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CSCE5610 Computer System Architecture
CSCE4610 Computer Architecture

Instructor: Saraju P. Mohanty, Ph. D.

Lecture 7: Memory

NOTE: The figures, text etc included in slides are borrowed 
from various books, websites, authors pages, and other 
sources for academic purpose only. The instructor does 
not claim any originality.



CSCE 5610: Computer Architecture 2

So far …
• We have..

• Designed Instruction set – MIPS subset
• Understood what performance means
• Designed Datapath

• Single cycle implementation
• Multi-cycle implementation

• Designed Controllers for single/multi-cycle 
implementations

• In the relentless quest for performance, we explored 
pipelining

• Hazards (Data/Control/Structural) need to be handled
• Now, we are ready to study the third component of 

computer:  MEMORY!  
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• Users want large and fast memories! 
– SRAM access times are 2 - 25ns at cost of $100 to $250 per Mbyte. 
– DRAM access times are 60-120ns at cost of $5 to $10 per Mbyte.
– Disk access times are 10 to 20 million ns at cost of $.10 to $.20 per Mbyte.

• Try and give it to them anyway
– build a memory hierarchy

Exploiting Memory Hierarchy
1997

CPU

Level n

Level 2

Level 1

Levels in the
memory hierarchy

Increasing distance
fromthe CPU in

access time

Size of the memory at each level
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Basic Structure of Memory Hierarchy

Memory

CPU

Memory

Size Cost ($/bit)Speed

Smallest

Biggest

Highest

Lowest

Fastest

Slowest Memory
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Locality Principles
• A principle that makes having  

memory hierarchy a good idea.
• If an item is referenced,

temporal locality: it will tend to 
be referenced again soon.
spatial locality: nearby items will 
tend to be referenced soon.

• Our initial focus:  two levels  
(upper, lower)

–block:   minimum unit of data 
–hit:  data requested is in upper level
–miss:  data requested is not in the 

upper level

Processor

Data is transferred

Upper Level

Lower level

A block
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Memory Hierarchy - Buzzwords
• block: minimum unit of data that is transferred.
• hit: data requested is in the upper level.
• miss: data requested is  not in the upper level.
• Hit rate (or hit ratio): is the fraction of memory accesses 

found in the upper level.
• Miss rate: is the fraction of memory accesses NOT found 

in upper level.
• Miss rate = (1 – hit rate).
• Hit time: time to access the upper level of memory 

hierarchy which includes the time needed to determine 
whether the access is a hit or a miss.

• Miss penalty: time to replace the block in the upper level 
with the corresponding block at the lower level plus the 
time to deliver this block to the processor.
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• Cache: a safe place for hiding or storing things.
• Cache – name chosen to represent the level of 

the memory hierarchy between the CPU and 
main memory.

• Two issues:
– How do we know if a data item is in the cache?
– If it is, how do we find it?

• Our first example:
– block size is one word of data
– "direct mapped"

Cache



CSCE 5610: Computer Architecture 8

Reference to a missing item..

a. Before the reference to Xn

X3

Xn –  1

Xn –  2

X1

X4

b. After the reference to Xn

X3

Xn –  1

Xn –  2

X1

X4

Xn

X2X2

The cache just before and just after a reference to a word Xn
that is not initially in the cache.
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• For each item of data at the lower level, there is exactly one location in 
the cache where it might be.

e.g.,  lots of items at the lower level share locations in the upper level.
• Mapping:   (Block address) modulo (Number of cache blocks in the

cache. e.g. block address (01101)  = 13 maps to 
(13 mod 8) = cache block 5 = (101)

Direct Mapped Cache

00001 00101 01001 01101 10001 10101 11001 11101

00
0

Cache

Memory

00
1

01
0

01
1

10
0

10
1

11
0

11
1
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Accessing a Cache: An example
(page – 477 Interface Book)

N111
N110
N101
N100
N011
N010
N001
N000

DataTagVIndex

111
Mem(10110)10Y110

101
100
011
010
001
000

DataTagVIndex
Initial state of the cache after power ON After handling a miss of address (10110)

• Cache is empty

• Valid bits (V) are OFF (N)
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Example Contd.,

111
Mem(10110)10Y110

101
100
011

Mem(11010)11Y010
001
000

DataTagVIndex

• After handling a miss of address (11010)
• After handling a hit of address (10110)
• After handling a hit of address (11010)

111
Mem(10110)10Y110

101
100
011

Mem(11010)11Y010
001

Mem(10000)10Y000
DataTagVIndex

• After handling a miss of address (10000)
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Example Contd.,

111
Mem(10110)10Y110

101
100

Mem(00011)00Y011
Mem(11010)11Y010

001
Mem(10000)10Y000

DataTagVIndex

• After handling a miss of address (00011)
• After handling a hit of address (10000)

111
Mem(10110)10Y110

101
100

Mem(00011)00Y011
Mem(10010)10Y010

001
Mem(10000)10Y000

DataTagVIndex

• After handling a miss of address (10010)
• (overwrites previous contents, 

Mem(11010) at location (010))
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• The primary way of achieving higher memory 
bandwidth is to increase the physical or logical width 
of the memory system.
– Wider memory, bus, and cache
– Interleaved memory

Memory Organization – 3 Options
C P U

C a c h e

B u s

M e m o ry

a . O n e - w o rd - w id e

m e m o ry o rg a n iz a t i o n

C P U

B u s

b . W id e m e m o ry o rg a n iz a t io n

M e m o r y

M u l t ip le x o r

C a c h e

C P U

C a c h e

B u s

M e m o ry

b a n k 1

M e m o ry

b a n k 2

M e m o ry

b a n k 3

M e m o ry

b a n k 0

c . In te r le a v e d m e m o ry o r g a n iz a t io n
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• Tag of the cache is 
compared with the  upper 
portion of the address to 
determine whether the entry 
in the cache corresponds to 
the requested address.

• Cache has 210 i.e. 1024 
words and a block size of 1 
word, 10-bits are used to 
index the cache, and 32-10-
2=20bits are compared 
against tag.

• Cache Hit: If the tag and 
upper 20bits of the address 
are equal and the valid bit is 
ON and the word is supplied 
to the processor.

• Cache Miss: Otherwise.

Direct Mapped Cache
Address (show ing bit positions)

20 10

Byte
offset

Valid Tag DataIndex
0
1
2

1021
1022
1023

Tag

Index

H it Data

20 32

31 30 … 13  12  11   . . 2   1 0
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An Example: Page-479 Interface Book
How many total bits are required for a direct-mapped cache with 16KB of data and 
4-word blocks, assuming a 32-bit address?
Solution:
Word address size =  32 bits
We have 16KB   = 4K words  =  212 words
As block size = 4 (22) words, therefore,  210 blocks i.e. cache address size = 10 bits

Tag width = (word address size) – (cache address size) – (block address size) – (byte offset)
Each block has 32 bits of data plus a tag, which is 32 –10–2-2 bits,  plus a valid bit.  
Thus the cache size is:

210 x (128 + (32 – 10-2 – 2) + 1) = 210  x 147  = 147 Kbits.
or 18.4KB for a 16 KB cache.  

For this cache, the total number of bits in the cache is over 1.15 times as many as 
needed just for the storage of the data.
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Multi-word Cache Block
Consider a cache with 64 blocks and a block size of 16 bytes.  What block number does 
byte address 1200 map to?

Solution:
The block is given by  (Block address) modulo ( Number of cache blocks)
where the address of the block is 

(Byte address) /  (Bytes per block)
This block address is the block containing all addresses
between
floor (Byte address/ Bytes per block)  x (Bytes per block)

and
floor (Byte address/ Bytes per block)  x (Bytes per block) + (Bytes per block – 1)

Thus, with 16 bytes per block, byte address 1200 is block address floor(1200/16) = 75
which maps to cache block number (75 module 64) = 11.
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• Taking advantage of spatial locality:

Direct Mapped Cache : 4 Words per Block
Address (showing bit positions)

16 12 Byte
offset

V Tag Data

Hit Data

16 32

4K
entries

16 bits 128 bits

Mux

32 32 32

2

32

Block offsetIndex

Tag

31 16 15 4 3 2 1 0
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• Read hits
– this is what we want!

• Read misses
– stall the CPU, fetch block from memory, deliver to 

cache, restart 
• Write hits:

– can replace data in cache and memory (write-through)
– write the data only into the cache (write-back the cache 

later)
• Write misses:

– read the entire block into the cache, then write the word

Hits vs. Misses
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• Increasing the block size tends to decrease miss rate:
Performance

1 K B

8 K B

1 6 K B

6 4 K B

2 5 6 K B

2 5 6

4 0 %

3 5 %

3 0 %

2 5 %

2 0 %

1 5 %

1 0 %

5 %

0 %

M
is

s
r

a
t

e

6 41 64

B l o c k s i z e ( b y t e s )
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Performance: Measurement
• CPU execution time 

= (CPU clock cycles + Memory stall cycles) × Clock cycle time
• Memory stall cycles 

= Number of misses x Miss Penalty
= # of instructions × Miss ratio × Miss penalty

• # of instructions 
= Instruction Count (IC)

• Miss Ratio 
= Misses / Instruction = (Memory Accesses / Instruction) x Miss rate 

• Memory stall cycles 
= IC x Reads per instruction x Read miss rate x Read miss penalty 
= IC x Write per instruction x Write miss rate x Write miss penalty

NOTE: Refer page C-4 Quantitative Approach for more details.
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Performance: Measurement
• Example: Page-C-5 Quantitative book

– Misses per memory reference

• Example: Page-C-6 Quantitative book
– Misses per instruction

• Example: page-493 Interface book
– Cache performance with separate instruction and 

data cache miss

• Example: page-495 Interface book
– Cache performance with increased clock rate
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Performance: Improvement

• Two ways of improving performance:
– Decreasing the miss ratio: Improve chances of having 

data at higher level.

– Decreasing the miss penalty: Improve time of 
transferring data from lower to higher level.
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Decreasing Miss Ratio with Associativity

• In a direct mapped cache a memory block maps to 
exactly one cache block.

• At the other extreme, could allow a memory block to be 
mapped to any cache block – fully associative cache.

• A compromise is to divide the cache into sets each of 
which consists of n “ways” (n-way set associative).  A 
memory block maps to a unique set (specified by the 
index field) and can be placed in any way of that set (so 
there are n choices)

(block address) modulo (# sets in the cache)
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Different Configuration of a 8-Block Cache

T a g D a t a T a g D a ta T a g D a ta T a g D a ta T a g D a ta T a g D a ta T a g D a ta T a g D a ta

E ig h t - w a y s e t a s s o c ia t iv e ( fu l ly a s s o c ia t iv e )

T a g D a ta T a g D a ta T a g D a ta T a g D a ta

F o u r - w a y s e t a s s o c ia t iv e

S e t

0

1

T a g D a ta

O n e - w a y s e t a s s o c ia t iv e
(d i re c t m a p p e d )

B lo c k

0

7

1

2

3

4

5

6

T a g D a ta

T w o - w a y s e t a s s o c ia t iv e

S e t

0

1

2

3

T a g D a ta

Solve example page-499 of Interface book.
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Set Associative Cache Example

0

Cache

Main Memory

Q2: How do we find it?

Use next 1 low order 
memory address bit to 
determine which 
cache set (i.e., modulo 
the number of sets in 
the cache)

Tag Data

Q1: Is it there?

Compare all the cache 
tags in the set to the 
high order 3 memory 
address bits to tell if 
the memory block is in 
the cache

V

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

Two low order bits 
define the byte in the 
word (32-b words)
One word blocks

Set

1

0
1

Way

0

1

NOTE: http://mdlwiki.cse.psu.edu/twiki/pub/MDL/MJI431/cse431-2021cacheperf.ppt
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Four-Way Set Associative Cache
• 28 = 256 sets each with four ways (each with one block)

31 30       . . .        13 12  11     . . .        2  1  0 Byte offset

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

Index DataTagV
0
1
2
.
.
.

253
254
255

8
Index

22Tag

Hit Data

32

4x1 select
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Range of Set Associative Caches
• For a fixed size cache, each increase by a factor of two in 

associativity doubles the number of blocks per set (i.e., 
the number or ways) and halves the number of sets –
decreases the size of the index by 1 bit and increases the 
size of the tag by 1 bit.

Block offset Byte offsetIndexTag

Decreasing associativity

Fully associative
(only one set)
Tag is all the bits except
block and byte offset

Direct mapped
(only one way)
Smaller tags

Increasing associativity

Selects the setUsed for tag compare Selects the word in the block

NOTE: http://mdlwiki.cse.psu.edu/twiki/pub/MDL/MJI431/cse431-2021cacheperf.ppt

Solve example page-504 of Interface book.
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Costs of Set Associative Caches
• When a miss occurs, which way’s block do we pick for 

replacement?
– Least Recently Used (LRU): the block replaced is the one that   

has been unused for the longest time.
• Must have hardware to keep track of when each way’s block 

was   used relative to the other blocks in the set.
• For 2-way set associative, takes one bit per set → set the bit 

when a block is referenced (and reset the other way’s bit).

• N-way set associative cache costs
– N comparators (delay and area)
– MUX delay (set selection) before data is available
– Data available after set selection (and Hit/Miss decision).   In a 

direct mapped cache, the cache block is available before the 
Hit/Miss decision.

• So its not possible to just assume a hit and continue and 
recover later if it was a miss.
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Benefits of Set Associative Caches
• The choice of direct mapped or set associative depends on 

the cost of a miss versus the cost of implementation.

0

2

4

6

8

10

12

1-way 2-way 4-way 8-way

Associativity

M
is

s 
R

at
e

4KB
8KB
16KB
32KB
64KB
128KB
256KB
512KB

• Largest gains are in going from direct mapped to 2-way 
(20%+ reduction in miss rate).

NOTE: http://mdlwiki.cse.psu.edu/twiki/pub/MDL/MJI431/cse431-2021cacheperf.ppt
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Decreasing Miss Penalty with Multilevel Caches

• Add a second level cache:
– often primary cache is on the same chip as the processor.
– use SRAMs to add another cache above primary memory (DRAM).
– miss penalty goes down if data is in 2nd level cache.

• Example:
– CPI of 1.0 on a 500MHz machine with a 5% miss rate, 200ns 

DRAM access.
– Adding 2nd level cache with 20ns access time decreases miss rate

to 2%.

• Using multilevel caches:
– try and optimize the hit time on the 1st level cache.
– try and optimize the miss rate on the 2nd level cache.

Solve example page-505 Interface Book.
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Split Caches: Separate Instruction and Data

Program
Block size in 

words
Instruction 
miss rate

Data miss 
rate

Effective combined 
miss rate

gcc 1 6.1% 2.1% 5.4%
4 2.0% 1.7% 1.9%

spice 1 1.2% 1.3% 1.2%
4 0.3% 0.6% 0.4%

• Use split caches because there is more spatial locality in code:

• Modern processors have a split cache architecture, at least on 
the first cache level (L1).

NOTE: http://www.cs.colostate.edu/TechReports/Reports/1997/tr97-105.pdf
Solve example page-C-15 of Quantitative book.
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Performance: Measurement …

• Example: Page-C-17 Quantitative book
– In-order execution computer: misses per instruction vs

miss rate.

• Example: Page-C-18 Quantitative book
– In-order execution computer: Direct mapped vs 2-way 

set associative.  
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Memory Hierarchy: 4 Questions
• Block placement: 

– Where can a block be placed in the upper level?

• Block identification: 
– How is a block found if it is in the upper level?

• Block replacement:
– Which block should be replaced on a miss?

• Write strategy:
– What happens on a write?

NOTE: Page-C-6 Quantitative book.
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Q1&Q2: Where can a block be placed?

# of blocks in cache1Fully associative

Associativity (typically 
2 to 16)

(# of blocks in cache)/ 
associativity

Set associative

1# of blocks in cacheDirect mapped

Blocks per set# of sets

# of blocksCompare all blocks tagsFully associative

Degree of associativityIndex the set; compare 
set’s tags

Set associative
1IndexDirect mapped

# of comparisonsLocation method

NOTE: http://mdlwiki.cse.psu.edu/twiki/pub/MDL/MJI431/cse431-2021cacheperf.ppt
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Q3: Which block should be replaced on a miss?

• Easy for direct mapped – only one choice.
• Set associative or fully associative:

– Random
– LRU (Least Recently Used)

• For a 2-way set associative cache, random 
replacement has a miss rate about 1.1 times higher 
than LRU.

• LRU is too costly to implement for high levels of 
associativity (> 4-way) since tracking the usage 
information is costly.

NOTE: http://mdlwiki.cse.psu.edu/twiki/pub/MDL/MJI431/cse431-2021cacheperf.ppt
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Q4: What happens on a write?
• Write-through – The information is written to both the block 

in the cache and to the block in the next lower level of the 
memory hierarchy.

– Write-through is always combined with a write buffer so write waits 
to lower level memory can be eliminated (as long as the write buffer 
doesn’t fill).

• Write-back – The information is written only to the block in 
the cache. The modified cache block is written to main 
memory only when it is replaced.

– Need a dirty bit to keep track of whether the block is clean or dirty.

• Pros and cons of each?
– Write-through: read misses don’t result in writes (so are simpler and 

cheaper).
– Write-back: repeated writes require only one write to lower level.

NOTE: http://mdlwiki.cse.psu.edu/twiki/pub/MDL/MJI431/cse431-2021cacheperf.ppt
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Improving Cache Performance
• Reduce the time to hit in the cache

– smaller cache
– direct mapped cache
– smaller blocks
– for writes 

• no write allocate – no “hit” on cache, just write to write buffer.
• write allocate – to avoid two cycles (first check for hit, then write) 

pipeline writes via a delayed write buffer to cache.

• Reduce the miss rate
– bigger cache.
– more flexible placement (increase associativity).
– larger blocks (16 to 64 bytes typical).
– victim cache – small buffer holding most recently 

discarded blocks. 
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Improving Cache Performance
• Reduce the miss penalty

– smaller blocks
– use a write buffer to hold dirty blocks being replaced so 

don’t have to wait for the write to complete before reading. 
– check write buffer (and/or victim cache) on read miss –

may get lucky. 
– for large blocks fetch critical word first.
– use multiple cache levels – L2 cache not tied to CPU clock 

rate.
– faster backing store/improved memory bandwidth.

• wider buses
• memory interleaving, page mode DRAMs

NOTE: http://mdlwiki.cse.psu.edu/twiki/pub/MDL/MJI431/cse431-2021cacheperf.ppt



CSCE 5610: Computer Architecture 39

Summary: The Cache Design Space
• Several interacting dimensions

– cache size
– block size
– associativity
– replacement policy
– write-through vs write-back
– write allocation

• The optimal choice is a compromise
– depends on access characteristics

• workload
• use (I-cache, D-cache, TLB)

– depends on technology / cost
• Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

NOTE: http://mdlwiki.cse.psu.edu/twiki/pub/MDL/MJI431/cse431-2021cacheperf.ppt
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• SRAM:
– value is stored  on a pair of inverting gates
– very fast but takes up more space than DRAM (4 to 6 

transistors)

Memory Technology:  SRAM

NOTE: Page-311 Quantitative book.
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• DRAM:
– value is stored as a charge on capacitor (must be 

refreshed)
– very small but slower than SRAM (factor of 5 to 10)

Memory Technology:  DRAM

Word line

Pass transistor

Capacitor

Bit line

NOTE: Page-311 Quantitative book.
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Virtual Memory: Motivations
• Use Physical DRAM as a Cache for the Disk

– Address space of a process can exceed physical memory size.
– Sum of address spaces of multiple processes can exceed physical 

memory.

• Simplify Memory Management
– Multiple processes resident in main memory.

• Each process with its own address space.
– Only “active” code and data is actually in memory.

• Allocate more memory to process as needed.

• Provide Protection
– One process can’t interfere with another.

• because they operate in different address spaces.
– User process cannot access privileged information

• different sections of address spaces have different permissions.
NOTE: http://csapp.cs.cmu.edu/public/lectures/class19.ppt



CSCE 5610: Computer Architecture 43

Motivation #1: DRAM a “Cache” for Disk
• Full address space is quite large:

–32-bit addresses:    ~4,000,000,000 (4 billion) bytes
–64-bit addresses: ~16,000,000,000,000,000,000 (16 

quintillion) bytes
• Disk storage is ~300X cheaper than DRAM storage.
• To access large amounts of data in a cost-effective 

manner, the bulk of the data must be stored on disk.

1GB: ~$200 80 GB: ~$110

4 MB: ~$500

DiskDRAMSRAM

NOTE: http://csapp.cs.cmu.edu/public/lectures/class19.ppt
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DRAM vs. SRAM as a “Cache”
• DRAM vs. disk is more extreme than SRAM vs. 

DRAM.
– Access latencies:

• DRAM ~10X slower than SRAM.
• Disk ~100,000X slower than DRAM.

– Importance of exploiting spatial locality:
• First byte is ~100,000X slower than successive bytes on disk.

– vs. ~4X improvement for page-mode vs. regular accesses to 
DRAM.

– Bottom line: 
• Design decisions made for DRAM caches driven by enormous 

cost of misses.

NOTE: http://csapp.cs.cmu.edu/public/lectures/class19.ppt
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Impact of Properties on Design
• If DRAM was to be organized similar to an SRAM cache, 

how would we set the following design parameters?
– Line size: Large, since disk better at transferring large blocks
– Associativity: High, to mimimize miss rate
– Write through or write back?

• Write back, since can’t afford to perform small writes to disk

• What would the impact of these choices be on:
– miss rate: Extremely low.  << 1%
– hit time: Must match cache/DRAM performance
– miss latency: Very high.  ~20ms
– tag storage overhead: Low, relative to block size

NOTE: http://csapp.cs.cmu.edu/public/lectures/class19.ppt
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Locating an Object in a “Cache”
• SRAM Cache

– Tag stored with cache line
– Maps from cache block to memory blocks

• From cached to uncached form
• Save a few bits by only storing tag

– No tag for block not in cache
– Hardware retrieves information

• can quickly match against multiple tags

X
Object Name

Tag Data
D 243
X 17

J 105

•••
•••

0:
1:

N-1:

= X?

“Cache”

NOTE: http://csapp.cs.cmu.edu/public/lectures/class19.ppt
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Locating an Object in “Cache” (cont.)

Data
243
17

105

•••

0:
1:

N-1:

X
Object Name

Location

•••

D:
J:

X: 1

0
On Disk

“Cache”Page Table

• DRAM Cache
– Each allocated page of virtual memory has entry in page table.
– Mapping from virtual pages to physical pages.

• From uncached form to cached form.
– Page table entry even if page not in memory.

• Specifies disk address.
• Only way to indicate where to find page.

– OS retrieves information.

NOTE: http://csapp.cs.cmu.edu/public/lectures/class19.ppt
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A System with Physical Memory Only
• Examples: Early PCs, nearly all embedded systems, etc.
• Addresses generated by the CPU correspond directly to 

bytes in physical memory.

CPU

0:
1:

N-1:

Memory

Physical
Addresses

NOTE: http://csapp.cs.cmu.edu/public/lectures/class19.ppt
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A System with Virtual Memory
• Examples: workstations, servers, modern PCs, etc.
• Address Translation: Hardware converts virtual addresses to 

physical addresses via OS-managed lookup table (page table).

CPU

0:
1:

N-1:

Memory

0:
1:

P-1:

Page Table

Disk

Virtual
Addresses Physical

Addresses

NOTE: http://csapp.cs.cmu.edu/public/lectures/class19.ppt
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Page Faults (like “Cache Misses”)
• What if an object is on disk rather than in memory?

– Page table entry indicates virtual address not in memory.
– OS exception handler invoked to move data from disk into memory.

• current process suspends, others can resume
• OS has full control over placement, etc.

CPU

Memory

Page Table

Disk

Virtual
Addresses

Physical
Addresses

CPU

Memory

Page Table

Disk

Virtual
Addresses

Physical
Addresses

Before fault After fault

NOTE: http://csapp.cs.cmu.edu/public/lectures/class19.ppt
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Servicing a Page Fault
• Processor Signals Controller

–Read block of length P starting 
at disk address X and store 
starting at memory address Y.

• Read Occurs
–Direct Memory Access (DMA)
–Under control of I/O controller

• I / O Controller Signals Completion
–Interrupt processor
–OS resumes suspended 

process diskDiskdiskDisk

Memory-I/O busMemory-I/O bus

ProcessorProcessor

CacheCache

MemoryMemory
I/O

controller
I/O

controller

Reg

(2) DMA 
Transfer

(1) Initiate Block Read

(3) Read 
Done

NOTE: http://csapp.cs.cmu.edu/public/lectures/class19.ppt
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Motivation #2: Memory Management
• Multiple processes can reside in physical memory.
• How do we resolve address conflicts?

– What if two processes access something at the same address?
kernel virtual memory

Memory mapped region 
forshared libraries

runtime heap (via malloc)

program text (.text)
initialized data (.data)

uninitialized data (.bss)

stack

forbidden
0

%esp

memory invisible to
user code

the “brk” ptr

Linux/x86 
process
memory 
image

NOTE: http://csapp.cs.cmu.edu/public/lectures/class19.ppt
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Virtual 
Address 
Space for 
Process 1:

Physical 
Address 
Space 
(DRAM)

VP 1
VP 2

PP 2
Address Translation0

0

N-1

0

N-1
M-1

VP 1
VP 2

PP 7

PP 10

(e.g., read/only 
library code)

Solution: Separate Virtual Address Spaces
• Virtual and physical address spaces divided into equal-sized 

blocks.
– blocks are called “pages” (both virtual and physical).

• Each process has its own virtual address space
– operating system controls how virtual pages as assigned to physical 

memory.

...

...

Virtual 
Address 
Space for 
Process 2:

NOTE: http://csapp.cs.cmu.edu/public/lectures/class19.ppt
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Motivation #3: Protection
• Page table entry contains access rights information.

– hardware enforces this protection (trap into OS if violation occurs)
Page Tables

Process i:

Physical AddrRead? Write?
PP 9Yes No

PP 4Yes Yes

XXXXXXXNo No

VP 0:

VP 1:

VP 2:
•••

•••
•••

Process j:

0:
1:

N-1:

Memory

Physical AddrRead? Write?
PP 6Yes Yes

PP 9Yes No

XXXXXXXNo No
•••

•••
•••

VP 0:

VP 1:

VP 2:

NOTE: http://csapp.cs.cmu.edu/public/lectures/class19.ppt
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VM Address Translation
• Virtual Address Space

– V = {0, 1, …, N–1}
• Physical Address Space

– P = {0, 1, …, M–1}
– M < N

• Address Translation
– MAP:  V → P  U  {∅}
– For virtual address a:

• MAP(a)  =  a’ if data at virtual address a at physical address a’
in P

• MAP(a)  = ∅ if data at virtual address a not in physical memory
– Either invalid or stored on disk

NOTE: http://csapp.cs.cmu.edu/public/lectures/class19.ppt
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VM Address Translation: Hit and Miss
Processor

Hardware
Addr Trans
Mechanism

Main
Memorya

a'

physical addressvirtual address part of the 
on-chip
memory mgmt unit (MMU)

Processor

Hardware
Addr Trans
Mechanism

fault
handler

Main
Memory

Secondary 
memorya

a'

∅

page fault

physical address OS performs
this transfer
(only if miss)

virtual address
part of the 
on-chip
memory mgmt unit (MMU)

NOTE: http://csapp.cs.cmu.edu/public/lectures/class19.ppt
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virtual page number page offset virtual address

physical page number page offset physical address
0p–1

address translation

pm–1

n–1 0p–1p

VM Address Translation
• Parameters

– P = 2p = page size (bytes).  
– N = 2n = Virtual address limit
– M = 2m = Physical address limit

• Page offset bits don’t change as a result of translation.

NOTE: http://csapp.cs.cmu.edu/public/lectures/class19.ppt
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Page Table
Memory resident

page table
(physical page 
or disk address) Physical Memory

Disk Storage
(swap file or
regular file system file)

Valid

1
1

1
1
1

1

1
0

0

0

Virtual Page
Number

NOTE: http://csapp.cs.cmu.edu/public/lectures/class19.ppt
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Address Translation via Page Table

virtual page number (VPN) page offset

virtual address

physical page number (PPN) page offset

physical address

0p–1pm–1

n–1 0p–1p
page table base register

if valid=0
then page
not in memory

valid physical page number (PPN)access

VPN acts 
as
table index

NOTE: http://csapp.cs.cmu.edu/public/lectures/class19.ppt
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Page Table Operation
• Translation

–Separate (set of) page table(s) per process.
–VPN forms index into page table (points to a page table entry).

virtual page number (VPN) page offset

virtual address

physical page number (PPN) page offset

physical address

0p–1pm–1

n–1 0p–1p
page table base register

if valid=0
then page
not in memory

valid physical page number (PPN)access

VPN acts 
as
table index

virtual page number (VPN) page offset

virtual address

physical page number (PPN) page offset

physical address

0p–1pm–1

n–1 0p–1p
page table base register

if valid=0
then page
not in memory

valid physical page number (PPN)access

VPN acts 
as
table index

NOTE: http://csapp.cs.cmu.edu/public/lectures/class19.ppt
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Page Table Operation
• Computing Physical Address

–Page Table Entry (PTE) provides information about page
• if (valid bit = 1) then the page is in memory.

– Use physical page number (PPN) to construct address
• if (valid bit = 0) then the page is on disk

– Page fault

virtual page number (VPN) page offset

virtual address

physical page number (PPN) page offset

physical address

0p–1pm–1

n–1 0p–1p
page table base register

if valid=0
then page
not in memory

valid physical page number (PPN)access

VPN acts 
as
table index

virtual page number (VPN) page offset

virtual address

physical page number (PPN) page offset

physical address

0p–1pm–1

n–1 0p–1p
page table base register

if valid=0
then page
not in memory

valid physical page number (PPN)access

VPN acts 
as
table index

NOTE: http://csapp.cs.cmu.edu/public/lectures/class19.ppt
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Page Table Operation
• Checking Protection

– Access rights field indicate allowable access
• e.g., read-only, read-write, execute-only
• typically support multiple protection modes (e.g., kernel vs. user)

– Protection violation fault if user doesn’t have necessary permission

virtual page number (VPN) page offset

virtual address

physical page number (PPN) page offset

physical address

0p–1pm–1

n–1 0p–1p
page table base register

if valid=0
then page
not in memory

valid physical page number (PPN)access

VPN acts 
as
table index

virtual page number (VPN) page offset

virtual address

physical page number (PPN) page offset

physical address

0p–1pm–1

n–1 0p–1p
page table base register

if valid=0
then page
not in memory

valid physical page number (PPN)access

VPN acts 
as
table index

NOTE: http://csapp.cs.cmu.edu/public/lectures/class19.ppt
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CPU Trans-
lation Cache Main

Memory

VA PA miss

hit
data

Integrating VM and Cache

• Most Caches “Physically Addressed”
– Accessed by physical addresses.
– Allows multiple processes to have blocks in cache at same time.
– Allows multiple processes to share pages.
– Cache doesn’t need to be concerned with protection issues.

• Access rights checked as part of address translation.
• Perform Address Translation Before Cache Lookup.

– But this could involve a memory access itself (of the PTE).
– Of course, page table entries can also become cached.

NOTE: http://csapp.cs.cmu.edu/public/lectures/class19.ppt
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CPU TLB
Lookup Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

Speeding up Translation with a TLB
• “Translation Look Aside Buffer” (TLB)

– Small hardware cache in MMU.
– Maps virtual page numbers to  physical page 

numbers.
– Contains complete page table entries for small 

number of pages.

NOTE: http://csapp.cs.cmu.edu/public/lectures/class19.ppt
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Address Translation with a TLB
virtual addressvirtual page number page offset

physical address

n–1 0p–1p

valid physical page numbertag

valid tag data

data
=

cache hit

tag byte offsetindex

=

TLB hit

TLB

Cache

. ..

NOTE: http://csapp.cs.cmu.edu/public/lectures/class19.ppt



CSCE 5610: Computer Architecture 66

Multi-Level Page Tables
• Given:

– 4KB (212) page size
– 32-bit address space

– 4-byte PTE

• Problem:
– Would need a 4 MB page table!

• 220 *4 bytes

• Common solution
– multi-level page tables
– e.g., 2-level table (P6)

• Level 1 table: 1024 entries, each of 
which points to a Level 2 page table.

• Level 2 table:  1024 entries, each of 
which points to a page.

Level 1
Table

...

Level 2
Tables

NOTE: http://csapp.cs.cmu.edu/public/lectures/class19.ppt
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Virtual Memory: Main Themes
• Programmer’s View

– Large “flat” address space
• Can allocate large blocks of contiguous addresses.

– Processor “owns” machine
• Has private address space.
• Unaffected by behavior of other processes.

• System View
– User virtual address space created by mapping to set of pages.

• Need not be contiguous
• Allocated dynamically
• Enforce protection during address translation

– OS manages many processes simultaneously.
• Continually switching among processes
• Especially when one must wait for resource

– E.g., disk I/O to handle page fault

NOTE: http://csapp.cs.cmu.edu/public/lectures/class19.ppt
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Summary
• Memory hierarchy concept exploits spatial and temporal properties 

exhibited by the code.
• Levels of memory are organized such that:

• The average cost/bit approaches the cost of the cheapest 
memory technology. 

AND
• The average word access time approaches the access time of 

the fastest memory technology.
• Direct-mapped cache organization is the simplest.
• Miss rate can be reduced by resorting to set-associativity (set-

associative caches).
• As the block size increases, typically the miss rate goes down!
• Multi-level caches can be used to further improve the performance of 

the memory system.
• Remember: Motto of Memory Hierarchy

Right amount of data at the right place all the time!!


