0 0

to m c a tvfp p p pm a tr ix 3 0 0e q n t o ttlin a s a 7d o d u cs p ic ee s p re s s og c c

B e n c h m a rk
C o m p i le r

E n h a n c e d c o m p ile r

S
PE

C
 p

er
fo

rm
an

ce
 ra

tio

CSCE 5610: Computer Architecture 24

SPEC ’95 CPU Benchmarks
Benchmark Description
go Artificial intelligence; plays the game of Go
m88ksim Motorola 88k chip simulator; runs test program
gcc The Gnu C compiler generating SPARC code
compress Compresses and decompresses file in memory
li Lisp interpreter
ijpeg Graphic compression and decompression
perl Manipulates strings and prime numbers in the special-purpose programming language Perl
vortex A database program
tomcatv A mesh generation program
swim Shallow water model with 513 x 513 grid
su2cor quantum physics; Monte Carlo simulation
hydro2d Astrophysics; Hydrodynamic Naiver Stokes equations
mgrid Multigrid solver in 3-D potential field
applu Parabolic/elliptic partial differential equations
trub3d Simulates isotropic, homogeneous turbulence in a cube
apsi Solves problems regarding temperature, wind velocity, and distribution of pollutant
fpppp Quantum chemistry
wave5 Plasma physics; electromagnetic particle simulation

CSCE 5610: Computer Architecture 25

SPEC ‘95

Does doubling the clock rate double the performance?
Can a machine with a slower clock rate have better

performance?

Clock rate (MHz)

S
P

EC
in

t

2

0

4

6

8

3

1

5

7

9

10

200 25015010050

Pentium

Pentium Pro

Pentium
Clock rate (MHz)

SP
E

C
fp

Pentium Pro

2

0

4

6

8

3

1

5

7

9

10

200 25015010050

CSCE 5610: Computer Architecture 26

Rating for Intel Pentium III and 4 for SPEC

CSCE 5610: Computer Architecture 27

Relative Performance of 3 Intel Processors

CSCE 5610: Computer Architecture 28

Relative Energy Efficiency of 3 Mobile
Pentium Processor

CSCE 5610: Computer Architecture 29

Execution Time After Improvement
= Execution Time Unaffected +

(Execution Time Affected / Amount of Improvement)

Example (Page-266, Interface Book):
• Suppose a program runs in 100 seconds on a machine,

with multiply responsible for 80 seconds of this time.
How much do we have to improve the speed of
multiplication if we want the program to run 5 times
faster? How about making it 4 times faster?

• Pitfall: Expecting the improvement of one aspect of a
computer to increase by an amount proportional to the
size of the improvement.

Amdahl's Law

CSCE 5610: Computer Architecture 30

Amdahl's Law
The overall speed up ratio of the execution times is
given by:
Speedupoverall = (Execution Timeold/ Execution Timenew)
= 1/ [1 – Fractionenhanced + (Fractionenhanced / Speedupenhanced)]

Example: Page-40, Quantitative Book
Suppose we want to enhance the processor used for Web
serving. The new processor is 10 times faster on computation
in the Web serving application than the original processor.
Assuming that the original processor is busy with computation
40% of the time and is waiting for I/O 60% of the time, what is
the overall speedup gained by incorporating the
enhancement?

CSCE 5610: Computer Architecture 31

Amdahl's Law

• The performance improvement to be gained
from using some faster mode of execution is
limited by the fraction of time the faster mode
can be used. -- the computer law of diminishing
returns.

CSCE 5610: Computer Architecture 32

Performance Evaluation Summary

• Time is the measure of computer performance!
• Good products created when have:

–Good benchmarks
–Good ways to summarize performance

• If not good benchmarks and summary, then choice
between improving product for real programs vs.
improving product to get more sales=> sales almost
always wins.

• Remember Amdahl’s Law: Speedup is limited by
unimproved part of program.

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

CSCE 5610: Computer Architecture 33

Fallacies & Pitfalls
• Expecting the improvement of one aspect of a machine to

increase performance by an amount proportional to the size of
improvement .. Look at Amdahl’s Law

• Hardware-independent metrics predict performance.

• Using MIPS as a performance metric.

Counter example (Page-268, Interface Book): Machine with
three instruction classes. Suppose we measure the code for
the same program from two different compilers as shown
below. Assume clock frequency is 4GHz. Which code
sequence will execute faster according to execution time?
According to MIPS? (Note: Revisited from Slide 19)

1110Compiler 2
321CPI

115Compiler 1
CBACode From

CSCE 5610: Computer Architecture 34

Fallacies & Pitfalls.. Contd.,

• Synthetic benchmarks predict performance

• Using arithmetic mean of normalized execution times to
predict performance

• The geometric mean of execution time ratios is
proportional to total execution time

CSCE 5610: Computer Architecture 35

Variants of MIPS:
MOPS and Other FLOPS!

• MIPS = Million Instructions Per Second

• Peak MIPS is obtained by choosing an instruction mix
that minimizes CPI, even if the mix is impractical!!

• Computer manufacturers announce produces using peak
MIPS as a metric, often neglecting the word “peak”

• MOPS = Million Operations Per Second

• Relative MIPS = (Time reference / Time unrated) x MIPS
reference

CSCE 5610: Computer Architecture 36

Cost Metric: Dies per Wafer

π * (Wafer diameter/2)2

(Chip area)
 - π * (Wafer diameter)

2* (Chip area)
Dies per wafer:

Cost of Integrated Circuit
• Cost of the die (or chip)
• Cost of testing
• Cost of packaging

Cost of the die depends on:
• the number of chips per wafer
• how many good dies per wafer (or yield)

CSCE 5610: Computer Architecture 37

Cost Metric: Dies per Wafer Example

• Find the number of dies per 300mm (30cm)
wafer for a die that is 1.5cm on a side.

Page-22, Quantitative Book.

CSCE 5610: Computer Architecture 38

Cost Metric: Die Yield
Die Yield = (wafer yield) *(1 + (defects per unit area) * (die area)

α
)- α

4 is a good number for a typical CMOS process.

What does all this mean?

The die area can have a huge impact on the cost of a chip.

If we double chip (die) size, we have half as many chips per
wafer and the yield drops quadratically.

So we need to use silicon area wisely.

Where, wafer yield accounts for wafers that are completely
bad and so need not be tested, for simplicity assume as 100%.

CSCE 5610: Computer Architecture 39

Cost Metric: Die Yield Example

Find the die yield for a die that is 1.5cm on a side
assuming a defect density of 0.4 per cm2 and α is 4.
Repeat the same for a die of 1.0cm on a side.

Page-24, Quantitative Book.

CSCE 5610: Computer Architecture 40

Power Metric: Dynamic and Static Power

• Powerdynamic

= ½ * Capacitive load x Voltage2 * Frequency
• Energydynamic = Capacitive load x Voltage2

• Powerstatic = Currentstatic x Voltage

CSCE 5610: Computer Architecture 41

Power Metric: Dynamic Power Example

Example: Dynamic Power (Page-18, Quantitative Book)
Some microprocessors today are designed to have
adjustable voltage, so that a 15% reduction in voltage may
result in a 15% reduction in frequency. What would be the
impact on dynamic power?

CSCE 5610: Computer Architecture 42

• Three metrics: Performance, cost, and power.

• Performance is specific to a particular program/s
– Total execution time is a consistent summary of

performance

• For a given architecture performance increases come

from:
– increases in clock rate (without adverse CPI affects)
– improvements in processor organization that lower CPI
– compiler enhancements that lower CPI and/or

instruction count

Summary

