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CSCE5610 Computer System Architecture
CSCE4610 Computer Architecture

Instructor: Saraju P. Mohanty, Ph. D.

Lecture 5: The Processor

NOTE: The figures, text etc included in slides are borrowed 
from various books, websites, authors pages, and other 
sources for academic purpose only. The instructor does 
not claim any originality.
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Lecture Outline

• Construction of a Simple MIPS Processor
• Single Cycle Processor
• Multicycle  Processor
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Levels of Representation
High Level Language 

Program

Assembly  Language 
Program

Machine  Language 
Program

Control Signal 
Specification

Compiler

Assembler

Machine Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

lw$15,0($2)
lw$16,4($2)
sw $16, 0($2)
sw $15, 4($2)0000 1001 1100 0110 1010 1111 0101 1000

1010 1111 0101 1000 0000 1001 1100 0110 
1100 0110 1010 1111 0101 1000 0000 1001 
0101 1000 0000 1001 1100 0110 1010 1111 

°
°

ALUOP[0:3] <= InstReg[9:11] & MASK



3/13/2007
CSCE 5610: Computer Architecture 4

Execution Cycle
Instruction

Fetch

Instruction
Decode

Operand
Fetch

Execute

Result
Store

Next
Instruction

Obtain instruction from program storage

Determine required actions and instruction size

Locate and obtain operand data

Compute result value or status

Deposit results in storage for later use

Determine successor instruction
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• We're ready to look at an implementation of the MIPS
• Simplified to contain only:

– memory-reference instructions: lw, sw
– arithmetic-logical instructions:add, sub, and, or, slt
– control flow instructions:  beq, j

• Generic Implementation:
– use the program counter (PC) to supply instruction address
– get the instruction from memory
– read registers
– use the instruction to decide exactly what to do

The Processor:  Datapath & Control
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• Abstract / Simplified View
• Two types of functional units:

– elements that operate on data values (combinational)
– elements that contain state (sequential)

More Implementation Details

Registers
Register #

Data

Register #

Data�
memory

Address

Data

Register #

PC Instruction ALU

Instruction�
memory

Address
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Basic Building Blocks

•Latches
•Flip-flops
•Combinational Elements
•Sequential Elements
•Clocking strategies
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• Unclocked vs. Clocked
• Clocks used in synchronous logic 

– when should an element that contains state be 
updated?

cycle time
rising edge

falling edge

State Elements

• The set-reset latch
– output depends on present 

inputs and also on past inputs
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• Output is equal to the stored value inside the 
element

• Change of state (value) is based on the clock
• Latches:  whenever the inputs change, and the 

clock is asserted
• Flip-flop:  state changes only on a clock edge

(edge-triggered methodology)
"logically true", 
— could mean electrically low

A clocking methodology defines when signals can be read and written
— wouldn't want to read a signal at the same time it was being written

Latches and Flip-flops
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• Two inputs:
– the data value to be stored (D)
– the clock signal (C) indicating when to read & store D

• Two outputs:
– the value of the internal state (Q) and it's complement

D-latch

Q

C

D

_
Q

D

C

Q
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D flip-flop
• Output changes only on the clock edge

�

QQ

_
Q

Q

_
Q

D �
la tc h

D

C

D �
la tc h

DD

C

C

D

C

Q
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Our Implementation
• An edge triggered methodology
• Typical execution:

– read contents of some state elements 
– send values through some combinational logic
– write results to one or more state elements

Clock cycle

State�
element�

1
Combinational logic

State�
element�

2
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• Built using D flip-flops (Combinational in nature)

Register File: Read Operation

M �
u�
x

Register 0
Register 1

Register n –  1
Register n

M �
u�
x

Read data 1

Read data 2

Read register�
number 1

Read register�
number 2
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Register File: Write Operation
• We still use the real clock to determine when to 

write

n-to-1�
decoder

Register 0

Register 1

Register n –  1
C

C

D

D
Register n

C

C

D

D

Register number

Write

Register data

0
1

n –  1
n
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Register File: Block Diagram

Read register
number 1 Read

data 1

Read
data 2

Read register
number 2

Register file
Write
register

Write
data Write

• Three Address ports
• One Data Input Port
• Two Data Output Ports
• One Write Control Signal
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Functional Units - I
a: Instruction Memory

After an instruction address is put, the instruction 
residing at the address appears at the output port

b: Program Counter -- A simple up counter

c: Adder -- A 2’s complement adder

PC

Instruction�
memory

Instruction�
address

Instruction

a. Instruction memory b. Program counter

Add Sum

c. Adder
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Functional Units - II

ALU control

RegWrite

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU

Data

Data

Register
numbers

a. Register File b. ALU

Zero
5

5

5
3

a: Register File
It’s construction, read, and write operations as discussed previously

b: ALU (Arithmetic & Logic Unit)
Recall the ALU design we have discussed in last two classes
Note the “Zero” output
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Functional Units -III

1 6 3 2
S ig n

e x te n d

b . S ig n -e x te n s io n u n it

M e m R e a d

M e m W rite

D a ta
m e m o ry

W ri te
d a ta

R e a d
d a ta

a . D a ta m e m o ry u n it

A d d re s s

a: Data Memory Unit
Similar to Instruction Memory Unit, only that it can written into as well
Two input ports for address and data, one output port (for data read out)
Two control signals: for Read and Write operations

b: Sign Extension Unit -- Extends 16-bit input  operand to 32 bits
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Datapath for Instruction Fetch (Piece I)

P C

Ins tru c tio n�
m e m ory

R ea d�
ad dre ss

Ins tru ctio n

4

A dd

• Fetching Instructions and Incrementing the program counter by 4
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Datapath for R-type Instructions (Piece II)
• Datapath for R-type Instructions

Instruction
Registers

Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU
Zero

RegWrite

ALU operation3
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Datapath for Load/Store (Piece III)

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data
memory

Write
data

Read
data

Write
data

Sign
extend

ALU
result

Zero
ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

• Datapath for load or store
(1) Register Access; (2) Memory Address calculation; (3) Read/Write
(4) Write into Register file (if the instruction is a load)
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Datapath for Branch (Piece IV)

16 32
Sign

extend

ZeroALU

Sum

Shift
left 2

To branch
control logic

Branch target

PC + 4 from instruction datapath

Instruction

Add

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

RegWrite

ALU operation3

• Unit “Shift left 2” adds “00” at the low-order end of the sign-extended offset
• Control logic is used to decide whether the incremented PC or branch 

target should replace the PC based on the “Zero” output of the ALU
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Datapath Construction Strategy

• Now, we have “pieces” of datapath that are capable of 
performing distinct functions 

• We want to “stitch” them together to yield a final 
datapath that can execute all the instructions (lw, sw, 
add, sub, and, or, slt, beq, j)

• We will use multiplexors (or muxes for short) for 
stitching the datapath



3/13/2007
CSCE 5610: Computer Architecture 24

Datapath Construction  (Merge Pieces II&III)

x

l r

i

r i

Instruction

16 32

Registers
Write�
register

Read�
data 1

Read�
data 2

Read�
register 1

Read�
register 2

Data�
memory

Write�
data

Read�
data

Write�
data

Sign�
extend

ALU�
result

Zero
ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

Instruction Registers
Write
register

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Write
data

ALU
result

ALU
Zero

RegWrite

ALU operation3

Piece II

Piece III
+
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And you will get..

g

16 32

Registers

Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

ALU
result

Zero

Data
memory

Address

Write
data

Read
data

M
u
x

M
u
x

ALU

RegWrite

ALU operation
3

MemRead

MemWrite

ALUSrc
MemtoRe

• Rule: Whenever we have more than one input feeding a functional unit, 
introduce a multiplexor (this gives rise to a control signal, more later..)
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Datapath Construction … (merge Piece I)

PC

Instruction
memory

Read
address

Instruction

16 32

Registers

Write
register
Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Sign
extend

ALU
result

Zero

Data
memory

Address

Write
data

Read
data M

u
x

4

Add

M
u
x

ALU

RegWrite

ALU operation3

MemRead

MemWrite

ALUSrc
MemtoReg

• Just tack the Instruction Fetch and PC increment logic at 
the front!
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Datapath Construction  (merge Piece IV)

PC

Instruction
memory

Read
address

Instruction

16 32

Add ALU
result

M
u
x

Registers

Write
register
Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Shift
left 2

4

M
u
x

ALU operation3

RegWrite

MemRead

MemWrite

PCSrc

ALUSrc

MemtoReg

ALU
result

Zero
ALU

Data
memory

Address

Write
data

Read
data M

u
x

Sign
extend

Add
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Final Datapath

MemtoReg

MemRead

MemWrite

ALUOp

ALUSrc

RegDst

PC

Instruction
memory

Read
address

Instruction
[31–0]

Instruction [20–16]

Instruction [25–21]

Add

Instruction [5– 0]

RegWrite

4

16 32Instruction [15–0]

0
Registers

Write
register
Write
data

Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Sign
extend

ALU
result

Zero

Data
memory

Address Read
data M

u
x

1

0

M
u
x

1

0

M
u
x

1

0

M
u
x

1

Instruction [15–11]

ALU
control

Shift
left 2

PCSrc

ALU

Add ALU
result

• Data flows through various “paths” under the influence of control signals
• There are seven control signals (of type Read, Write, or Mux Select)
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Defining the Control..
• Selecting the operations to perform (ALU, read/write, etc.)

• Controlling the flow of data (multiplexor inputs)

• Information comes from the 32 bits of the instruction

• Example:
add $8, $17, $18 Instruction Format:

000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct

• ALU's operation based on instruction type and function code

• We will design two control units:
(1)ALU Control to generate appropriate function select signals for the ALU 

(2)Main Control to generate signals for functional units other than the ALU
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• e.g., what should the ALU do with this instruction
• Example:  lw $1, 100($2)

35 2 1 100

op rs rt 16 bit offset

• ALU control input
000 AND
001 OR
010 add
110 subtract
111 set-on-less-than

Defining the ALU Control ... Contd.
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• Must describe hardware to compute 3-bit ALU control input
– given instruction type 

00 = lw, sw
01 = beq, 
10 = arithmetic

– function code for arithmetic

• ALU Control inputs – How are they determined?

ALUOp
computed from instruction type

ALU Control Design

Instruction Instruction Funct Desired ALU Control
Opcode ALUOp Operation Field ALU Action Operation

LW 00 load word XXXXXX add 010
SW 00 store word XXXXXX add 010

Branch equal 01 branch equal XXXXXX subtract 110
R-type 10 add 100000 add 010
R-type 10 subtract 100010 subtract 110
R-type 10 AND 100100 and 000
R-type 10 OR 100101 or 001
R-type 10 set on less than 101010 set on less than 111
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ALU Control - Truth Table & Implementation

A L U O p F u n c t f ie ld O p e ra tio n
A L U O p 1 A L U O p 0 F 5 F 4 F 3 F 2 F 1 F 0

0 0 X X X X X X 0 1 0
X 1 X X X X X X 1 1 0
1 X X X 0 0 0 0 0 1 0
1 X X X 0 0 1 0 1 1 0
1 X X X 0 1 0 0 0 0 0
1 X X X 0 1 0 1 0 0 1
1 X X X 1 0 1 0 1 1 1

Describe it using a truth table (can turn into gates):

Operation2

Operation1

Operation0

Operation

ALUOp1

F3

F2

F1

F0

F (5– 0)

ALUOp0

ALUOp

ALU control block
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Designing the Main Control

PC

Instruction
memory

Read
address

Instruction
[31–0]

Instruction [20–16]

Instruction [25–21]

Add

Instruction [5–0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
RegDst

ALUSrc

Instruction [31–26]

4

16 32Instruction [15–0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

Shift
left 2

M
u
x

1

ALU
result

Zero

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15–11]

ALU
control

ALU
Address
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Control Signals and their Effects

Signal Name Effect When deasserted Effect when asserted
RegDst The register destination number for the Write The register destination number for the Write

register comes from the rt field (bits 20-16) register comes from the rd field (bits 15-11)
RegWrite NONE The register on the Write register input is 

written with the value on the Write data input
ALUSrc The second ALU operand comes from the The second ALU operand is the sign-extended

second register file output (Read data 2) lower 16 bits of the instruction
PCSrc The PC is replaced by the output of the adder that The PC is replaced by the output of the adder

computes the value of PC + 4. that computes the branch target
MemRead None Data Memory contents designated by the address

input are put on the Read data output
MemWrite None Data memory contents designated by the address

input are replaced by the value on the Write data input
MemtoReg The value fed to the register Write data input The value fed to the register Write data input comes

comes from the ALU from the data memory.
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Main Control: Truth Table & Implementation
Instruction RegDst ALUSrc

Memto-
Reg

Reg 
Write

Mem 
Read

Mem 
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

R -fo r m a t Iw s w b e q

O p 0
O p 1
O p 2
O p 3
O p 4
O p 5

In p u ts

O u tp u ts

R e g D s t

A L U S rc

M e m to R e g

R e g W rite

M e m R e a d

M e m W rite

B ra n ch

A L U O p 1

A L U O p O



3/13/2007
CSCE 5610: Computer Architecture 36

• All of the logic is combinational

• We wait for everything to settle down, and the right 
thing to be done
– ALU might not produce “right answer” right away

– we use write signals along with clock to determine when 
to write

• Cycle time determined by length of the longest path

Our Simple Control Structure

We are ignoring some details like setup and hold times
Clock cycle

State�
element�

1
Combinational logic

State�
element�

2
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How does the single cycle datapath work?

• Let us understand this by highlighting the portions of 
the datapath when an R-type instruction is executed

• For an R-type instruction we go through the following 
phases:

Phase 1: Instruction Fetch
Phase 2: Register File Read
Phase 3: ALU execution
Phase 4: Write the Result into the Register File

• NOTE: All the four phases are completed in only ONE 
clock cycle and hence it is a “single cycle 
implementation”
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R-type Instruction – Phase 1 
(Instruction Fetch)

PC

Instruction
memory

Read
address

Instruction
[31–0]

Instruction [20–16]

Instruction [25–21]

Add

Instruction [5–0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
RegDst

ALUSrc

Instruction [31–26]

4

16 32Instruction [15–0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data1

Read
data2

Read
register 1

Read
register 2

Sign
extend

Shift
left 2

M
u
x
1

ALU
result

Zero

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15–11]

ALU
control

ALU
Address
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R-type Instruction – Phase 2 
(Register Read)

PC

Instruction
memory

Read
address

Instruction
[31–0]

Instruction [20–16]

Instruction [25–21]

Add

Instruction [5–0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
RegDst

ALUSrc

Instruction [31–26]

4

16 32Instruction [15–0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data1

Read
data2

Read
register 1

Read
register 2

Sign
extend

Shift
left 2

M
u
x
1

ALU
result

Zero

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15–11]

ALU
control

ALU
Address
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R-type Instruction – Phase 3 
( ALU execution)

PC

Instruction
memory

Read
address

Instruction
[31–0]

Instruction [20–16]

Instruction [25–21]

Add

Instruction [5–0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
RegDst

ALUSrc

Instruction [31–26]

4

16 32Instruction [15–0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data1

Read
data2

Read
register 1

Read
register 2

Sign
extend

Shift
left 2

M
u
x
1

ALU
result

Zero

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15–11]

ALU
control

ALU
Address
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R-type Instruction – Phase 4 
(Write the Result)

PC

Instruction
memory

Read
address

Instruction
[31–0]

Instruction [20–16]

Instruction [25–21]

Add

Instruction [5–0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
RegDst

ALUSrc

Instruction [31–26]

4

16 32Instruction [15–0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data1

Read
data2

Read
register 1

Read
register 2

Sign
extend

Shift
left 2

M
u
x
1

ALU
result

Zero

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15–11]

ALU
control

ALU
Address
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How do we handle jump?

Shift�
left 2

PC

Instruction�
memory

Read�
address

Instruction�
[31– 0]

Data�
memory

Read�
data

Write�
data

Registers
Write�
register

Write�
data

Read�
data 1

Read�
data 2

Read�
register 1

Read�
register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU�
result

Zero

Instruction [5– 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
Jump
RegDst

ALUSrc

Instruction [31–26]

4

M�
u�
x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign�
extend

16 32Instruction [15–0]

1

M�
u�
x

1

0

M�
u�
x

0

1

M�
u�
x

0

1

ALU�
control

Control

Add ALU�
result

M�
u�
x

0

1 0

ALU

Shift�
left 226 28

Address
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Single Cycle Implementation: Summary
• All instructions are executed in only clock cycle
• We built a single cycle datapath from scratch
• We designed appropriate controller to generate correct 

correct signals
• All instructions are not born equal; that some require 

more work, some less  => disadvantage of single cycle 
implementation is that the slowest instruction determines 
the clock cycle width

• In reality, no body implements single cycle approach.
• Given the single cycle datapath, you should be able to 

“highlight” active portions of the datapath for any given 
instruction.

NOTE: Solve example from page-315 of Interface Book.
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Single Cycle Implementation - Issues

• Single Cycle Problems:
– what if we had a more complicated instruction like 

floating point?
– wasteful of area
– Cycle width determined by the slowest instruction

• One Solution:
– use a “smaller” cycle time
– have different instructions take different numbers of 

cycles
– a “multicycle” datapath:
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Single Cycle, Multiple Cycle, vs. Pipeline

Clk

Cycle 1

Multiple Cycle Implementation:

Ifetch Reg Exec Mem Wr

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Load Ifetch Reg Exec Mem Wr

Ifetch Reg Exec Mem
Load Store

Pipeline Implementation:

Ifetch Reg Exec Mem WrStore

Clk

Single Cycle Implementation:

Load Store Waste

Ifetch
R-type

Ifetch Reg Exec Mem WrR-type

Cycle 2Cycle 1
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• We will be reusing functional units
– ALU used to compute address and to increment PC
– Memory used for instruction and data

• Our control signals will not be determined solely 
by instruction
– e.g., what should the ALU do for a “subtract” instruction?

• We’ll use a finite state machine for control
• Break up the instructions into steps, each step 

takes a cycle
– balance the amount of work to be done
– restrict each cycle to use only one major functional unit

• At the end of a cycle
– store values for use in later cycles (easiest thing to do)
– introduce additional “internal” registers

Multicycle Approach
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Multicycle Approach – High Level View

PC

Memory

Address

Instruction
or data

Data

Instruction
register

Registers
Register #

Data

Register #

Register #

ALU

Memory
data

register

A

B

ALUOut
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Multicycle Approach

Shift
left 2

PC

Memory

MemData

Write
data

M
u
x

0

1

Registers
Write
register

Write
data

Read
data1

Read
data2

Read
register 1

Read
register 2

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15–0]

Sign
extend

3216

Instruction
[25–21]

Instruction
[20–16]

Instruction
[15–0]

Instruction
register

1 M
u
x

0

3
2

M
u
x

ALU
result

ALU
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• handles the basic instructions
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• Instruction Fetch
• Instruction Decode and Register Fetch
• Execution, Memory Address Computation, or 

Branch Completion
• Memory Access or R-type instruction completion
• Write-back step

INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!

Five Execution Steps
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• Use PC to get instruction and put it in the 
Instruction Register.

• Increment the PC by 4 and put the result back in 
the PC.

• Can be described succinctly using RTL "Register-
Transfer Language”

IR <= Memory[PC];

PC <= PC + 4;

Step 1:  Instruction Fetch



3/13/2007
CSCE 5610: Computer Architecture 51

• Read registers rs and rt in case we need them
• Compute the branch address in case the 

instruction is a branch
• RTL:

A <= Reg[IR[25-21]];
B <= Reg[IR[20-16]];

ALUOut <= PC + ( sign-extend(IR[15-
0]) << 2 );

Step 2:  Instruction Decode and Register 
Fetch
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• ALU is performing one of three functions, based 
on instruction type

• Memory Reference:
ALUOut <= A + sign-extend(IR[15-0]);

• R-type:
ALUOut <= A op B;

• Branch:
if (A==B) PC <= ALUOut;

Step 3: (instruction dependent)
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• Loads and stores access memory
MDR <= Memory[ALUOut];

or
Memory[ALUOut] <= B;

• R-type instructions finish
Reg[IR[15-11]] <= ALUOut;

The write actually takes place at the end of the 
cycle on the edge.

Step 4: (R-type or memory-access)
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Step 5: Write-back step
• Reg[IR[20-16]] <= MDR;

Step name
Action for R-type 

instructions
Action for memory-reference 

instructions
Action for 
branches

Action for       
jumps

Instruction fetch IR <= Memory[PC]
PC <= PC + 4

Instruction A <= Reg [IR[25-21]]
decode/register fetch B <= Reg [IR[20-16]]

ALUOut <= PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut <= A op B ALUOut <= A + sign-extend if (A == B) then  PC <= PC [31-28] II 
computation, branch/ (IR[15-0]) PC <= ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] <= Load: MDR <= Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] <= B

Memory read completion Load: Reg[IR[20-16]] <= MDR

Summary of Steps taken to execute any instruction class.

• This sequence suggests what controller must do on each 
clock-cycle.
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Multicycle Datapath with Control Lines
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Multicycle Datapath with Controller
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• Value of control signals is dependent upon:
– what instruction is being executed
– which step is being performed

• Use the information we’ve accumulated to specify a 
finite state machine
– specify the finite state machine graphically, or
– Use microprogramming

• Implementation can be derived from specification

Implementing the Control
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Actions of the 1-bit control signals
Signal Name Effect When deasserted Effect when asserted
RegDst The register destination number for the Write The register destination number for the Write

register comes from the rt field register comes from the rd field
RegWrite NONE The general purpose register selected by the Write

register number is written with the value of the Write
data input.

ALUSrcA The first ALU operand is the PC. The first ALU operand comes from the A register.
MemRead None Content of Memory at the location specified by the 

Address input is put on Memory data output.
MemWrite None Memory contents at the location specified by the 

Address input is replaced by value on Write data input.
MemtoReg The value fed to the register file Write data inputThe value fed to the register file Write datainput comes

comes from ALUOut from the MDR.
IorD The PC is used to supply the address to the ALUOut is used to supply the address to the memory

memory unit. unit.
IRWrite None The output of the memory is written into the IR.
PCWrite None The PC is written; the source is controlled by PCSource
PCWriteCond None The PC is written if the Zero output from the ALU is activ
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Actions of the 2-bit control signals

Signal Name Value Effect when asserted
"00" The ALU performs an add operation.

ALUOp "01" The ALU performs a subtract operation.
"10" The funct field of the instruction determines the ALU operation

"00" The second input to the ALU comes from the B register.
ALUSrcB "01" The second input to the ALU is the constant 4.

"10" The second input to the ALU is the sign-extended,
lower 16 bits of the IR.

"11" The second input to the ALU is the sign-extended,
lower 16 bits of the IR shifted left 2 bits

"00" Output of the ALU (PC + 4) is sent to the PC for writing.
PCSource "01" The contents of the ALUOut (the branch target address)

are sent to the PC for writing.
"10" The jump target address (IR[25-0] shifted left 2 bits and

concatenated with PC + 4[31-28]) is sent to the PC
for writing
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• Finite state machines:
– a set of states and 
– next state function (determined by current state and the input)
– output function (determined by current state and possibly input)
– We’ll use a Moore machine (output based only on current state)

Finite state machines

Next-state�
functionCurrent state

Clock

Output�
function

Next�
state

Outputs

Inputs
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Finite State Machine Control for Multicycle 
Implementation

Memory access�
instructions�
(Figure 5.38)

R-type instructions�
(Figure 5.39)

Branch instruction�
(Figure 5.40)

Jump instruction�
(Figure 5.41)

Instruction fetch/decode and register fetch�
(Figure 5.37)

Start

5.32 )

5.33) 5.34) 5.35) 5.36)
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Instruction Fetch & Decode (Fig 5.32)
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MemRead
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Memory Reference Instructions (Fig. 5.33)
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R-type, Branch, Jump..

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

RegDst = 1
RegWrite
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R-type completion
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(Figure 5.32)

Branch completion
8

(Op = 'BEQ')
From state 1

To state 0
(Figure 5.32)
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9
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(Figure 5.32)

PCWrite
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Graphical Specification of FSM
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Finite State Machine for Control
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Multicycle Datapath to Handle Exceptions
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Multicycle Control to Handle Exceptions
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Controller Implementation: Big Picture

Initial
representation

Finite state
diagram Microprogram

Sequencing
control

Explicit next
state function

Microprogram counter
+ dispatch ROMS

Logic
representation

Logic
equations

Truth
tables

Implementation
technique

Programmable
logic array

Read only
memory

NOTE: Solve example from page-330 of Interface Book.
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Summary
• Single-cycle implementation
• Multi-cycle implementation

– Is an effective implementation: slower instructions take more 
clock cycles, faster, less!

– Higher resource sharing (area is less)

• State diagrams can be used to specify the control 
• From FSM spec, we can automatically synthesize the 

controller implementation.
• Controller Implementation

– Three choices: ROM, PLA, and Microprogramming
– PLAs is more efficient in terms of area compared to ROM
– Microprogramming is a flexible style (popularized by CISC)


