
CSCE 5610: Computer Architecture 1

CSCE5610 Computer System Architecture
CSCE4610 Computer Architecture

Instructor: Saraju P. Mohanty, Ph. D.

Lecture 6: Pipelining

NOTE: The figures, text etc included in slides are borrowed
from various books, websites, authors pages, and other
sources for academic purpose only. The instructor does
not claim any originality.

CSCE 5610: Computer Architecture 2

The Big Picture: Where are We Now?
• We know five classic components of a computer.
• We understand how the instruction set plays a key role in determining

the performance, the design complexity of the datapath and controller.
• We designed a processor comprising of datapath and controller for a

small set of instructions.
• Datapath:

– Single-cycle implementation - Too slow
– Multi-cycle implementation – Large instructions take longer time,

small instructions take shorter time
• Controller: Approach I: FSM Based Approach

– Structured approach to derive a circuit implementation from FSM
specification

– Implementation styles: (1) Random-logic (2) PLA (3) ROM
Approach 2: Microprogramming

– Control written as a program using microinstructions
– Flexible but slower

CSCE 5610: Computer Architecture 3

Pipelining is Natural!
Laundry Example

• Ann, Brian, Cathy, Dave each
have one load of clothes
to wash, dry, and fold.

• Washing takes 30 minutes.

• Drying takes 30 minutes.

• Folding takes 30 minutes.

• Putting-away takes 30 minutes
to put clothes into drawers.

A B C D

CSCE 5610: Computer Architecture 4

Sequential Laundry

• Sequential laundry takes 8 hours for 4 loads.
• If they learned pipelining, how long would laundry take?

30T
a
s
k

O
r
d
e
r

B

C
D

A Time
30 30 3030 30 3030 30 30 3030 30 30 3030

6 PM 7 8 9 10 11 12 1 2 AM

CSCE 5610: Computer Architecture 5

Pipelined Laundry: Start work ASAP

• Pipelined laundry takes 3.5 hours for 4 loads!

T
a
s
k

O
r
d
e
r

12 2 AM6 PM 7 8 9 10 11 1

Time

B
C
D

A
3030 30 3030 30 30

CSCE 5610: Computer Architecture 6

Pipelining Lessons

• Pipelining doesn’t help latency of
single task, it helps throughput of
entire workload.

• Multiple tasks operating
simultaneously using different
resources.

• Potential speedup = Number
pipeline stages.

• Pipeline rate limited by slowest
pipeline stage.

• Unbalanced lengths of pipe stages
reduces speedup.

• Time to “fill” pipeline and time to
“drain” it reduces speedup.

• Stall for dependences.

6 PM 7 8 9
Time

B
C
D

A
3030 30 3030 30 30

T
a
s
k

O
r
d
e
r

CSCE 5610: Computer Architecture 7

MIPS case: The Five Stages of Load

• Ifetch: Instruction Fetch
–Fetch the instruction from the Instruction Memory

• Reg/Dec: Registers Fetch and Instruction Decode
• Exec: Calculate the memory address
• Mem: Read the data from the Data Memory
• WB: Write the data back to the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem WBLoad

CSCE 5610: Computer Architecture 8

Conventional Pipelined Execution
Representation

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB
Program Flow

Time

CSCE 5610: Computer Architecture 9

Single Cycle, Multiple Cycle, vs. Pipeline

Clk

Cycle 1

Multiple Cycle Implementation:

Ifetch Reg Exec Mem Wr

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Load Ifetch Reg Exec Mem Wr

Ifetch Reg Exec Mem
Load Store

Pipeline Implementation:

Ifetch Reg Exec Mem WrStore

Clk

Single Cycle Implementation:

Load Store Waste

Ifetch
R-type

Ifetch Reg Exec Mem WrR-type

Cycle 2Cycle 1

Improves performance
by increasing instruction
throughput.

CSCE 5610: Computer Architecture 10

Single Cycle Vs Pipelining
Solve Example page-372 Interface book

Instruction
fetch Reg ALU Data

access Reg

800 psns Instruction
fetch Reg ALU Data

access Reg

800ps ns Instruction
fetch

800 psns

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 4 6 8 10 12 14 16 18

2 4 6 8 10 12 14

...

Program
execution
order
(in instructions)

Instruction
fetch Reg ALU Data

access Reg

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

200 psns Instruction
fetch Reg ALU Data

access Reg

200psns Instruction
fetch Reg ALU Data

access Reg

200 psns 200 psns 200 psns 200 psns 200 psns

Program
execution
order
(in instructions)

Ideal speedup is number of stages in the pipeline. Do we achieve this?

Overall execution time = 3x800ps = 2400ps.

Overall execution time
= 3x200ps = 600ps.

Speedup
= 2400/600 = 4.

Solve Example page-A10 of Quantitative book.

CSCE 5610: Computer Architecture 11

Pipelining – What makes it easy/hard?

• What makes it easy
– all instructions are the same length
– just a few instruction formats
– memory operands appear only in loads and stores

• What makes it hard?
– structural hazards: suppose we had only one memory
– data hazards: an instruction depends on a previous instruction
– control hazards: need to worry about branch instructions

• We’ll build a simple pipeline and look at these issues.

CSCE 5610: Computer Architecture 12

Pipelining the Datapath: Basic Idea

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

Instruction

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
dataAddress

Data
memory

1

ALU
result

M
u
x

ALU
Zero

IF: Instruction fetch ID: Instruction decode/
register file read

EX: Execute/
address calculation

MEM: Memory access WB: Write back

CSCE 5610: Computer Architecture 13

Pipelined Datapath

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

r u
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data1

Read
data2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Data
memory

Address

64-bit 64-bit97-bit128-bit

• Follow Fig. 12 (page-389) to Fig. 14 (page-391) to understand pipelined
execution of lw instruction. Others instructions will be similar.

CSCE 5610: Computer Architecture 14

Corrected Datapath

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0

Address

Write
data

M
u
x

1
Registers

Read
data1

Read
data2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Data
memory

1

ALU
result

M
u
x

ALU
Zero

ID/EX

• For load instruction, register number is needed in the last stage, thus same
needs to be passed along in order to be preserved.

CSCE 5610: Computer Architecture 15

Graphically Representing Pipelines

• Pipeline can be thought of as a series of datapaths shifted
in time.

• The above graphics can help in answering questions like:
– how many cycles does it take to execute this code?
– what is the ALU doing during cycle 4?
– use this representation to help understand datapaths

I M R e g D M R e g

I M R e g D M R e g

C C 1 C C 2 C C 3 C C 4 C C 5 C C 6

T im e (i n c lo c k c y c l e s)

l w $ 1 0 , 2 0 ($ 1)

P r o g r a m

e x e c u t io n

o r d e r

(i n in s t r u c t i o n s)

s u b $ 1 1 , $ 2 , $ 3

A L U

A L U

CSCE 5610: Computer Architecture 16

Pipeline Control

PC

Ins truction
m em ory

Address

In
st

r u
ct

i o
n

Ins truction
[20– 16]

M em toR eg

A LU O p

B ranch

R e gD s t

A LU Src

4

16 32
Instruction
[15– 0]

0

0
R egiste rs

W rite
re gister

W rite
da ta

R ea d
da ta 1

R ea d
da ta 2

R ead
re gister 1

R ead
re gister 2

Sign
extend

M
u
x

1
W rite

data

Read

data M
u
x

1

A L U
co n t ro l

R e g W ri te

M em Read

Instruction
[15– 11]

6

IF /ID ID /EX E X/M E M M E M /W B

M em W rite

A ddress

Data
m em ory

P CS rc

Z ero

A dd
A d d

res u lt

S h if t

le ft 2

A L U
re su lt

A L U

Z e ro

A dd

0

1

M
u
x

0

1

M
u
x

CSCE 5610: Computer Architecture 17

• We have 5 stages. What needs to be controlled
in each stage?
– Instruction Fetch and PC Increment
– Instruction Decode / Register Fetch
– Execution
– Memory Stage
– Write Back

Pipeline Control

CSCE 5610: Computer Architecture 18

• Pass control signals along just like the data.
Pipeline Control

Execution/Address Calculation
stage control lines

Memory access stage
control lines

stage control
lines

Instruction
Reg
Dst

ALU
Op1

ALU
Op0

ALU
Src Branch

Mem
Read

Mem
Write

Reg
write

Mem to
Reg

R-format 1 1 0 0 0 0 0 1 0
lw 0 0 0 1 0 1 0 1 1
sw X 0 0 1 0 0 1 0 X
beq X 0 1 0 1 0 0 0 X

Control

EX

M

WB

M

WB

WB

IF/ID ID/EX EX/MEM MEM/WB

Instruction

CSCE 5610: Computer Architecture 19

Datapath with Control

PC

Instruction
memory

In
st

ru
ct

i o
n

Add

Instruction
[20–16]

M
em

to
R

e g

ALUOp

Branch

RegDst

ALUSrc

4

16 32Instruction
[15–0]

0

0

M
u
x

0

1

Add Add
result

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x
1

ALU
result

Zero

Write
data

Read
data

M
u
x

1

ALU
control

Shift
left 2R

eg
W

rit
e

MemRead

Control

ALU

Instruction
[15–11]

6

EX

M

WB

M

WB

WBIF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M
u
x

0

1

M
em

W
rit

e

Address
Data

memory

Address

CSCE 5610: Computer Architecture 20

Major Hurdles of Pipelining
• Pipeline Hazards

– Dictionary meaning of hazard: “a source of danger”
– structural hazards: attempt to use the same resource two

different ways at the same time
• e.g., combined washer/dryer would be a structural hazard

– data hazards: attempt to use item before it is ready
• Instruction depends on result of prior instruction still in the pipeline

– control hazards: attempt to make a decision before
condition is evaluated

• Branch instructions

• One Solution: Wait until dependencies are resolved
– pipeline control must detect the hazard
– take action (or delay action) to resolve hazards

CSCE 5610: Computer Architecture 21

Mem

Single Memory is a Structural Hazard

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UReg Mem Reg

A
L

UMem Reg Mem Reg

• One memory port generates conflict whenever memory reference occurs.
• Detection is easy in this case! (right half highlight means read, left half write).
• Solutions: Stall the pipeline or use split cache.

NOTE: Refer Fig A.4 page-A-14 of Quantitative book for more details.

Conflict!

CSCE 5610: Computer Architecture 22

Performance of Pipeline with Stalls

• Speed up from pipelining =
sPipelinedClockcycle

dUnpipelineClockCycle
edCPIpipelin

inedCPIunpipel
×

sPipelinedClockCycle
dUnpipelineClockCycle

ionerInstructallCyclesPPipelineSt
×

+1
1

• Speed up from pipelining =

• Speed up from pipelining =

pthPipelineDe
ionerInstructallCyclesPPipelineSt

×
+1

1

Solve Example page-A13 of Quantitative book.

CSCE 5610: Computer Architecture 23

Data Hazard on r1

add r1 ,r2,r3

sub r4, r1 ,r3

and r6, r1 ,r7

or r8, r1 ,r9

xor r10, r1 ,r11

CSCE 5610: Computer Architecture 24

• Dependencies backwards in time are hazards.
Data Hazard on r1:

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg
A

L
UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

A
L

UIm Reg Dm Reg

NOTE: Refer Fig A.6 page-A-16 of Quantitative book for more details.

CSCE 5610: Computer Architecture 25

• “Forward” result from one stage to another.
• “or” OK if define read/write properly.

Data Hazard Solution

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg
A

L
UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

A
L

UIm Reg Dm Reg

NOTE: Refer Fig A.7 page-A-18 of Quantitative book for more details.

CSCE 5610: Computer Architecture 26

• Can’t solve with forwarding:
• Must delay/stall instruction dependent on load.
• A hardware called “pipeline interlock” detects hazard and stalls.

Forwarding (or Bypassing):
What about Loads?

Time (clock cycles)

lw r1,0(r2)

sub r4,r1,r3

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg
A

L
UIm Reg Dm Reg

NOTE: Refer Fig A.9 page-A-20 of Quantitative book for more details.

CSCE 5610: Computer Architecture 27

Forwarding Unit

• Need to detect a hazard and then forward the proper value to resolve
the hazard.

• When an instruction tried to read a register in its EX stage that an
earlier instruction intends to write in its WB stage, then we need the
values as inputs to the ALU.

• Notation: “ID/EX.RegisterRs”

Name of the pipeline register name of the field in ID/EX register
• Two pairs of hazard conditions:

1a. EX/MEM.RegisterRd = ID/EX.RegisterRs
1b. EX/MEM.RegisterRd = ID/EX.RegisterRt
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
2b. MEM/WB.RegisterRd = ID/EX.RegisterRd

CSCE 5610: Computer Architecture 28

Hardware with Forwarding Unit

P C
In s t r u c t io n

m e m o ry

R e g is t e rs

M

u

x

M

u

x

C o n tro l

A L U

E X

M

W B

M

W B

W B

ID /E X

E X /M E M

M E M / W B

D a ta

m e m o r y

M

u

x

F o r w a r d in g

u n it

IF / ID

In
s

tr
u

c
t i

o
n

M

u

x
R d

E X /M E M .R e g is te rR d

M E M /W B .R e g is te rR d

R t

R t

R s

IF /I D . R e g is te r R d

IF /I D . R e g is te r R t

IF /I D . R e g is te r R t

IF /I D . R e g is te r R s

CSCE 5610: Computer Architecture 29

Dependence Detection: An Example

IM R e g

IM R e g

C C 1 C C 2 C C 3 C C 4 C C 5 C C 6

T i m e (i n c lo c k c y c le s)

s u b $ 2 , $ 1 , $ 3

P r o g r a m

e x e c u t io n

o r d e r

(in i n s t r u c t io n s)

a n d $ 1 2 , $ 2 , $ 5

IM R e g D M R e g

IM D M R e g

IM D M R e g

C C 7 C C 8 C C 9

1 0 1 0 1 0 1 0 1 0 /– 2 0 – 2 0 – 2 0 – 2 0 – 2 0

o r $ 1 3 , $ 6 , $ 2

a d d $ 1 4 , $ 2 , $ 2

s w $ 1 5 , 1 0 0 ($ 2)

V a lu e o f

r e g is te r $ 2 :

D M R e g

R e g

R e g

R e g

D M

CSCE 5610: Computer Architecture 30

Data Hazard Detection by Forwarding Unit

sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

• The first hazard is on register $2, between the result of
sub $2, $1, $3 and the first read operand of and $12, $2, $5.

• This hazard is of type 1a; can be detected by observing that
EX/MEM.RegisterRd = ID/EX.RegisterRs = $2

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

sub

and

Or
:

A
L

UMem Reg Mem

A
L

UMem Reg Mem Reg

Mem

A
L

UReg Mem Reg

Reg

IF ID EX WRMEM

CSCE 5610: Computer Architecture 31

Refining Hazard Detection Conditions

• Some instructions do not write registers, therefore the following
conditions are inaccurate => some times data is forward unnecessarily.

• Two Pairs of hazard conditions:
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs
1b. EX/MEM.RegisterRd = ID/EX.RegisterRt
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
2b. MEM/WB.RegisterRd = ID/EX.RegisterRd

• Solution: check whether the RegWrite signal is active or not
i.e., by checking WB field in EX and MEM stages will be enough

CSCE 5610: Computer Architecture 32

How to forward the data?

Registers

M
u
x M

u
x

ALU

ID/EX MEM/WB

Data
memory

M
u
x

Forwarding
unit

EX/MEM

b. With forwarding

ForwardB

Rd EX/MEM.RegisterRd

MEM/WB.RegisterRd

Rt
Rt
Rs

ForwardA

M
u
x

ALU

ID/EX MEM/WB

Data
memory

EX/MEM

a. No forwarding

Registers

M
u
x

ExplanationSour
ce

Mux
Control

The second ALU operand is
forwarded from data
memory or an earlier ALU
result.

MEM/
WB

Forward
B = 01

The second ALU operand is
forwarded from the prior
ALU result.

EX/M
EM

Forward
B = 10

The second ALU operand
comes from the register file.

ID/EXForward
B = 00

The first ALU operand is
forwarded from data
memory or an earlier ALU
result

MEM/
WB

Forward
A = 01

The first ALU operand is
forwarded from the prior
ALU result.

EX/M
EM

Forward
A = 10

The first ALU operand
comes from the register file.

ID/EXForward
A = 00

Assumption: Only instructions
we need to forward are the
four R-type instructions: add,
sub, and, and or.

NOTE: Rt is one field, but shown twice.

CSCE 5610: Computer Architecture 33

Data Forwarding Unit – Final conditions
• EX hazard:

If (EX/MEM.RegWrite
and (EX/MEM. RegisterRd != 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs)) ForwardA = 10

If (EX/MEM.RegWrite
And (EX/MEM. RegisterRd != 0)
And (EX/MEM.RegisterRd = ID/EX.RegisterRt)) ForwardB = 10

• MEM hazard:
If (MEM/WB.RegWrite

and (MEM/WB.RegisterRd != 0)
and (EX/MEM.RegisterRd != ID/EX.RegisterRs)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs)) ForwardA = 01

If (MEM/WB.RegWrite
and (MEM/WB.RegisterRd != 0)
and (EX/MEM.RegisterRd != ID/EX.RegisterRt)
and (MEM/WB.RegisterRd = ID/EX.RegisterRt)) ForwardB = 01

add $1, $1, $2;
add $1, $1, $3;
add $1, $1, $4;

:
:

CSCE 5610: Computer Architecture 34

Hardware with Forwarding Unit

P C
In s t r u c t io n

m e m o ry

R e g is t e rs

M

u

x

M

u

x

C o n tro l

A L U

E X

M

W B

M

W B

W B

ID /E X

E X /M E M

M E M / W B

D a ta

m e m o r y

M

u

x

F o r w a r d in g

u n it

IF / ID

In
s

tr
u

c
t i

o
n

M

u

x
R d

E X /M E M .R e g is te rR d

M E M /W B .R e g is te rR d

R t

R t

R s

IF /I D . R e g is te r R d

IF /I D . R e g is te r R t

IF /I D . R e g is te r R t

IF /I D . R e g is te r R s

CSCE 5610: Computer Architecture 35

• Load word can still cause a hazard:
– an instruction tries to read a register following a load instruction that

writes to the same register.

Can't always forward

Reg

IM

Reg

Reg

IM

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

lw $2, 20($1)

Program�
execution�
order�
(in instructions)

and $4, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

or $8, $2, $6

add $9, $4, $2

slt $1, $6, $7

DM Reg

Reg

Reg

DM

• Thus, we need a hazard detection unit to “stall” the load
instruction.

CSCE 5610: Computer Architecture 36

Hazard Detection Unit

• When forwarding unit fails to resolve, the hazard then we need to
resort to a hazard detection unit.

• Operates during ID stage so that it can insert the stall between load
and the instruction that immediately uses the load results.

• Thus the hazard detection unit checks for the load instructions:
If (ID/EX. MemRead -- checks to see if it’s a load
and ((ID/EX.RegisterRt = IF/ID.RegisterRs) or

(ID/EX.RegisterRt = IF/ID.RegisterRt)))
stall the pipeline

-- check if the destination register of
the load matches either source

register of the instruction in the ID stage.

CSCE 5610: Computer Architecture 37

Hazard Detection Unit
• Stall by letting an instruction that won’t write anything go forward.

PC Instruction
memory

Registers

M
u
x

M
u
x

M
u
x

Control

ALU

EX

M

WB

M

WB

WB

ID/EX

EX/MEM

MEM/WB

Data
memory

M
u
x

Hazard
detection

unit

Forwarding
unit

0

M
u
x

IF/ID

In
st

ru
ct

io
n

ID/EX.MemRead

IF
/ID

W
r it

e

PC
W

rit
e

ID/EX.RegisterRt

IF/ID.RegisterRd

IF/ID.RegisterRt
IF/ID.RegisterRt
IF/ID.RegisterRs

Rt
Rs

Rd

Rt EX/MEM.RegisterRd

MEM/WB.RegisterRd

CSCE 5610: Computer Architecture 38

Stall Insertion

lw $2, 20($1)

Program�
execution�
order�
(in instructions)

and $4, $2, $5

or $8, $2, $6

add $9, $4, $2

slt $1, $6, $7

Reg

IM

Reg

Reg

IM DM

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6
Time (in clock cycles)

IM Reg DM RegIM

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9 CC 10

DM Reg

RegReg

Reg

bubble

• Since the dependencies go forward in time, there are no
data hazards!

CSCE 5610: Computer Architecture 39

• Have compiler guarantee no hazards.
• Where do we insert the “nops” ?

sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

• Problem: this really slows us down!

Another Solution: A Software Solution

CSCE 5610: Computer Architecture 40

Branch / Control Hazards

Reg

Reg

CC 1

Time (in clock cycles)

40 beq $1, $3, 7

Program�
execution�
order�
(in instructions)

IM Reg

IM DM

IM DM

IM DM

DM

DM Reg

Reg Reg

Reg

Reg

RegIM

44 and $12, $2, $5

48 or $13, $6, $2

52 add $14, $2, $2

72 lw $4, 50($7)

CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

Reg

• Control hazards are also known as branch hazards.
• Numbers to the instruction are addresses of the instructions.
• Branch instruction decides only in MEM stage (CC4).

72=40+4+7*4
(PC-relative)

CSCE 5610: Computer Architecture 41

• Stall: wait until decision is clear
– Its possible to move up decision to 2nd stage by

adding hardware to check registers as being read.

Control Hazards – Solution I (Stall)

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Add

Beq

Load

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UReg Mem RegMem

• Impact: 2 clock cycles per branch instruction => slow

CSCE 5610: Computer Architecture 42

• Branch stalling is too slow.
• Assume that the branch will not be taken and thus continue

execution down the sequential instruction stream.
• If branch is taken,

– The instructions that are being fetched and decoded must be discarded.
– Execution must continue at the target.

• If branches are not taken half the time, and if it costs little to
discard the instructions, then this solution halves the cost of
control hazards!

• To discard instructions, we change the original control values to
0s (Just as in Branch Stall case)

• But there is more it: we need to flush instructions in IF, ID, and
EX stages of the pipeline!

Control Hazards - Solution II
(Branch Prediction)

CSCE 5610: Computer Architecture 43

• Predict: guess one direction then back up if wrong
– Predict not taken

Control Hazards - Solution II
(Branch Prediction)

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Add

Beq

Load
A

L
UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

Mem

A
L

UReg Mem Reg

Impact: 1 clock cycles per branch instruction if right, 2 if wrong (right - 50% of time)
More dynamic scheme: history of 1 branch (- 90%)

CSCE 5610: Computer Architecture 44

Flushing Instructions

PC Instruction
memory

4

Registers

M
u
x

M
u
x

M
u
x

ALU

EX

M

WB

M

WB

WB

ID/EX

0

EX/MEM

MEM/WB

Data
memory

M
u
x

Hazard
detection

unit

Forwarding
unit

IF.Flush

IF/ID

Sign
extend

Control

M
u
x

=

Shift
left 2

M
u
x

CSCE 5610: Computer Architecture 45

• Redefine branch behavior (takes place after next
instruction) “delayed branch”.

Control Hazards – Solution III
(Delayed Branch)

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Add

Beq

Misc

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

Mem
A

L
UReg Mem Reg

Load Mem

A
L

UReg Mem Reg

• Impact: 0 clock cycles per branch instruction if we can find instruction to
put in “slot” (50% of time).

• As launching more instruction per clock cycle, less useful.

CSCE 5610: Computer Architecture 46

Scheduling the branch delay slot
a. From before b. From target c. From fall through

sub $t4, $t5, $t6

…

add $s1, $s2, $s3

if $s1 = 0 then

add $s1, $s2, $s3

if $s1 = 0 then

add $s1, $s2, $s3

if $s1 = 0 then

sub $t4, $t5, $t6
add $s1, $s2, $s3

if $s1 = 0 then

sub $t4, $t5, $t6

add $s1, $s2, $s3

if $s2 = 0 then

BecomesBecomesBecomes

Delay slot

Delay slot

Delay slot

sub $t4, $t5, $t6

if $s2 = 0 then

add $s1, $s2, $s3

Before
scheduling

After
scheduling

Execute the delay slot
instructions whether or
not branch is taken.

NOTE: Refer Fig A.14 page-A-24 of Quantitative book for more details.

CSCE 5610: Computer Architecture 47

Performance of Pipeline with Branch Schemes

sromBrancheallCyclesFPipelineSt
pthPipelineDe

+1

• Speed up from pipelining =

• Speed up from pipelining =

ltyBranchPenauencyBranchFreq
pthPipelineDe

×+1

Solve Example page-A25 of Quantitative book.

CSCE 5610: Computer Architecture 48

Dynamic Branch Prediction
• Assuming always that a branch is not taken is known as static

branch prediction. We can do better than this!
• Main Idea:

• Look up the address of the instruction to see if a branch was taken the
last time this instruction was executed.

• If so, begin fetching new instructions from the same place as the last
time!

• Need: branch prediction buffer or branch history table

• Branch prediction buffer (1-bit prediction scheme)
• It is a small memory indexed by the lower portion of the address of the

branch instruction.
• The memory contains a bit that says whether the branch was recently

taken or not.
• This may not work all the time!
• If the prediction is false, then prediction bit is inverted and stored back.

CSCE 5610: Computer Architecture 49

2-bit Prediction Scheme
• 1-bit prediction scheme:

• The bit indexed to may not be the right bit i.e., the indexed bit may
have been written by a branch instruction whose lower bits match with
this branch instruction.

• Even if a branch is almost always taken, we will likely predict
incorrectly twice, rather than once, when it is not taken!
Example: Consider a loop branch that branches nine times in a row,
then is not taken once. What is the prediction accuracy for this
branch, assuming the prediction bit for this branch remains in the
prediction buffer?

• 2-bit Prediction Scheme: A branch that strongly favors
taken or not taken (typical behavior)
will be mispredicted only once. The two
bits are used to encode the four states
of the system.

T a k e n

T a k e n

T a k e n

T a k e n

N o t t a k e n

N o t t a k e n

N o t ta k e n

N o t t a k e n

P r e d i c t t a k e n P r e d ic t t a k e n

P r e d ic t n o t t a k e n P r e d ic t n o t t a k e n

CSCE 5610: Computer Architecture 50

Dynamic Scheduling

• The hardware performs the “scheduling”
– hardware tries to find instructions to execute
– out of order execution is possible
– speculative execution and dynamic branch prediction

• All modern processors are very complicated
– DEC Alpha 21264: 9 stage pipeline, 6 instruction

issue
– PowerPC and Pentium: branch history table
– Compiler technology important

CSCE 5610: Computer Architecture 51

Pipelining – Fallacies & Pitfalls
• Pipelining is easy.
• Pipelining ideas can be implemented independent of technology.
• Failure to consider instruction set design can adversely impact pipelining

• Widely variable instruction lengths and running times can lead to
imbalance among pipeline stages; complicate hazard detection.

• Sophisticated addressing modes.
• Increasing the depth of pipelining always increases performance (see the

table below from S.R. Kunkel & J.E. Smith, “Optimal pipelining in super
computers,” in Proc 13th Symp. On Computer Architecture (June 1986),
pages 404-414.)

1 2 4 8 16

Pipeline depth

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
el

at
iv

e
pe

rfo
rm

an
ce

CSCE 5610: Computer Architecture 52

Pipelining Summary

• Pipelining doesn’t help latency of single task, it helps throughput of
entire workload.

• Multiple tasks operating simultaneously using different resources.
• Potential speedup = Number pipe stages.
• Pipeline rate limited by slowest pipeline stage.
• Unbalanced lengths of pipe stages reduces speedup.
• Time to “fill” pipeline and time to “drain” it reduces speedup.
• Three types of pipeline hazards: structural, data, and control/branch
• Stalling helps any kind of hazard.
• Data hazard solutions: Stalling, Data forwarding, and Hazard detection
• Control or Branch Hazard solutions: Stalling, Delayed Branching, and

Branch Prediction.

