Lecture 3: Instructions:
Language of the Computers

CSCE2610 Computer Organization

Instructor: Saraju P. Mohanty, Ph. D.

NOTE: The figures, text etc included in slides are borrowed
from various books, websites, authors pages, and other
sources for academic purpose only. The instructor does
not claim any originality.

UNT CSCE 2610: Computer Organization

UNIWVERSITY ©OF NC"RHI ILPQ"'\S
Discover the pow

Review

Computer Organization & Architecture:

e Computer Architecture = ISA + machine organization
* Processor = Datapath + Controller

 All computers consist of five components:

(1) Datapath (2) Control (3) Memory (4) Input device,
and (5) Output device

Control

Datapatf

Processor

UNT CSCE 2610: Computer Organization

UNIVEFRSITY ©OF NORITH TEXAS
= F]

[)imu_n £i |_1|r_' DOWET Ol '|I.1|_

What are Instructions?

e Language of the Machine

e More primitive than higher level languages
e.g., no sophisticated control flow

« Very restrictive
e.g., MIPS Arithmetic Instructions

« We'll be working with the MIPS instruction set architecture
— similar to other architectures developed since the 1980's
— used by NEC, Nintendo, Silicon Graphics, Sony

e Design goals:
— maximize performance
— minimize cost
— reduce design time

UNT CSCE 2610: Computer Organization

UNIVERSITY OF NORIH TEXAS
- < E]

[)imu_n £i |_1|r_' DOWET Ol '|I.1|_

}

Instruction
Fetch

!

Instruction
Decode

!

Operand
Fetch

Execute

Result
Store

!

Next

UNT~

UNIVEFRSITY ©OF NORITH TEXAS
= F]

[)imu_n £i |_1|r_' DOWET Ol '|I.1|_

Instruction Set Architecture:
What Must be Specified?

° Instruction Format or Encoding
— how is it decoded?
° Location of operands and result
— where other than memory?
— how many explicit operands?
— how are memory operands located?
— which can or cannot be in memory?
° Data type and Size
° Operations
— what are supported
° Successor instruction

— jJumps, conditions, branches
- fetch-decode-execute is implicit!

CSCE 2610: Computer Organization

Instruction Categories in MIPS
Processor

 Arithmetic

* Logical

» Data Transfer

« Conditional Branch

e Unconditional Branch

UNT CSCE 2610: Computer Organization

UNIVERSITY OF NMORTH TEXAS
Discover the power of ideas

Design Principles

 [nstruction complexity is only one variable

— lower instruction count vs. higher CPIl (cycles per
Instruction) / lower clock rate.

e Design Principles:
— simplicity favors regularity
— smaller is faster
— make the common case fast
— good design demands compromise

 |nstruction set architecture
— a very important abstraction indeed!

UNT

UNIVERSITY OF NORIH TEXAS
- < E]

[)imu_n £i |_1|r_' DOWET Ol '|I.1|_

CSCE 2610: Computer Organization

MIPS Arithmetic

« All instructions have 3 operands
 Operand order is fixed (destination first)
 Example:

Ccode: A=B+C $s0

A

$s1| B
MIPS code: add $s0, $s1, $s2 el
(associated with variables by c:ompiler)$52

(1) “$s0” represents a register

(2) Variables A, B, C are stored in registers $s0, $s1, and
$s2, respectively.

UNT

UNIVERSITY OF NORIH TEXAS
- < E]

[)imu_n £i |_1|r_' DOWET Ol '|I.1|_

CSCE 2610: Computer Organization

MIPS Arithmetic

e Design Principle: simplicity favors regularity. Why?
« Of course this complicates some things...

C code: A=B+C+D;
E=F-A;

MIPS code: add $tO, $s1, $s2
add $s0, $t0, $s3
sub $s4, $s5, $s0O

Note: register $t0, $t1 are temporary registers

* Operands must be registers, only 32 registers provided
 Design Principle: smaller is faster. Why?

UNT CSCE 2610: Computer Organization

UNIVERSITY ©F NORTH TEXAS

Discover the power of ideas

General Purpose Registers (GPRs) Dominate

°1975-1995 all machines use general purpose registers

° Advantages of registers
e registers are faster than memory
e registers are easier for a compiler to use

e registers can hold variables

- memory traffic is redu%ed SO program IS speeded up
(since registers are faster than me ory

- code density improves (since register named with fewer bits
than memory location)

UNT

thVLR‘:J[‘I’ F NORTH TEXAS
“' |_1|r_' '::|_1w:;r |._|r '|I.1|_

CSCE 2610: Computer Organization

Registers vs. Memory

* In MIPS processor, arithmetic instructions operands must
be registers

e Only 32 registers provided
 Compiler associates variables with registers
 What about programs with lots of variables?
Solution: Spilling Registers
Excessive variables are stored in Memory
and moved from memory to register file
by load and store instructions.

UNT CSCE 2610: Computer Organization

UNIVERSITY OF NORIH TEXAS
- < E]

[)imu_n £i |_1|r_' DOWET Ol '|I.1|_

MIPS: Software conventions for Registers

0 constant O 16 sO callee saves
1 reserved for assembler ... (caller can clobber)
2 VvO expression evaluation & 23 s7
3 vl function results 24 t8 temporary (cont’'d)
4 a0 arguments 25 9
5 al 26 reserved for OS kernel
6 a2 27
/ a3 28 gp Pointer to global area
8 tO0 temporary: caller saves 29 sp Stack pointer
(callee can clobber) 30 fp frame pointer
15 t7 31 Return Address (HW)

Plus a 3-deep stack of mode bits.

UNT CSCE 2610: Computer Organization

UNIVERSITY OF NMORTH TEXAS
Discover the power of ideas

Stored Program Concept

e |nstructions are bits

 Programs are stored in memory
— to be read or written just like data

Processor Memory
memory for data, programs,

/ compilers, editors, etc.

 Fetch & Execute Cycle
— Instructions are fetched and put into a special register.
— Bits in the register "control" the subsequent actions.
— Fetch the “next” instruction and continue.

UNT CSCE 2610: Computer Organization

UNIVERSITY ©F NORTH TEXAS

Discover the power of ideas

The Stored Program Concept

{maching coda) Treating instruction and data in the
o same way simplifies both
Processor (machine code) hardware and software of the

______________ computer.

UNT

UNIVERSITY OF NMORTH TEXAS
Discover the power of ideas

CSCE 2610: Computer Organization

Memory Organization

« Viewed as a large, single-dimension array, with an
address.

« A memory address is an index into the array.

* "Byte addressing” means that the index points to a byte of
memory.

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

o O A WO N - O

8 bits of data

UNT CSCE 2610: Computer Organization

UNIVERSITY ©F NORTH TEXAS

Discover the power of ideas

Memory Organization

« Bytes are nice, but most data items use larger "words”.

e For MIPS,

a word I1s 32 bits or 4 Dbytes.

O | 32 bits of data

4 | 32 bits of data

8 | 32 bits of data

Registers hold 32 bits of data

12 | 32 bits of data

o 232 pytes with byte addresses from 0 to 232-1.

o 230 words wit

« Words are a
bits of a worc

UNT

UNIVERSITY OF NORIH TEXAS
- < E]

[)imu_n £i |_1|r_' DOWET Ol '|I.1|_

n byte addresses 0, 4, 8, ... 23%-4.
igned i.e., what are the least 2 significant

address?

CSCE 2610: Computer Organization

Memory Addresses and Contents

3 100
= 10
3 101 e Address of 3" element is 2 and
o 1 the value of Memory[2] is 10.
Addrags iz
Processor Mamary

o Arithmetic operations occurs only on registers in MIPS.
 Data transfer instructions needed to transfer between
memory and registers.
e Two types:
 load word : from memory to register
» store word : from register to memory

UNT CSCE 2610: Computer Organization

UNIVERSITY ©F NORTH TEXAS

Discover the power of ideas

MIPS Memory Addresses and Contents

. o » Address of 3 element is 8 and
X iy the value of Memory[8] is 10.
: 1 Byte addressing In array: Base
P ~ns address + Offset.
« Offset =4 * array index.
Processor Memaory

* In MIPS, word addresses start at multiple of 4.
e This is alignment restriction.

UNT

UNIVERSITY ©F NORTH TEXAS

Discover the power of ideas

CSCE 2610: Computer Organization

Addressing Objects: Endianess

* Big Endian: address of most significant byte
IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

e Little Endian: address of least significant byte
Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

little endian byte O

msb Isb

big endian byte 0

UNT CSCE 2610: Computer Organization

UNIVERSITY ©F NORTH TEXAS

Discover the power of ideas

Generic Examples of Instruction
Format Widths

Variable:

Fixed:

Hybrid:

UNT CSCE 2610: Computer Organization

UNIVERSITY ©F NORTH TEXAS

Discover the power of ideas

Summary of Instruction Formats

 |If code size Is most important, use variable length
Instructions.

o |f performance is most important, use fixed length
Instructions.

« Recent embedded machines (ARM, MIPS) added
optional mode to execute subset of 16-bit wide
instructions (Thumb, MIPS16); per procedure decide
performance or density.

UNT CSCE 2610: Computer Organization

UNIVERSITY OF NORIH TEXAS
- < E]

[)imu_n £i |_1|r_' DOWET Ol '|I.1|_

Load & Store Instructions by Example

e Load and store instructions are used for data movement between
memory and registers in the register file.

 Example:
C code: A[8] = h + A[8];
MIPS code: lw $t0, 32($s3) # $t0 = A[8]
add $t0, $s2, $t0# $t0 = h + $t0
sw $t0, 32($s3) # A[8] = $t0

Note: (1) Iw = load word, sw = store word
(2) $tO is a temporary register that accumulates the final result
(3) Register $s2 holds variable “h”

(4) Reqister $s3 is the index register that holds the start
address of the array A i.e. the location where array A starts.

« Store word has destination last
« Remember arithmetic operands are registers, not memory!

UNT

UNIVEFRSITY ©OF NORITH TEXAS
= F]

[)imu_n £i |_1|r_' DOWET Ol '|I.1|_

CSCE 2610: Computer Organization

So far we've learned:

e MIPS
— loading words but addressing bytes

— arithmetic on registers only

e |[nstruction Meaning
add $s1, $s2, $s3 $s1 = $s2 + $s3
sub $s1, $s2, $s3 $s1 = $s2 — $s3
lw $s1, 100($s2) $s1 = Memory[$s2+100]
sw $s1, 100($s2) Memory[$s2+100] = $s1

UNT CSCE 2610: Computer Organization

UNIVERSITY ©F NORTH TEXAS

Discover the power of ideas

Machine Language

* Instructions, like registers and words of data, are also 32 bits long
— Example: add $t0, $s1, $s2
— registers have numbers, t0=8, s1=17, s2=18

e Instruction Format (R-type):

00000010001 10010 01000 00000 100000

op s It ra shamt| funct
6 bits 5Sbhits 5bits 5bits 5bhits 6 bits

op: operation of the instruction

rs: the first register source operand

rt: the second register source operand

shamt: shift amount (we will look at this later..)

funct: function; this field selects the variant of the operation in the op field

UNT CSCE 2610: Computer Organization

UNIVEFRSITY ©OF NORITH TEXAS
= F]

[)imu_n £i |_1|r_' DOWET Ol '|I.1|_

Machine Language

e Consider the load-word and store-word instructions,
— What would the regularity principle have us do?
— New principle: Good design demands a compromise

e Introduce a new type of instruction format
— |-type for data transfer instructions
— other format was R-type for register
Example: Iw $t0, 32($s2)

35| 18 9 32
6 bits 5 bits 5 bits 16 bits
op rs rt 16 bit number

 Where's the compromise?

UNT

UNIVERSITY OF NORIH TEXAS
- < E]

[)imu_n £i |_1|r_' DOWET Ol '|I.1|_

CSCE 2610: Computer Organization

Instructions for Control flow

* Decision making instructions
— alter the control flow,
— 1.e., change the "next" instruction to be executed

e MIPS conditional branch instructions:
bne $t0, $t1, Label
beq $t0O, $t1, Label

e Example: if(i=5)) h=1+]|;
bne $s0, $s1, Label
add $s3, $s0, $s1
Label:

UNT CSCE 2610: Computer Organization

UNIVERSITY ©F NORTH TEXAS

Discover the power of ideas

Decision Instructions: If-Else

Example:
= f’”{,ﬂ] f (IZZJ) F= g+h;
0 elsef=g-h;
‘ fugth ‘ fre-h ‘ bne $s3, $s4, Else

add $s0, $s1, $s2

] Exit

Ej-;'t'\ el PR - A D1 DN
Else: sub $S0, $s1, $s2
Exit:

UNT CSCE 2610: Computer Organization

UNIVERSITY OF NMORTH TEXAS
Discover the power of ideas

Unconditional Branch: jump instruction

e MIPS unconditional branch instructions:
] label

e Jump Instruction Format:

op 26 bit address
6 bits 26 bits
 Example:

if (i'=)) beq $s4, $s5, Labl
h=i+j; add $s3, $s4, $s5

else] Lab2
h=i-j; _abl: sub $s3, $s4, $s5

_ab2: ...

UNT CSCE 2610: Computer Organization

UNIVERSITY ©F NORTH TEXAS

Discover the power of ideas

MIPS Instructions: So far ...

e Instruction Meaning

add $s1,$s2,$s3 $s1 = $s2 + $s3

sub $s1,$s2,$s3 $s1 = $s2 — $s3

lw $51,100($s2) $s1 = Memory[$s2+100]

sw $s51,100($s2) Memory[$s2+100] = $s1
one $s4,$s5,.L Next instr. is at Label if $s4 1= $s5
neq $s4,$s5,L Next instr. is at Label if $s4 = $s5

| Label Next instr. is at Labe
e Formats:
6 bits 5bits 5 bits 5 bits 5 bits 6 bits
R op rs rt rd shamt| funct
| op rs rt 16 bit address
J op 26 bit address

UNT

UNIVERSITY @F NORIH

[)imu_n £i |_1|r_' DOWET Ol '|I.1|_

TEXAS
= F]

CSCE 2610: Computer Organization

Control Flow

« We have: beq, bne, what about Branch-if-less-than?

e New Instruction:
If $s1 < $s2 then

$t0 =1
slt $t0, $s1, $s2 else
$t0=0

e Can use this instruction to build "blt $s1, $s2, Label"
— can now build general control structures

* Note that the assembler needs a register to do this,
— there are policy of use conventions for registers

UNT

UNIVERSITY OF NORIH TEXAS
- < E]

[)imu_n £i |_1|r_' DOWET Ol '|I.1|_

CSCE 2610: Computer Organization

Constants or Immediate Operands

« Small constants are used quite frequently (50% of
operands).

e.g.,
A=A+15;
B=B-18;
counter = counter + 1;
e In most programs, constants will fit in 16 bits allocated
for immediate field.

* Design Principle: Make the common case fast

e MIPS Instruction:
— addi $s3, $s3, 4 # $s3 =$s3 + 4

UNT CSCE 2610: Computer Organization

UNIVERSITY ©F NORTH TEXAS

Discover the power of ideas

Assembly versus Machine Language

 Assembly provides convenient symbolic representation
— much easier than writing down numbers
— e.g., destination first
 Machine language is the underlying reality
— e.g., destination is no longer first
« Assembly can provide 'pseudoinstructions'
— e.g., “move $t0, $t1” exists only in Assembly
— would be implemented using “add $t0,$t1,$zero”

« When considering performance you should count real
Instructions.

UNT

UNIVERSITY OF NORIH TEXAS
- < E]

[)imu_n £i |_1|r_' DOWET Ol '|I.1|_

CSCE 2610: Computer Organization

Other Issues

e Several other issues can be considered:
support for procedures
linkers, loaders, memory layout
stacks, frames, recursion
manipulating strings and pointers
Interrupts and exceptions
system calls and conventions

 We've focused on architectural issues
— basics of MIPS assembly language and machine code.
— we’ll build a processor to execute these instructions.

UNT

UNIVEFRSITY ©OF NORITH TEXAS
= F]

[)imu_n £i |_1|r_' DOWET Ol '|I.1|_

CSCE 2610: Computer Organization

Stack Pointer

High addrass
5P| | §sp—=
Crolesis af regisies $L1
Conbesnis al reler $T0
$ap- = | Contents of reqisier $50|
Lovw ackinsas a. b. C

Before During After

 Values of stack pointer and stack for procedure call.
 The stack pointer always points to the “top” of the
stack, or the last word in the stack in this drawing.

UNT CSCE 2610: Computer Organization

UNIVERSITY ©F NORTH TEXAS

Discover the power of ideas

Stack Pointer

High addmss
$Fp-—= §Fp—=|
isp = 5p—=|
o= Saved angumenl
regissers (4 any)
Saved refurn acdrss
o TR e rree |
regesters (# any}
Local arrays and
S50—= slructures (il any)
!
Low addrass s b, &,
Before During After

* The frame pointer points to the first word in the frame of
a procedure.

 Frame pointer is a saved argument register.

« The stack is adjusted to make room for all saved
registers and any memory-resident local variables.

UNT CSCE 2610: Computer Organization

UNIVERSITY ©F NORTH TEXAS

Discover the power of ideas

Calls: Why Are Stacks So Great?

Stacking of Subroutine Calls & Returns and Environments:

A: TA
CALL B
B:| — .| A|B
CALL C
c:{::: ~A|B|C
RET
J AlB
RET
—— ;A

« Some machines provide a memory stack as part of the
architecture (e.g., VAX)

e Sometimes stacks are implemented via software convention (e.g.,
MIPS)

UNIT

LNIVLHSHY @F NOF-LHI lL}-'.!"'.b
r the powe £of i

CSCE 2610: Computer Organization

MIPS Memory Allocation

bsp—=7TT1f Fficy,,

$gp—=1000 BDDO,,
1000 0000,

pe—=0040 0D0A,,,
O

UNT

L'NIV_LHSl I'Y ©F NORTH TEXAS

Discover the power of ideas

address to make it easy to
access data.
Dynamic data e Text segment: The segment
amicdss | Of @ Unix object file that
contains machine language

B e Global pointer is set to an
’
}

Taxt

code for routines In the
source file.

CSCE 2610: Computer Organization

Overview of MIPS

« simple instructions all 32 bits wide
e very structured, no unnecessary baggage

e only three instruction formats
6 bits 5bits 5 bits 5 bits 5 bits 6 bits

R op rs rt rd shamt| funct
I op rs rt 16 bit address
J op 26 bit address

* rely on compiler to achieve performance
— what are the compiler's goals?

* help compiler where we can.

UNT

UNIVEFRSITY ©OF NORITH TEXAS
= F]

[)imu_n £i |_1|r_' DOWET Ol '|I.1|_

CSCE 2610: Computer Organization

Addresses in Branches and Jumps

e |nstructions:
bne $t4,$t5,Label, Next instruction is at Label if $t4 1=%$t5
beq $t4,5t5,Label, Next instruction is at Label if $t4 = $tb

] Label Next instruction is at Label
e Formats:

I op rs rt 16 bit address

J op 26 bit address

e Addresses are not 32 hits
--How do we handle this with load and store instructions?

UNT CSCE 2610: Computer Organization

UNIVERSITY ©F NORTH TEXAS

Discover the power of ideas

Addresses In Branches

e |nstructions:

bne $t4,$t5,Label Next instruction is at Label if $t4!=$t5
beqg $t4,$t5,Label,Next instruction is at Label if $t4=$t5

e Formats:

I op rs rt 16 bit address

 Could specify a register (like lw and sw) and add it to
address

— use Instruction Address Register (PC = program counter)
— most branches are local (principle of locality)

e Jump instructions just use high order bits of PC
— address boundaries of 256 MB

UNT CSCE 2610: Computer Organization

UNIVERSITY OF NORIH TEXAS
- < E]

[)imu_n £i |_1|r_' DOWET Ol '|I.1|_

To summarize:

MIPS operands

Name Example Comments

32 registers

$s0-$s7, $t0-$t9, $zero,
$a0-%$a3, $vO-$vi, $gp,

$fp, $sp, $ra, %at

Fast locations for data. In MIPS, data must be in registers to perform
arithmetic. MIPS register $zero always equals 0. Register $at is
reserved for the assembler to handle large constants.

Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so
230 memory [Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.
MIPS assembly language
Category Instruction Example Meaning Comments
add add $sl1, $s2, $s3 [|$sl = $s2 + $s3 Three operands; data in registers
Arithmetic subtract sub $sl1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers
add immediate addi $sl1l, $s2, 100 |$sl = $s2 + 100 Used to add constants
load word Ilw $sl1l, 100($s2) $s1 = Memory[$S2 + 100]|word from memory to register
store word sw $s1, 100($s2) Memory[$S2 + 100] = $s1 |Word from register to memory
Data transfer |load byte Ib $sl1, 100($s2) $s1 = Memory[$S2 + 100]|Byte from memory to register
store byte Sb_ $s1, 100($s2) Memory[$S2 + 100] = $s1 |Byte from register to memory
load upper immediate [lul $s1, 100 $s1 = 100 * 21° Loads constant in upper 16 bits
branch on equal beq $s1, $s2, 25 if ($s1 == $52) go to Equal test; PC-relative branch
PC +4+ 100
branch on not equal |bne $sl, $s2, 25 if ($s1 = $s2)goto Not equal test; PC-relative
. PC +4+ 100
Conditional
branch set on less than st $s1, $s2, $s3 |[if ($s2 < $s3) $s1=1; Compare less than; for beq, bne
else $sl =0
set less than slti $sl, $s2, 100 [if ($s2 < 100y $s1=1; Compare less than constant
immediate else $sl =0
jump j 2500 go to 10000 Jump to target address
Uncondi- jump register Jjr $ra goto $ra For switch, procedure return
tional jump jump and link jal 2500 $ra = pC + 4: go to 10000 |For procedure call

UNIVEFRSITY ©OF NORITH TEXAS

[DHscover the power of ideas

CSCE 2610: Computer Organization

MIPS Addressing Modes

1. Immeadiate addrassing

UNT '
CSCE 2610: Computer Organization

UNIVERSITY OF NMORTH TEXAS
Discover the power of ideas

Alternative Architectures

 Design alternative:
— provide more powerful operations
— goal Is to reduce number of instructions executed
— danger is a slower cycle time and/or a higher CPI
« Sometimes referred to as “RISC vs. CISC”

— virtually all new instruction sets since 1982 have been

DICH
NIoCL

— VAX:. minimize code size, make assembly language
easy instructions from 1 to 54 bytes long!

UNT

UNIVERSITY OF NORIH TEXAS
- < E]

[)imu_n £i |_1|r_' DOWET Ol '|I.1|_

CSCE 2610: Computer Organization

80x386

« 1978: The Intel 8086 is announced (16 bit architecture)
e« 1980: The 8087 floating point coprocessor is added

« 1982: The 80286 increases address space to 24 bits,
+instructions

 1985: The 80386 extends to 32 bits, new addressing modes

e 1989-1995:. The 80486, Pentium, Pentium Pro add a few
Instructions (mostly designed for higher performance)

« 1997: MMX is added
“This history illustrates the impact of the “golden handcuffs” of
compatibility
*adding new features as someone might add clothing to a
packed bag”
“an architecture that is difficult to explain and impossible to love”

UNT CSCE 2610: Computer Organization

UNIVERSITY OF NORIH TEXAS
- < E]

[)imu_n £i |_1|r_' DOWET Ol '|I.1|_

A dominant architecture: 80x86

« See your textbook for a more detailed description

« Complexity:
— Instructions from 1 to 17 bytes long
— one operand must act as both a source and destination
— one operand can come from memory

— complex addressing mode e.g., “base or scaled index with 8 or
32 bit displacement”

e Saving grace:
— the most frequently used instructions are not too difficult to build
— compilers avoid the portions of the architecture that are slow

“what the 80x86 lacks in style is made up In quantity,
making it beautiful from the right perspective”

UNT CSCE 2610: Computer Organization

UNIVEFRSITY ©OF NORITH TEXAS
= F]

[)imu_n £i |_1|r_' DOWET Ol '|I.1|_

Summary: Salient features of MIPS |

o 32-bit fixed format inst (3 formats)

o 32 32-bit GPR (RO contains zero) and 32 FP registers (and HI LO)
spartitioned by software convention

o 3-address, register-register arithmetic instruction

e Single address mode for load/store: base + displacement
—no indirection, scaled
—16-bit immediate plus load upper immediate (lui)

«Simple branch conditions
e cOmpare against zero or two registers
* NO integer condition codes

*Delayed branch

eexecute instruction after the branch (or jump) even if the branch
Is taken (Compiler can fill a delayed branch with useful work
about 50% of the time).

UNT

UNIVEFRSITY ©OF NORITH TEXAS
= F]

[)imu_n £i |_1|r_' DOWET Ol '|I.1|_

CSCE 2610: Computer Organization

Summary: Instruction set design (MIPS)

« Use general purpose registers with a load-store
architecture: YES

 Provide at least 16 general purpose registers plus
separate floating-point registers: 31 GPR & 32 FPR

o Support basic addressing modes: displacement (with an
address offset size of 12 to 16 bits), immediate (size 8 to
16 bits), and register deferred; : YES. 16 bits for
Immediate, displacement (disp=0 => reqister deferred)

 All addressing modes apply to all data transfer
Instructions : YES

UNT

UNIVERSITY OF NORIH TEXAS
- < E]

[)imu_n £i |_1|r_' DOWET Ol '|I.1|_

CSCE 2610: Computer Organization

Summary: Instruction set design (MIPS)

e Use fixed instruction encoding Iif interested in performance
and use variable instruction encoding if interested in code
size : Fixed

e Support these data sizes and types: 8-bit, 16-bit, 32-bit

Integers and 32-bit and 64-bit IEEE 754 floating point
numbers: YES

e Support these simple instructions, since they will dominate
the number of Instructions executed: load, store, add,
subtract, move register-register, and, shift, compare equal,
compare not equal, branch (with a PC-relative address at
least 8-bits long), jump, call, and return: YES, 16b

« AIm for a minimalist instruction set: YES

UNT

UNIVERSITY OF NORIH TEXAS
- < E]

[)imu_n £i |_1|r_' DOWET Ol '|I.1|_

CSCE 2610: Computer Organization

Data Types

Bit: 0,1

Bit String: sequence of bits of a particular length
4 bits is a nibble
8 bits is a byte
16 bits is a half-word
32 bits is a word
64 bits is a double-word

Character:
ASCII 7 bit code

Decimal:
digits 0-9 encoded as 0000b thru 1001b
two decimal digits packed per 8 bit byte

Integers:
2's Complement How many +/- #'s?
. . _EeXponent \yhere is decimal pt?
Floating Point: « RE How are +/- exponents
Single Precision)/I ~ represented?
Double Precision base

Extended Precision mantissa

UNT

thVLR‘:J[‘I’ "'l hUi[l] 1].}-'.."".5
DHscow

CSCE 2610: Computer Organization

Data Types: Binary to Hexadecimal

ecad86420

=/

1110 1100 1010 1000 0110 0100 0010 0000

UNT CSCE 2610: Computer Organization

UNIVERSITY OF NMORTH TEXAS
Discover the power of ideas

Data Types: Hexadecimal to Binary

0001 0011 0101 0111 1001 1011 1101 1111

I\ Z

13579bdf

UNT CSCE 2610: Computer Organization

UNIVERSITY OF NMORTH TEXAS
Discover the power of ideas

Translation Hierarchy for C

]
N
g

Assambly language program

o
_Aaembler

s

Object: Machine language module | | Object: Library routine [machine larguage)

e
_Lrisr
™

Execulable: Maching languags progeam

-

Loader

Mamiary
UNT CSCE 2610: Computer Organization

UNIVERSITY OF NMORTH TEXAS
Discover the power of ideas

Translation Hierarchy for C. Compiler

Language 1 source code Language 2 source code

Compiler front-end for language 1 Compiler front-end for language 2
Lexiial Analyzer (Scanner) Lexiial Analyzer (Scanner)
Syntax/Semantic Syntax/Semantic C O m p | | e r |S a SySte m
Analyzer (Parser) Analyzer (Parser) th t t | t
Intermediate-code Intermediate-code p ro g ram a ran S a eS a
Generator Generator "

Non-optimized intermediate code Non-optimized intermediate code h Ig h Ievel |an g u ag e p rog ram

Into assembly language
Intermediate code optimizer Computer |anguage

Optimized intermediate code

/ \

Target-1 Target-2
Code Generator Code Generator
lTarget-1 machine code lTarget-Z machine code
I R
= = Source: http://en.wikipedia.org/

UNT CSCE 2610: Computer Organization

UNIVERSITY ©F NORTH TEXAS

Discover the power of ideas

Translation Hierarchy for C: Assembler

Assembler is a system program that translates assembly
language statements into the target computer's machine
code. Unlike a compiler, the assembler performs a one-
to-one mapping) from mnemonic statements Into
machine instructions and data.

Source: http://en.wikipedia.org/

UNT

L'NIV_LHSl I'Y ©F NORTH TEXAS

Discover the power of ideas

CSCE 2610: Computer Organization

Translation Hierarchy for C: Linker

lib

obj

obj

Stoker>

lib

dll

exe

UNT

UNIVERSITY ©F NORTH TEXAS

Discover the power of ideas

CSCE 2610: Computer Organization

A linker Is a system program
that takes one or more objects
generated by compilers and
assembles them Into a single
executable program

Source: http://en.wikipedia.org/

Translation Hierarchy for C: Loader

A loader Is a system program that s
responsible for loading programs from
executables into memory, preparing them for
execution and then executing them.

Source: http://en.wikipedia.org/

UNT

UNIVERSITY ©F NORTH TEXAS

Discover the power of ideas

CSCE 2610: Computer Organization

Dynamically Linked Library via Linkage

o | Teot | e Dynamic Link Library (DLL) is a
| m [& J o [@] library of executable functions
IR E = FERN = of data that can be used by

: | = | applications.
Data Data A DLL provides one or more
- @ g & particular functions and a

program accesses the functions
Tt | by creating either a static or
o 1t 1 dynamic link to the DLL.

‘:

. |9 L)
' A static link remains constant

o during program execution while

= Diynamic Linkenloader . . .

P L ol a dynamic link is created by the
i 9 program as needed.

Dt Tast Tast | A DLL can be used by several
WL Fauioe DL Peulow applications at the same time.
w8 | 8 PP

(a) Firsacall o DLL mouting b} Subsequent calls 1w DLLrowtine SOUTcCe: hitp://www.webopedia.com/

UNT CSCE 2610: Computer Organization

UNIVERSITY OF NMORTH TEXAS
Discover the power of ideas

Translation Hierarchy for JAVA

. oo .
o Y

[_r}umuily_ k|
u,

| Ciass files (Java bytecades) | | Java Library routines (machine langJage)
.

dustin Time ™, ous Virual Maching
. compller -~ T—__ e

Wl

| Gompiled Java mathods (machina languag) |

UNT CSCE 2610: Computer Organization

UNIVERSITY OF NMORTH TEXAS
Discover the power of ideas

Translation Hierarchy for JAVA

« Java bytecode: This instruction set is designed to be
close to Java language for easy compilation.

« Java Virtual Machine: It is a software interpreter that
simulates an instruction set architecture.

e Justin Time Compiler (JIT): It Is a system program that
turns Java bytecodes into instructions that can be sent
directly to the processors. It converts code at runtime
prior to execution. It is also known as dynamic translation.
JIT preserve portability and improve execution time.

UNT

UNIVERSITY ©F NORTH TEXAS

Discover the power of ideas

CSCE 2610: Computer Organization

Compilers and Instruction Set Architectures

(A) Ease of compilation

e orthogonality: no special registers, few special cases, all
operand modes available with any data type or instruction

type.

e completeness: support for a wide range of operations and
target applications

e regularity: no overloading for the meanings of instruction
fields

e streamlined: resource needs easily determined

(B) Register Assignment is critical too
« easier if lots of registers

UNT CSCE 2610: Computer Organization

UNIVERSITY ©F NORTH TEXAS

Discover the power of ideas

Summary of Compiler Considerations

 Provide at least 16 general purpose registers plus
separate floating-point registers,

 Be sure all addressing modes apply to all data transfer
Instructions,

e AIm for a minimalist instruction set.

UNT CSCE 2610: Computer Organization

UNIVERSITY ©F NORTH TEXAS

Discover the power of ideas

High-Level Optimizations

e High-level optimizations are transformations that are
done at sources end. For example, loop unrolling.

e Local Optimization works within a single basic block.
» Global optimization works across multiple basic blocks.

 Register allocation assigns variables to registers for
regions of the code.

UNT CSCE 2610: Computer Organization

UNIVERSITY ©F NORTH TEXAS

Discover the power of ideas

High-Level Optimizations

Copendencies Function
Language dependeant; Front end per Tranaicm languags o
maic ke independant langunge comman imemediabe foem
Ariferrnimaia
rearaseiiabian
Somewhat languagae dapandan; High-lpeal Far pxample, locp
langely machire indepandent apsmizatons u-ardm:.r:jljnm :[I
lal=a calad
procadurg intagragon)
E-ma]l_lanuuaua dapardencias; Gichal Irdl.ldlrln_{lmnl and lpcal
machking dependencies slight e oplimizations + regisier
[8.3., regisier coumiaTypas) ; allacatan
Hghly machine cegendand, ﬁﬂ'm Datadled irstruciion selasikan
languagae independemt u and machine-depandem
aplimizatons; may Indude
or ba foliowed by assembler

UNT CSCE 2610: Computer Organization

UNIVERSITY OF NMORTH TEXAS
Discover the power of ideas

The 80386 Register Set

Mama Lisa
a1 D

EAX GPRO

ECX GPA 1

EDX GPH 2

EAX GPA 3

ESF PR 4

EBP GPR S

ESi i GPR &

EDI GPR 7
cs | Code sagment poirser
55 : Stack segment paintar fop of Stack)
Cs : Diata segment paintar O
: Data sagmert painter 1
F5 Diata segment painter 2
Gs | Data sagmant paintar 3

ElP nlruction poirtsr (PG}

EFLAGS Condition codes

UNT CSCE 2610: Computer Organization

UNIVERSITY OF NMORTH TEXAS
Discover the power of ideas

Typical 1A-32 Instruction Formats

e e« The IA-32 instruction set was
|98 [Cerd | pisplacemen introduced in the Intel 80386
o microprocessor in 1985 and

.;:LL ;;I remains the basis of most PC

Mmicroprocessors.

c. MOV EBX, [EDI + 45]

6 1 1 a a
T — * |A-32 is also referred to as the
R "1386" architecture.

. e The IA-32 instruction set is a
*.ADD EAX, #eres . CISC (Complex Instruction Set
| ADD |F|ng|1#| T— CompUter) architecture.

TEST |w| Postoybe knrnediate

Source: http://en.wikipedia.org/

UNT CSCE 2610: Computer Organization

UNIVERSITY OF NMORTH TEXAS
Discover the power of ideas

An Abstract Syntax Tree for while

| while siatemant |
........ —
eapresgion += BSgignmEnt
| [|

e e % while (save[i] == k)

| +=1;

jamsy| | epression | | k|

=T

UNT CSCE 2610: Computer Organization

UNIVERSITY OF NMORTH TEXAS
Discover the power of ideas

A Control Flow Graph (CFG) for the while

8. LYW RE
g. ADD AT ARG 1

1. SW RV

|

LI R1,s859

L =120
SLLR3IA2Z
ADD A4 FE31 HY

LW RS, R4)
LW A5k
BECQ RS, AG. stertwhileloop

UNT CSCE 2610: Computer Organization

UNIVERSITY ©F NORTH TEXAS

Discover the power of ideas

BN Ch L Rl

The while CFG after code motion and
iInduction variable elimination

LI R .88wa

LW A6k

LW H2.

SLL R3A2.2
ADD R4,R/3, R

LW BE.I
ADD B7 HE, 1 |
ADD s, B4,4 '
S5W H7. |

L ¥
LW FS,0{R4)
EEt:l RS, A starwhilsloop -/,

UNT CSCE 2610: Computer Organization

UNIVERSITY OF NMORTH TEXAS
Discover the power of ideas

The while CFG after code motion and
Induction variable elimination and
register allocation, using the MIPS

register names.
|

L1 Sl save

LW 31k

LYW $33 i

SLL 513 32,2
ADDL 514 513,80

'
MDD §2,512.1 \u.
ADD 514,514, -,

| |

|
LW §13,008s2) {
BEQ #3,511 stariwhileloop
e

l M,
UNT CSCE 2610: Computer Organization

UNIVERSITY OF NMORTH TEXAS
Discover the power of ideas

Summary: Evaluating Instruction Sets?

Design-time metrics:
° Can it be implemented, in how long, at what cost?
° Can it be programmed? Ease of compilation?
Static Metrics:
° How many bytes does the program occupy in memory?

Dynamic Metrics:

° How many instructions are executed?

° How many bytes does the processor fetch to execute the program?
° How many clocks are required per instruction? o

° How "lean" a clock is practical?

Best Metric: Time to execute the program!

Inst. Count Cycle Time
NOTE: This depends on instructions set, processor organization, and compilation
techniques.

UNT CSCE 2610: Computer Organization

L'NIVLHSHY @F NOF-LHI lL}-'.!"'.b
r the powe £of i

Architecture Styles ...

According to the operand(s) locations..
o Accumulator-style: One of the operands is in an implicit register
known as accumulator
« Load-store architecture: Both operands must be in the registers
* Register-memory: One operand in register, the other in Memory

 Memory-Memory: Both operands can be in Memory

» Stack-style: Stack is used to evaluate expressions

UNT CSCE 2610: Computer Organization

L'NIV_LHSl I'Y ©F NORTH TEXAS

Discover the power of ideas

