Lecture 5: The Processor

CSCE5610 Computer System Architecture
CSCE4610 Computer Architecture

Instructor: Saraju P. Mohanty, Ph. D.

NOTE: The figures, text etc included in slides are borrowed
from various books, websites, authors pages, and other
sources for academic purpose only. The instructor does
not claim any originality.

UNMRSITY | |
NORTH EXAS CSCE 5610: Computer Architecture

¢

Lecture Outline

Construction of a Simple MIPS Processor
Single Cycle Processor
« Multicycle Processor

UNMRSITY | |
NORTH EX&S CSCE 5610: Computer Architecture

¢

¢

Levels of Representation

High Level Language

Program

Compiler

Assembly Language
Program

Assembler

LMachine Interpretation

||| ontrol Slgnal
Specmcatlon

UNMRSITY of
INORTH TEXAS

temp = v[k];
v[Kk] = v[k+1];
vlk+1] = temp;

lw$15,0($2)
w$16,4($2)
sw $16, 0($2)
sw o $15, 4($2)

ALUOP[0:3] <= InstReg[9:11] & MASK

CSCE 5610: Computer Architecture

Execution Cycle

Instruction | Obtain instruction from program storage
Fetch
Instruction | petermine required actions and instruction size
Decode
Operand Locate and obtain operand data
Fetch
Execute | compute result value or status
Result _ _
Store Deposit results in storage for later use
Next
Instruction |Deétermine successor instruction
|

UNMRSITY of | |
NORTH TEXAS CSCE 5610: Computer Architecture

¢

The Processor: Datapath & Control

* We're ready to look at an implementation of the MIPS

e Simplified to contain only:
— memory-reference instructions: lw, sw
— arithmetic-logical instructions:add, sub, and, or, slt
— control flow Iinstructions: beq, J}

* Generic Implementation:
— use the program counter (PC) to supply instruction address
— get the instruction from memory
—read registers
— use the instruction to decide exactly what to do

UNMRSITY | |
NORTH EX&S CSCE 5610: Computer Architecture

¢

More Implementation Detalls

o Abstract / Simplified View

 Two types of functional units:
— elements that operate on data values (combinational)
— elements that contain state (sequential)

L Data

—
Register #
PC t==»{ Address Instruction { Registers AL Address
Instruction] Register #
memory wd Datall |
Register # memory
»| Data
UNMRSITY CSCE 5610 C -
: Computer Architecture
I(NORTH TEXAS g

Basic Building Blocks

eLatches

Flip-flops
Combinational Elements
«Seguential Elements
*Clocking strategies

UNMRSITY | |
NORTH EX&S CSCE 5610: Computer Architecture

¢

State Elements

 Unclocked vs. Clocked

Clocks used in synchronous logic
— when should an element that contains state be

updated? I/ falling edge
) cycle time] \

risingedge p

e The set-reset latch

— output depends on present

Inputs and also on past inputs

3

UNMRSITY | |
NORTH EX&S CSCE 5610: Computer Architecture

Latches and Flip-flops

 Output Is equal to the stored value Inside the
element

 Change of state (value) is based on the clock

 Latches: whenever the inputs change and the
clock Is asserted

 Flip-flop: state changes only on a|clock edge
(edge-triggered methodology)

"logically true",
— could mean electrically low

A clocking methodology defines when signals can be read and written
— wouldn't want to read a signal at the same time it was being written

UNMRSITY

NORTH EX&S CSCE 5610: Computer Architecture

¢

D-latch

e TWO Inputs:
— the data value to be stored (D)
— the clock signal (C) indicating when to read & store D

 Two outputs:
— the value of the internal state (Q) and it's complement

C D——
—Q
C I
—Q
D *— Q

UNMRSITY | |
NORTH EX&S CSCE 5610: Computer Architecture

¢

D flip-flop

« Output changes only on the clock edge

b D D [] Q D D[Q Q
latch latch _ B
C C o 5
C '[Dc
]
D ——
C ——

UNMRSITY | |
NORTH EX&S CSCE 5610: Computer Architecture

¢

Our Implementation

* An edge triggered methodology

o Typical execution:
— read contents of some state elements
— send values through some combinational logic
— write results to one or more state elements

Statell Statel]
element Combinational logic »| elementl
. 2
Clock cycle —
UNMRSITY | |
r(NORTH EX&S CSCE 5610: Computer Architecture

Register File: Read Operation

e Built using D flip-flops (Combinational in nature)
Read register(d
number 1 A
Register O *—>
Register 1 @ > MO
? »| u0l——> Read data 1
Registern - 1 *— | X
Registern |—e >
_/
Read register(d
number 2 i
—p
> MO
—| ull » Read data 2
»| X
>
_/
UNMRSITY | |
r(NORTH EX&S CSCE 5610: Computer Architecture

Register File: Write Operation

e We still use the real clock to determine when to

write
Write
o—
0)7 C
Register 0
1 | o
n-to-10 " C
' 5 TO° X —
Register number decoder | : cegister 1
@ » D
n-—1
n
o—
e
Registern — 1
@ » D
)¢
Register n
Register data ® > D
UNMRSITY | |
r(NORTH EX&S CSCE 5610: Computer Architecture

Register File: Block Diagram

Read register

number 1 Read
| data 1
Read register e Three Address ports
number 2_ _ e One Data Input Port
Write Register file e Two Data Output Ports
register One Write Control Signal
Read
Write data 2
data \Wirite
r(UNSI?T%S{ITEXAS CSCE 5610: Computer Architecture

Functional Units - |

a: Instruction Memory

After an instruction address Is put, the instruction
residing at the address appears at the output port

b: Program Counter -- A simple up counter
c: Adder -- A 2's complement adder

| Instructiond
address —
am—) PC'“
INStruction > >Add Sum
Instruction]
memory —
a. Instruction memory b. Program counter c. Adder

UNMRSITY | |
NORTH EX&S CSCE 5610: Computer Architecture

¢

Functional Units - ||

a. Reqister File
It's construction, read, and write operations as discussed previously
b: ALU (Arithmetic & Logic Unit)
Recall the ALU design we have discussed in last two classes
Note the “Zero” output

> Data

(O, | Read
register 1
Read
Register _ O [Read data 1
numbers register 2
. Registers
Write
—— .
L register Read
, data 2
Data {—» \é\gt';e
RegWrite
a. Register File
'thnﬁERsrrYf

¢

INORTH TEXAS

CSCE 5610: Computer Architecture

ALU control

3N

Zerol—p

ALU aALul
result

1T

b. ALU

Functional Units -Il|

a: Data Memory Unit
Similar to Instruction Memory Unit, only that it can written into as well
Two input ports for address and data, one output port (for data read out)
Two control signals: for Read and Write operations

b: Sign Extension Unit -- Extends 16-bit input operand to 32 bits

MemW rite

—| Address Read |y
data 16 _ 32
\ Sign
D ata extend
W rite

m—1data memory

MemRead

a. Data memory unit b. Sign-extension unit
UNMRSITY > | .
r(NORTH T] S CSCE 5610: Computer Architecture 18 g

Datapath for Instruction Fetch (Piece)

* Fetching Instructions and Incrementing the program counter by 4

Readl
PC address
INStruction {——
Instruction
memory
UNIVERSITYf | |
r(ORTH EX&S CSCE 5610: Computer Architecture

Datapath for R-type Instructions (Piece Il)

« Datapath for R-type Instructions

¢

Instruction

UNMRSITY
ORTH EXAS

Read
register 1

Read

register 2
Registers

Write

register

Write
data

Read
data 1

Read
data 2

*ALU operation

Zero

ALU ALU
result

CSCE 5610: Computer Architecture

RegWrite

¢

Datapath for Load/Store (Piece lll)

Datapath for load or store

(1) Register Access; (2) Memory Address calculation; (3) Read/Write

(4) Write into Register file (if the instruction is a load)

3 ALU operation
Read I
register 1 MemWrite
i
Read ata
Instruction register 2 AL Zerof—>
. Reqisters ALU
Write result »| Address Féead
register Read ata
i data 2 /
. Write
data Data
' : memory
RegWriteI Write
data
16 _ ;
\,| Sign MemRead
N lextend
UNMRSITY of |
CSCE 5610: Computer Architecture
NORTH 1EXAS P

Datapath for Branch (Piece V)

o Unit “Shift left 2” adds “00” at the low-order end of the sign-extended offset

e Control logic is used to decide whether the incremented PC or branch
target should replace the PC based on the “Zero” output of the ALU

PC + 4 from instruction datapath =

> Add Sum Branch target
»
Read ALU operation
Instruction register 1 Read .
Read data 1
register 2
Registers 5ALU Zero To branch
Write control logic
register Read R
Write data 2
data
RegWrite
16 _ 32
Ny | Sign
N lextend
UNIVERSITY, |
CSCE 5610: Computer Architecture
I(NORTH TEXAS P

Datapath Construction Strategy

 Now, we have “pieces” of datapath that are capable of
performing distinct functions

« We want to “stitch” them together to yield a final
datapath that can execute all the instructions (lw, sw,
add, sub, and, or, slt, beq, |)

e We will use multiplexors (or muxes for short) for
stitching the datapath

UNMRSITY | |
NORTH EX&S CSCE 5610: Computer Architecture

¢

Datapath Construction (Merge Pieces II1&lll)

Read ALU operation
register 1 Read
Read data 1
|nstruction register 2 .
Writ Registers >ALU ALU
rite
reglster Read
Write data 2
data
/ | Regwrite
Plece I I ALU operation
| Readtm ! \3\k
register MemWrite
+ ReadO dggaf[] —
. Instruction register 2 Zerof—»
ister ALU
Plece I I I \r/;/éiitgtgfeg sters > reélljlttu »| Address %Z?g i
| Write[D dzgag] " /
s memory
RegWrite > \é\é[[i;eﬂ
16 _ :
\ MemRead
N | extend
r(UNS;{E%S{ITE}JE&S CSCE 5610: Computer Architecture

And you will get..

 Rule: Whenever we have more than one input feeding a functional unit,
Introduce a multiplexor (this gives rise to a control signal, more later..)

Read Registers .
register 1 \
Read Read >
> register 2 data 1 Zero
Write Read R ’* >A|—U ALU Address Read ’/L
> register data 2 M result| data y
Ul.ap -
. : Ut.,
. \(;\;rt';e X X Data x| :
2V L |wie memory | o)
) :
data .
\\ | extend \
UNIVERSITY,r . .
r(ORTHTEXAS CSCE 5610: Computer Architecture

Datapath Construction ... (merge Piece |)

o Just tack the Instruction Fetch and PC increment logic at
the front!

| Read Registers 3| I
5 Read register 1 end ‘
address Read q 1 >
Instruction register 2 e Zero
Write Read DALU ALY Address ~ Readl,
register data 2 M result data N
Instruction : u u
memor P X Data X
y data : memor >
I »| Write y
data
16 [sign \32 l
\
7| extend
UNWERSITYf CSCE 5610: C i
- Computer Architecture
I(NORTH TEXAS P

Datapath Construction (merge Piece V)

PCSrﬁL
p——) >
>Add l , ML
X
4= >Ad result \/
—p
Registers :
mend Read . ALUSre 3| ALY operation MemWrite
Llpc s Cclag\ register Read e
address Read data 1 MemtoReg
register 2
Instruction _
Write Read ey Address Readl,
. register data 2 M data| |m
Instruction Wit)L(' u
memory | VVITE Data X
data : g ,| Write Temory
RegerteI data
16 : 32
\ Sign
™ extend MemRead
UNIVERSITY, -
CSCE 5610: Computer Architecture
I(NORTH TEXAS P

There are seven control signals (of type Read, Write, or Mux Select)

Final Datapath

Data flows through various “paths” under the influence of control signals

¢

PC

N

v
oxXxc

> 1
>Add l > I\lﬁ'
AL 5
0
4 e / > Add result
>
Instruction [25—21] | Read
Read “|register1 Read ‘
| address Instruction [20— 16] | Read data 1 g
Instruction _I “[reaister 2 zero
1 _ Read
[31-0] W ERITE data 2 —>| 1 > AU re§b|LtJ Address Read
: U register M data
Instruction Instruction [15-11] [x [|\write u
memory ¢ > o data Redisters "")(()
| Write Data
data memory
Instruction [15—0] 1\6 Sign | 32
v\ extend
Instruction [5—0] r
UNIVERSITY, CSCE 5610: C i
. o : Computer Architecture
NORTH TEXAS g

Defining the Control..
o Selecting the operations to perform (ALU, read/write, etc.)
« Controlling the flow of data (multiplexor inputs)
* Information comes from the 32 bits of the instruction

 Example:
add $8, $17, $18 Instruction Format:

000000 |10001 |10010 |01000 |[OOOOO]100000

op rs rt rd shamt funct

 ALU's operation based on instruction type and function code

 We will design two control units:
(1) ALU Control to generate appropriate function select signals for the ALU

(2) Main Control to generate signals for functional units other than the ALU

UNMRSITY of | |
NORTH TEXAS CSCE 5610: Computer Architecture

Defining the ALU Control ... Contd.

e e.g., what should the ALU do with this instruction
 Example: |lw $1, 100($2)

35 2 1 100

op rs rt 16 bit offset

 ALU control input
000 AND
001 OR
010 add
110 subtract
111 set-on-less-than

UNMRSITY | |
NORTH EX&S CSCE 5610: Computer Architecture

¢

ALU Control Design

 Must describe hardware to compute 3-bit ALU control input
— given instruction type

00 = Iw, sw T~ ALUOp

01 = beq, : .
10 = arithmetic computed from instruction type

— function code for arithmetic
 ALU Control inputs — How are they determined?

Instruction Instruction Funct Desired ALU Control

Opcode ALUOp Operation Field ALU Action Operation
LW 00 load word XXXXXX add 010
SW 00 store word XXXXXX add 010
Branch equal 01 branch equal | XXXXXX subtract 110
R-type 10 add 100000 add 010
R-type 10 subtract 100010 subtract 110
R-type 10 AND 100100 and 000
R-type 10 OR 100101 or 001
R-type 10 setonless than 101010 seton less than 111

r(UNSET%S{I%S CSCE 5610: Computer Architecture

ALU Control - Truth Table & Implementation

Describe it using a truth table (can turn into gates):

ALUODp Funct field Operation
ALUOpPI1|ALUOPO|F5[F4|F3|F2|F1|FO
0 0 X I X[X | X[XX 010
X 1 X [X[X | X[XX 110
1 X X1 X[10]1]0]1]0]O0 010
1 X X1 X[10]1]0]111]0 110
1 X X1 X[0]1]1]01]0 000
1 X X1 X[0]1]0]l1 001
1 X X[X112 10110 111
ALUOp
v ALU control block
'ALUOpO
ALUOp1
Operation2
P Operation
DOperationl
T\ Operation0
|
r(UNSET%S{%E&S CSCE 5610: Computer Architecture

Designing the Main

Control

PC

>Add

¢

Read

» address

Instruction
[31-0]

Instruction
memory

UNIVERSITY,
NORTH TEXAS

» 0
M
> u
X
ALU
>Add result S
>
Instruction [31—-26]
> Control
Instruction [25-21] [Read
. register 1 Read ,
Instruction [20-16] Read data 1l
> register 2
>0 Registers Read N >A|-U ALU
M Wite data 2 19 resuit —| Address %gi"d
u register M a
u
Instruction [15-11 X :
B g Wie | X Data
ala G) memory
| White
"| data
Instruction [15-0] O sgn |32
extend ALU
control
Instruction [5—-0]

CSCE 5610: Computer Architecture

OXCZH

Control Signals and their Effects

Signal Name|Effect When deasserted

Effect when asserted

RegDst

The register destination number for the Write

The register destination number for the Write

register comes from the rt field (bits 20-16)

register comes from the rd field (bits 15-11)

RegWrite [NONE

The register on the Write register input is

written with the value on the Write data input

ALUSIrc The second ALU operand comes from the The second ALU operand is the sign-extended
second register file output (Read data 2) lower 16 bits of the instruction

PCSrc The PC is replaced by the output of the adder that| The PC is replaced by the output of the adder
computes the value of PC + 4. that computes the branch target

MemRead None Data Memory contents designated by the address

MemWrite None

MemtoReg The value fed to the register Write data input

¢

comes from the ALU

UNWH{M 1 ¥or CSCE 5610: Computer Architecture

NORTH i EXA'%

Input are put on the Read data output

Data memory contents designated by the address
Input are replaced by the value on the Write data input
The value fed to the register Write data input comes
from the data memory.

Main Control: Truth Table & Implementation

Memto- | Reg | Mem | Mem

Instruction | RegDst | ALUSrc Req Write | Read | Write | Branch [ALUOp1 |ALUpO
R-format 1 0 0 1 0 0 0 1 0
Iw 0 1 1 1 1 0 0 0 0
Sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

Inputs

Op5_. > —

Op4 >— PN ® ®

Op3 °

Op2 7' T. T. L 4

Opl T P P T

OpoO

[e)e) L Q00 iﬂc: Q00 ég

A

R-format lw Sw beq RegD st

) ALUSTC
l L g MemtoReg

) RegWrite
I MemRead

* MemWrite

r— Branch

! ALUOp1

ALUODPO

UNIVERSITY, | -
ORTHTEXAS CSCE 5610: Computer Architecture

¢

Our Simple Control Structure
« All of the logic Is combinational

 We walt for everything to settle down, and the right
thing to be done
— ALU might not produce “right answer” right away
— we use write signals along with clock to determine when

to write

e Cycle time determined by length of the longest path

Clock cycle

We are ignoring some details like setup and hold times

UNMRSITY | |
NORTH EX&S CSCE 5610: Computer Architecture

¢

How does the single cycle datapath work?

e Let us understand this by highlighting the portions of
the datapath when an R-type instruction Is executed

 For an R-type instruction we go through the following
phases:

Phase 1: Instruction Fetch

Phase 2: Register File Read

Phase 3: ALU execution

Phase 4: Write the Result into the Register File

« NOTE: All the four phases are completed in only ONE
clock cycle and hence it Is a “single cycle
Implementation”

UNMRSITY | |
NORTH EX&S CSCE 5610: Computer Architecture

¢

¢

R-type Instruction — Phase 1
(Instruction Fetch)

Instruction [31—26]

address

Instruction
menory

Instruction
[31-0Q]

UNIVERSITY,

NORTH TEXAS

>Add result

» Control
Instruction [25-21] | Read
| register 1 Read
Instruction [20- 16] | Read data 1
| "| register 2
0 ~ Regsters Regq
M Wite data 2
u register
Instruction [15-11] | X | | wite
"L "| data
. 16 i
Instruction [15-0] 1 .| Siogn
* lexterd
Instruction [5-0]

>ALU ALl

chzo

}Ut

32

ALU

r control

0
M
u
X
1
N Read
»| Address dhta
Data
memol
o] Wite v
data

OXCZ"‘

CSCE 5610: Computer Architecture

R-type Instruction — Phase 2
(Register Read)

0
M
—> u
X
AL
>'Add result L
4 IH
Instruction [31—26]
Control
Instruction [25-21] Read
;Rceld?rdess register 1 Read
Instruction [20- 16] Read data 1
. register 2
|rst?3ﬁtlo(r)] ‘—> 0 eg Registe's Read >ALU AL
. M \ite data 2 0 result »| Address Readl (7
Instruction u register M i M
_ u
memory Instruction [15-11]) 1X R \é\gte X Deta)li
a —>\ 1 memory 0
| White r
"| data
Instruction [15-0] ~ ie .| Sign z
* lextend ALU
control
Instruction [5-0]
UNT*”ERSI%Yf CSCE 5610: Computer Architecture
NORTH 1EXAS

¢

R-type Instruction — Phase 3

(ALU execution)

Instruction [31—26]

4
Read
address
Instruction
[31-0]
Instruction
memory
UNIVERSITY,
NORTH TEXAS

Control
Instruction [25-21] Read
register 1 Read
Instruction [20-16] Read data 1
| register 2
0 ~ Regsters Reyg
M Wite data 2
u register
Instruction [15-11] [X| [\wite
"L "| data
. 16 _
Instruction [15-0] 1 .| Sign
* lexterd
Instruction [5-0]

0
M
—> u
X
ALl
lﬂ >Add result 1
AU A
0 > Read
M result »| Address dhta
u
R 1X Data
memo
o| Wite v
data

32

ALU

r control

OXCZ'_‘

CSCE 5610: Computer Architecture

¢

R-type Instruction — Phase 4

(Write the Result)

address

Instruction
memory

Instruction
[31-0Q]

UNIVERSITY,

NORTH TEXAS

0
M
—> u
X
AL
lﬂ >Add result L
Instruction [31—26]
Control
Instruction [25-21] Read
register 1 Read
Instruction [20-16] Read data 1
| register 2
0 ~ Regsters Reyg >ALU AL
M Wite data2 0 resut »| Address Read
u register M / data
. u
Instruction [15-11] | X -
it IR e X Deta
a —1
_ memory
,| Wite
data
Instruction [15-0] {6 | Sign %
* lextend ALU
control
Instruction [5-0]

OXCZ'_‘

CSCE 5610: Computer Architecture

How do we handle jump?

Instruction [25—0] \ @%\ Jump address [31-0]
\ \
26 @28 o\ L
PC+4 [31-28] > '\le '\Lf
\ X X
> ALU
5Add result L 0
>Add \
Jump
4] ey
Instruction [31—26]
» Control
Instruction [25—21] Read]
.| Read g '
—|PC * Sddress _ register 1 Read] R
Instruction [20—16] | ReadD data 1
. "| register 2
Instr[gcltloaﬂ LG ~ Registers Read 5 ALU ALY Read(]
. M Write[J data 2 i result »| Address Cal
Instruction u register M data M
memor ’ X u
y Instruction [15—-11]) 1 | WiiteD N Datal])li
data —»| 1 memory 0
Write
" | data
Instruction [15-0] {6 | SignO ¥
\ "l extend
Instruction [5-0] r

UNIVERSITY, . |
NORTH T S CSCE 5610: Computer Architecture 42 g8

¢

Single Cycle Implementation: Summary

All instructions are executed in only clock cycle
We bullt a single cycle datapath from scratch

We designed appropriate controller to generate correct
correct signals

All instructions are not born equal; that some require
more work, some less => disadvantage of single cycle
Implementation is that the slowest instruction determines
the clock cycle width

In reality, no body implements single cycle approach.

Given the single cycle datapath, you should be able to
*highlight” active portions of the datapath for any given
Instruction.

NOTE: Solve example from page-315 of Interface Book

UNMRSITY |
NORTH EXAS CSCE 5610: Computer Architecture 43 g SRl |

Single Cycle Implementation - Issues

e Single Cycle Problems:

— what If we had a more complicated instruction like
floating point?

— wasteful of area
— Cycle width determined by the slowest instruction

 One Solution:
— use a “smaller” cycle time

— have different instructions take different numbers of
cycles

— a “multicycle” datapath:

UNMRSITY | |
NORTH EX&S CSCE 5610: Computer Architecture

¢

Slngle Cycle, I\/Iultlple Cycle, vs. Plpellne

CIkI I I I _
Cycle 1 |
Slngle Cycle Implementation: ’ Cycle 2 :
Load I Store : Waste
: Cycle 1} Cycle 2; Cycle 3 Cycle 4; Cycle 5} Cycle 6; Cycle 7; Cycle 8: Cycle 9 Cyclg 10
Clk | |

Multiple Cycle Implementation: : :
: Load : Store ! R-type
Ifetchl Regu Exec I Mem I Wr I Ifetchl Regu Exec I Mem I Ifetch

Pipeline Implementation:

Load Ifetchl Reﬂ Exec I Mem I Wr

¢

Store Ifetchl Regu Exec I Mem I Wr

R-type Ifetchl ReM EXxec I Mem I Wr

UNIVERSITY, _ _
NORTH TEXAS CSCE 5610: Computer Architecture

Multicycle Approach

 We will be reusing functional units

— ALU used to compute address and to increment PC
— Memory used for instruction and data

e Our control signals will not be determined solely

by Instruction
— e.g., what should the ALU do for a “subtract” instruction?

e We'll use a finite state machine for control

 Break up the Instructions Iinto steps, each step

takes a cycle

— balance the amount of work to be done
— restrict each cycle to use only one major functional unit

« Atthe end of a cycle

— store values for use in later cycles (easiest thing to do)
— Introduce additional “internal” registers

UNlVH{bllY | |
NORTH E}Q\’Q CSCE 5610: Computer Architecture

Multicycle Approach — High Level View

,| Instruction |
register
-—>| Data
— PCi—O» Address
I _ Register #
truct :
Memory s (r)l# dgg Registers >ALU ALUOut~¢
Memory Register #
data (=@ p| B [
| Data register Regjister # [
UNMRSITY of . -
r(NORTH TEXAS CSCE 5610: Computer Architecture

Multicycle Approach

» handles the basic instructions

LPC 0 L} 0
M Rearl M
u Address register 1 u
X
1 Menory register 2 dAtal L > ALU iio AL
MerrDatd) Wit gsers result
| egiSter pga2 [7[B f=g=>(0 }mp
- g{tﬂe Wite 4=p|1 M
dta — 2
|3
|3
Sign -
extend
&
UNIVERSITY, ¢ i
- 0 CSCE 5610: Computer Architecture
r(INORTH 1EXAS g

Five Execution Steps

 |nstruction Fetch
 |nstruction Decode and Register Fetch

 Execution, Memory Address Computation, or
Branch Completion

« Memory Access or R-type instruction completion
* Write-back step

INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!

UNMRSITY | |
NORTH EX&S CSCE 5610: Computer Architecture

¢

Step 1: Instruction Fetch

« Use PC to get Instruction and put it Iin the
nstruction Register.

* Increment the PC by 4 and put the result back In
the PC.

e Can be described succinctly using RTL "Register-
Transfer Language”

IR <= Memory[PC];
PC <= PC + 4;

UNMRSITY | |
NORTH EX&S CSCE 5610: Computer Architecture

¢

Step 2: Instruction Decode and Register
Fetch

 Read registers rs and rt in case we need them

« Compute the branch address In case the
Instruction is a branch

e RTL.:
A <= Reg[IR][25-21]];

B <= Reg[IR[20-16]];
ALUOuUut <= PC + (sign-extend(IR][15-
01]) << 2);

UNMRSITY | |
NORTH EX&S CSCE 5610: Computer Architecture

¢

Step 3: (Instruction dependent)

 ALU Is performing one of three functions, based
on Instruction type

« Memory Reference:
ALUOUt <= A + sigh-extend(IR][15-0]);

e R-type:
ALUOUt <= A op B;

e Branch:
1T (A==B) PC <= ALUOut;

UNMRSITY | |
NORTH EX&S CSCE 5610: Computer Architecture

¢

Step 4: (R-type or memory-access)

 Loads and stores access memory
MDR <= Memory[ALUOut];

or
Memory[ALUOut] <= B;

e R-type instructions finish
Reg[IR[15-11]] <= ALUOut;

The write actually takes place at the end of the
cycle on the edge.

UNMRSITY | |
NORTH EX&S CSCE 5610: Computer Architecture

¢

Step 5: Write-back step
e Reg[IR[20-16]] <= MDR;

Summary of Steps taken to execute any instruction class.

Action for R-type [Action for memory-reference Action for Action for
Step name instructions instructions branches jumps
Instruction fetch IR <= Memory[PC]
PC<=PC +4

Instruction A <= Regq [IR[25-21]]
decodel/register fetch B <= Regq [IR[20-16]]

ALUOuUt <= PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut<=AopB ALUOuUt <= A + sign-extend if (A ==B)then |PC <=PC [31-28] I
computation, branch/ (IR[15-0]) PC <= ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type | Reg [IR[15-11]] <= |Load: MDR <= Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOuUt] <= B
Memory read completion Load: Reg[IR[20-16]] <= MDR

* This sequence suggests what controller must do on each
clock-cycle.

UNMRSITY of | |
NORTH TEXAS CSCE 5610: Computer Architecture

¢

Multicycle Datapath with Control Lines

¢

lorD MemRead MemWrite IRWrite RegDst RegWrite ALUSIcA
PC 0 - 0
M Instruction ».| Read M
u Address [25-21] " | register 1 u
X
-1 Memor Instruction Read dstgaf X Zero
y [20-16] register 2 1 ALU
MemData Registers ALU =5 ALUOU tfumm
Instruction Write Read result
[15-0] register data 2 ™ g ()
\C’I\gt';e Instruction Write 4=pl1 M 7
register data ey | >)‘g
Instruction 0 3
[15-0] M
u
X
Memory > &
data 16 ALU
register \\ b =g | CONtIO
Instruction [5—0]
>
MemtoReg ALUSrcB ALUOp
UNMRSI%YJ” CSCE 5610: Computer Architecture
INORTH 1EXAS

Multicycle Datapath with Controller

/7_,_<__l PCWriteCond/\ PCSource
— PCWrite
\—\ lorD I/Outputs\ALUOp
ALUSIcB
MemRead
MemWwrite| Control ALUSTER
MemtoReg RegWrite
. Op RegDst
IRWrite \
[5-01/
Ne > G \
3 M
" 26 28 Jump » 1y
Instruction [25—0] [shift address [31-0] | ox
NS \left 2 %
Instruction
oc rO [31-26] I (0 PC [31-28]
M Instruction »| Read M
u Address [25-21] register 1 _| g H
- 1X Memory Instruction [] Read dRead > A X]
[20- 16] ._L(”| register 2 datal] Lels >
MemData > . 0 _ Registers g | ALUOU gl
Instruction L M Write Read ol B result
Wit [15-0] I[nstruct]ion u register gata 2 - 0 =
rite i 15-11 X . M
> it In:etrlljctlon | >, Write 4 =»|1 M /
gister data »|2
Instruction 0 3
[15-0] M
u
X
»| Memory > 1
data N
register [>
Instruction [5— 0]
>

CSCE 5610: Computer Architecture

Implementing the Control

« Value of control signals is dependent upon:
— what instruction is being executed
— which step is being performed
e Use the information we've accumulated to specify a
finite state machine
— specify the finite state machine graphically, or
— Use microprogramming

 Implementation can be derived from specification

UNMRSITY | |
NORTH EX&S CSCE 5610: Computer Architecture

¢

Actions of the 1-bit control signals

Signal Name|Effect When deasserted Effect when asserted
RegDst The register destination number for the Write [The register destination number for the Write
register comes from the rt field register comes from the rd field
RegWrite |NONE The general purpose register selected by the Write
register number is written with the value of the Write
data input.
ALUSrcA The first ALU operand is the PC. The first ALU operand comes from the A register.
MemRead None Content of Memory at the location specified by the
Address input is put on Memory data output.
MemWrite |None Memory contents at the location specified by the
Address input is replaced by value on Write data input.
MemtoReg The value fed to the register file Write data input The value fed to the register file Write datainput comes
comes from ALUOut from the MDR.
lorD The PC is used to supply the address to the ~ ALUOut is used to supply the address to the memory
memory unit. unit.
IRWrite None The output of the memory is written into the IR.
PCWrite None The PC is written; the source is controlled by PCSource
PCWriteCond None The PC is written if the Zero output from the ALU is acti
r(UNSII{ET%S{%YE}QAS CSCE 5610: Computer Architecture

Actions of the 2-bit control signals

Signal Name

Value

Effect when asserted

IIOOII

The ALU performs an add operation.

ALUOp

llolll

The ALU performs a subtract operation.

"10"

The funct field of the instruction determines the ALU operation

IIOOII

The second input to the ALU comes from the B register.

ALUSrcB

"01"

The second input to the ALU is the constant 4.

lIlOII

The second input to the ALU is the sign-extended,

lower 16 bits of the IR.

llllll

The second input to the ALU is the sign-extended,

PCSource

UNIVERSITY,
NORTH TEXAS

¢

IIOOII
"01"

lIlOII

CSCE 5610: Computer Architecture

lower 16 bits of the IR shifted left 2 bits

Output of the ALU (PC + 4) is sent to the PC for writing.
The contents of the ALUOut (the branch target address)
are sent to the PC for writing.

The jump target address (IR[25-0] shifted left 2 bits and
concatenated with PC + 4[31-28]) is sent to the PC

for writing

Finite state machines

 Finite state machines:

— a set of states and

— next state function (determined by current state and the input)
— output function (determined by current state and possibly input)
— We’ll use a Moore machine (output based only on current state)

Nextd
state

Next-stated
function

»| Current state ®

Clock
Inputs ®

Outputld
function

» Outputs

UNMRSITY of | |
NORTH TEXAS CSCE 5610: Computer Architecture

¢

Finite State Machine Control for Multicycle
Implementation

Start

! !

Instruction fetch/decode and register fetch(
(Figure 5.32)

l | l l

M_emory QCCGSSD R-type instructions[j | Branch instruction)]| Jump instructionld
Instructinn<l]

(Figure 5.33) (Figure 5 34) (Figure 5 35) (Figure 5 36)

UNMRSITY of | |
NORTH TEXAS CSCE 5610: Computer Architecture

¢

¢

Instruction Fetch & Decode (Fig 5.32)

Instruction fetch

Instruction decode/
Register fetch

MemRead 1
ALUSIcA=0
i ALUSICA = 0
Start ALUSrcB = 01 » ALUSrcB =11
ALUOp =00 ALUOp = 00
PCWrite
PCSource = 0Q
6\ J ~—~
S &/ &
z Q =
= W R I
of KOQ & o
©O°
v
Memory reference FSM R-type FSM Branch FSM Jump FSM
(Figure 5.33) (Figure 5.34) (Figure 5.35) (Figure 5.36)
UNIVERSITY, -
CSCE 5610: Computer Architecture
NORTH TEXAS g

Memory Reference Instructions (Fig. 5.33)

From state 1
l(Op ='LW") or (Op ='SW")

Memory address computation

ALUSrcA=1
ALUSrcB = 10
ALUOp =00

Memory
access

v access

MemRead

lorD = 1 MemWrite

lorD=1

v Write-back step

RegWrite To state O
MemtoReg = 1 " (Figure 5.32)
RegDst =

UNIVERSITY, | |
ORTHTEXAS CSCE 5610: Computer Architecture

¢

R-type, Branch, Jump..

From state 1
l(Op = R-type)

Execution From state 1
(Op ='BEQ)) From state 1
(Op ='J)

Jump completion

Branch completion

ALUSrcA=1
ALUSrcB =00
ALUOp =10

ALUSrcA=1
ALUSrcB =00
ALUOp =01
PCWriteCond
PCSource =01

PCWrite
PCSource =10

R-type completion

RegDst = 1 To state O To state 0
Regyiie (Figure 5.32) (Figure 5.32)
MemtoReg =0

To state O
(Figure 5.32)

UNIVERSITY, | |
ORTHTEXAS CSCE 5610: Computer Architecture

¢

Graphical Specification of FSM

) Instruction decode/
Instruction fetch register fetch
MemRead 1
ALUSrcA=0
lorD=0 ALUSIcA=0
Start IRWrite » ALUSrcB =11
ALUSIrcB =01 ALUOp = 00
ALUOp =00
PCWrite
PCSource =0 R
) Y ~
_ ?\,’NQ \Q)((/o']
M dd N S Y 2
emory address .
com yutation 00> > . Branch & S| Jump
P \\‘\N‘\ of k Execution Completlon Comp|etion
o0 - 6
ALUSrcA=1
ALUSrcA=1 — =
ALUSICcA =1 ALUSrcB =00 .
ALUSrcB = 10 ALUSICB = 00 ALUOp =01 eae s
ALUOp =00 ALUOp= 10 PCWriteCond ource =
PCSource = 01
P
o %
= N,
= 6‘%
1] ~) >
@ Memory Memory
access access R-type completion
5 7
. RegDst=1
MemRead MemWrite RegWrite
lorD=1 lorD=1 MemtOReg =0
Write-back step
4
RegDst=0
RegWrite > A 4
MemtoReg=1
of CSCE 5610: Computer Architecture

NORTH IEXAS

Finite State Machine for Control

Control logic

Inputs
A

Outputs

-

~

/

PC W rite

PCWriteCond

lorD

MemRead

MemW rite

IRW rite

MemtoReg

PCSource

ALUOp

ALUSrcB

ALUSTrcA

RegW rite

RegDst

NS3

NS?2

NS1

NSO

Ty) < ™ N — o
o o Q Q o o
OT OT OT OT OT OT

Instruction register(]
opcode field

NORTH TEXAS

¢

S3

|

T

State register

=

UNMRSITYf CSCE 5610: Computer Architecture

¢

Multicycle Datapath to Handle Exceptions

— Calsaiyres
— PCWhieCang / \ imiGeuss
Eridimie | EPCWrRs
waie || Cirpans | T a—
l.|1i-|-l'l1F|H|:|I! Comiroi LAY
AT | : ALLISieR
ALLESCA
Hlll.lll:ll'lll-u ﬁ Ragwrin
=Tfanin -FFIIIJ" nE’EEHl
InGtnecion
W =
i b T Inginiction | | Hoad L
U+ Address [25-21) mgstert oo
ey Instnucton it 1 ’lih*
k. L T v— [20-18] H - g‘:’uz 3
MemDSR = netrction || < Foglaters
[16—0] | [wstruction 3"% Aead | I
i w [15-11] ‘) B data 2
rogisker AT —_—
instruction M
[A5=01]
L= W) .-'/_\"- i
"-:-w'_. ,"f,_lﬁmllw m—rl\l_
reglater exlerd ok 2 |
- W B
Insiruction [5—0]
UNMRSITY of CSCE 5610: C .
- Computer Architecture
NORTH TEXAS P

¢

Multicycle

Control to Handle Exceptions

l Insbructian fedch

instructicon decode/
\ ragister fesch
o
j | ru a
N o)
uLISrcﬂ o ALLISncH = 11
'g ALLIOp = 00 ALUGR = 00

AR
8 %
Memory addrass Jmp
computalion complation
z B —
ALUSTCA = 1 * // \.
ALUSreB = 10 | (Avsma-oo| | e | [apheme. .}
ALLIOp = 00 ALLOp = 10 II PCWisCond |
T § ', PCSource = 01
g % \ __//
| memary Memory
& § access accuss F-type complesian
3 ',r//‘" " ImCausa = 1 10 Intﬂm-{l
Causatiile CaussWrite
| Memiead MemWrite | | Fleqmﬂ Ovarllow [ALUSrch = 0 ALLISrcA = O
oD = 1 | D=1 ALLISrEE = 01 ALUSES = 01
' 'mmmnau D .il.l.lﬂ'p 01 ALLICR = m
\ \ ERGiie
El-numa- 1 F-I:‘.:Euurm 11
Wirite-back siap b
4
| RAeglst = 0
|
| MemtoRiag = 1 i

UNMRSITY of
INORTH TEXAS

CSCE 5610: Computer Architecture

Controller Implementation: Big Picture

Initial Finite state .
: : Microprogram
representation diagram

=

Sequencing Explicit next Microprogram counter
control state function + dispatch ROMS
=
Logic Logic Truth
representation equations tables
=
Implementation Programmable Read only
technique logic array memory

OTE: Solve example from page-330 of Interface Bookh

UNMRSITY of
NORTH TEXAS CSCE 5610: Computer Architecture

&

Summary

e Single-cycle implementation
e Multi-cycle implementation

— Is an effective implementation: slower instructions take more
clock cycles, faster, less!

— Higher resource sharing (area is less)
o State diagrams can be used to specify the control

« From FSM spec, we can automatically synthesize the
controller implementation.

o Controller Implementation
— Three choices: ROM, PLA, and Microprogramming
— PLAs is more efficient in terms of area compared to ROM
— Microprogramming is a flexible style (popularized by CISC)

UNMRSITY of | |
ORTH TEXAS CSCE 5610: Computer Architecture

¢

