
Lecture 3: Instructions:Lecture 3: Instructions:
Language of the Computersg g p

CSCE2610 Computer Organization

Instructor: Saraju P. Mohanty, Ph. D.

NOTE: The figures, text etc included in slides are borrowed
from various books websites authors pages and otherfrom various books, websites, authors pages, and other
sources for academic purpose only. The instructor does
not claim any originality.

CSCE 2610: Computer Organization 1

not claim any originality.

Review

Computer Organization & Architecture:
C t A hit t ISA hi i ti• Computer Architecture = ISA + machine organization

• Processor = Datapath + Controller
All t i t f fi t• All computers consist of five components:
(1) Datapath (2) Control (3) Memory (4) Input device;
and (5) O tp t de iceand (5) Output device

Control
M

Input

Processor I/O

Datapath
Memory

Output

CSCE 2610: Computer Organization 2

What are Instructions?
• Language of the Machine
• More primitive than higher level languages

e.g., no sophisticated control flow
• Very restrictive

e g MIPS Arithmetic Instructionse.g., MIPS Arithmetic Instructions
• We’ll be working with the MIPS instruction set architecture

– similar to other architectures developed since the 1980'ssimilar to other architectures developed since the 1980 s
– used by NEC, Nintendo, Silicon Graphics, Sony

• Design goals:
– maximize performance
– minimize cost
– reduce design time

CSCE 2610: Computer Organization 3

Instruction Set Architecture:
What Must be Specified?What Must be Specified?

° Instruction Format or Encoding
how is it decoded?

Instruction
Fetch

– how is it decoded?
° Location of operands and result

– where other than memory?
Instruction

Decode – where other than memory?
– how many explicit operands?
– how are memory operands located?

Operand
Fetch how are memory operands located?

– which can or cannot be in memory?
° Data type and Size

Fetch

Execute yp
° Operations

– what are supportedResult
Store

° Successor instruction
– jumps, conditions, branches

Store

Next

CSCE 2610: Computer Organization 4

Instruction - fetch-decode-execute is implicit!

Instruction Categories in MIPS
PProcessor

• Arithmetic

• Logical

• Data Transfer• Data Transfer

• Conditional Branch

• Unconditional Branch

CSCE 2610: Computer Organization 5

Design Principles
• Instruction complexity is only one variable

lower instruction count vs higher CPI (cycles per– lower instruction count vs. higher CPI (cycles per
instruction) / lower clock rate.

• Design Principles:• Design Principles:
– simplicity favors regularity

smaller is faster– smaller is faster
– make the common case fast

d d i d d i– good design demands compromise
• Instruction set architecture

– a very important abstraction indeed!

CSCE 2610: Computer Organization 6

MIPS Arithmetic
• All instructions have 3 operands
• Operand order is fixed (destination first)p ()
• Example:

C code: A= B + C

MIPS d dd $ 0 $ 1 $ 2

$s0
$s1

A
B

MIPS code: add $s0, $s1, $s2
(associated with variables by compiler)

Note:

$s2 C

:Note:
(1) “$s0” represents a register
(2) Variables A B C are stored in registers $s0 $s1 and(2) Variables A, B, C are stored in registers $s0, $s1, and

$s2, respectively.

CSCE 2610: Computer Organization 7

MIPS Arithmetic
• Design Principle: simplicity favors regularity. Why?
• Of course this complicates some things...

C code: A = B + C + D;
E = F - A;;

MIPS code: add $t0, $s1, $s2
add $s0 $t0 $s3add $s0, $t0, $s3
sub $s4, $s5, $s0

Note: register $t0, $t1 are temporary registers

• Operands must be registers, only 32 registers provided
• Design Principle: smaller is faster. Why?

CSCE 2610: Computer Organization 8

General Purpose Registers (GPRs) Dominate

° 1975 1995 ll hi l i t° 1975-1995 all machines use general purpose registers

° Advantages of registers
i t f t th• registers are faster than memory

• registers are easier for a compiler to use
• registers can hold variables• registers can hold variables

- memory traffic is reduced, so program is speeded up
(since registers are faster than memory)
code density improves (since register named with fewer bits- code density improves (since register named with fewer bits
than memory location)

CSCE 2610: Computer Organization 9

Registers vs. Memory
• In MIPS processor, arithmetic instructions operands must

be registersbe registers
• Only 32 registers provided
• Compiler associates variables with registers• Compiler associates variables with registers
• What about programs with lots of variables?

Solution: Spilling RegistersSolution: Spilling Registers
Excessive variables are stored in Memory
and moved from memory to register fileand moved from memory to register file
by load and store instructions.

CSCE 2610: Computer Organization 10

MIPS: Software conventions for Registersg
0 zero constant 0 16 s0 callee saves

1 at reserved for assembler

2 v0 expression evaluation &

3 1 f ti lt

. . . (caller can clobber)

23 s7

24 t8 t (t’d)3 v1 function results

4 a0 arguments

5 a1

24 t8 temporary (cont’d)

25 t9

26 k0 reserved for OS kernel5 a1

6 a2

7 a3

26 k0 reserved for OS kernel

27 k1

28 gp Pointer to global area7 a3

8 t0 temporary: caller saves

(callee can clobber)

28 gp Pointer to global area

29 sp Stack pointer

30 fp frame pointer. . . (callee can clobber)

15 t7

30 fp frame pointer

31 ra Return Address (HW)
Plus a 3-deep stack of mode bits.

CSCE 2610: Computer Organization 11

p

Stored Program Concept
• Instructions are bits
• Programs are stored in memory g y

— to be read or written just like data

Processor Memory
memory for data, programs,

compilers, editors, etc.compilers, editors, etc.

• Fetch & Execute Cycle
– Instructions are fetched and put into a special register.
– Bits in the register "control" the subsequent actions.
– Fetch the “next” instruction and continue.

CSCE 2610: Computer Organization 12

The Stored Program Concept

T ti i t ti d d t i th• Treating instruction and data in the
same way simplifies both
hardware and software of thea d a e a d so t a e o t e
computer.

CSCE 2610: Computer Organization 13

Memory Organization
• Viewed as a large, single-dimension array, with an

address.
• A memory address is an index into the array.
• "Byte addressing" means that the index points to a byte of

memory.

0
1
2

8 bits of data

8 bits of data

8 bits of data

3
4
5

8 bits of data

8 bits of data

5
6
...

8 bits of data

8 bits of data

CSCE 2610: Computer Organization 14

Memory Organization
• Bytes are nice, but most data items use larger "words”.
• For MIPS, a word is 32 bits or 4 bytes., y

0 32 bits of data

4
8

12

32 bits of data

32 bits of data

32 bits of data

Registers hold 32 bits of data

• 232 bytes with byte addresses from 0 to 232 1

12
...

• 232 bytes with byte addresses from 0 to 232-1.
• 230 words with byte addresses 0, 4, 8, ... 232-4.
• Words are aligned i e what are the least 2 significantWords are aligned i.e., what are the least 2 significant

bits of a word address?

CSCE 2610: Computer Organization 15

Memory Addresses and Contents

• Address of 3rd element is 2 and
the al e of Memor [2] is 10the value of Memory[2] is 10.

• Arithmetic operations occurs only on registers in MIPS.
• Data transfer instructions needed to transfer between

memory and registers.
• Two types:• Two types:

• load word : from memory to register
• store word : from register to memory

CSCE 2610: Computer Organization 16

MIPS Memory Addresses and Contents

• Address of 3rd element is 8 and
the value of Memory[8] is 10.y[]

• Byte addressing in array: Base
address + Offset.

• Offset = 4 * array index• Offset = 4 * array index.

• In MIPS, word addresses start at multiple of 4.
Thi i li t t i ti• This is alignment restriction.

CSCE 2610: Computer Organization 17

Addressing Objects: Endianessg j
• Big Endian: address of most significant byte

IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

• Little Endian: address of least significant byte
Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

little endian byte 0

msb lsb
3 2 1 0

y

0 1 2 3
big endian byte 0

CSCE 2610: Computer Organization 18

Generic Examples of Instruction
Format Widths

Variable: …

Fi d

…

Fixed:

Hybrid:

CSCE 2610: Computer Organization 19

Summary of Instruction Formatsy

• If code size is most important use variable lengthIf code size is most important, use variable length
instructions.

If f i t i t t fi d l th• If performance is most important, use fixed length
instructions.

• Recent embedded machines (ARM, MIPS) added
optional mode to execute subset of 16-bit wide
instructions (Thumb MIPS16); per procedure decideinstructions (Thumb, MIPS16); per procedure decide
performance or density.

CSCE 2610: Computer Organization 20

Load & Store Instructions by Example
• Load and store instructions are used for data movement between

memory and registers in the register file.
• Example:

C code: A[8] = h + A[8];
MIPS code: lw $t0, 32($s3) # $t0 = A[8]

$ $ $ $ $add $t0, $s2, $t0# $t0 = h + $t0
sw $t0, 32($s3) # A[8] = $t0

Note: (1) lw = load word, sw = store word
(2) $t0 is a temporary register that accumulates the final result
(3) Register $s2 holds variable “h”
(4) Register $s3 is the index register that holds the start(4) Register $s3 is the index register that holds the start

address of the array A i.e. the location where array A starts.
• Store word has destination last

R b i h i d i !• Remember arithmetic operands are registers, not memory!

CSCE 2610: Computer Organization 21

So far we’ve learned:
• MIPS

— loading words but addressing bytesg g y
— arithmetic on registers only

• Instruction Meaning

add $s1 $s2 $s3 $s1 = $s2 + $s3add $s1, $s2, $s3 $s1 = $s2 + $s3
sub $s1, $s2, $s3 $s1 = $s2 – $s3
lw $s1, 100($s2) $s1 = Memory[$s2+100]lw $s1, 100($s2) $s1 Memory[$s2 100]
sw $s1, 100($s2) Memory[$s2+100] = $s1

CSCE 2610: Computer Organization 22

Machine Language
• Instructions, like registers and words of data, are also 32 bits long

– Example: add $t0, $s1, $s2
registers have numbers t0 8 s1 17 s2 18– registers have numbers, t0=8, s1=17, s2=18

• Instruction Format (R-type):

000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct
6 bits 6 bits5 bits 5 bits 5 bits 5 bits

op: operation of the instruction
rs: the first register source operand
rt: the second register source operandrt: the second register source operand
shamt: shift amount (we will look at this later..)
funct: function; this field selects the variant of the operation in the op field

CSCE 2610: Computer Organization 23

Machine Language
• Consider the load-word and store-word instructions,

– What would the regularity principle have us do?
– New principle: Good design demands a compromise

• Introduce a new type of instruction format
– I-type for data transfer instructionsyp
– other format was R-type for register

Example: lw $t0, 32($s2)p $, ($)
35 18 9 32

6 bits 5 bits 5 bits 16 bits

op rs rt 16 bit number
• Where's the compromise?

CSCE 2610: Computer Organization 24

Instructions for Control flow
• Decision making instructions

– alter the control flow,alter the control flow,
– i.e., change the "next" instruction to be executed

• MIPS conditional branch instructions:
bne $t0, $t1, Label
beq $t0, $t1, Label

• Example: if (i==j) h = i + j;
bne $s0, $s1, Label
add $s3 $s0 $s1add $s3, $s0, $s1
Label:

CSCE 2610: Computer Organization 25

Decision Instructions: If-Else

Example:Example:
if (i==j) f = g+h;
else f = g - h;else f g h;

bne $s3, $s4, Else
add $s0, $s1, $s2
j Exit
Else: sub $s0 $s1 $s2Else: sub $s0, $s1, $s2
Exit:

CSCE 2610: Computer Organization 26

Unconditional Branch: jump instruction

• MIPS unconditional branch instructions:
j l b lj label

• Jump Instruction Format:
op 26 bit address

6 bits 26 bits

• Example:

if (i!=j) beq $s4 $s5 Lab1if (i!=j) beq $s4, $s5, Lab1
h=i+j; add $s3, $s4, $s5

else j Lab2else j Lab2
h=i-j; Lab1: sub $s3, $s4, $s5

Lab2: ...

CSCE 2610: Computer Organization 27

MIPS Instructions: So far …
• Instruction Meaning

add $s1,$s2,$s3 $s1 = $s2 + $s3
b $ 1 $ 2 $ 3 $ 1 $ 2 $ 3sub $s1,$s2,$s3 $s1 = $s2 – $s3

lw $s1,100($s2) $s1 = Memory[$s2+100]
sw $s1 100($s2) Memory[$s2+100] = $s1sw $s1,100($s2) Memory[$s2+100] = $s1
bne $s4,$s5,L Next instr. is at Label if $s4 != $s5
beq $s4,$s5,L Next instr. is at Label if $s4 = $s5q
j Label Next instr. is at Label

• Formats:

op rs rt rd shamt funct

op rs rt 16 bit address

R
6 bits 5 bits 6 bits5 bits 5 bits 5 bits

op rs rt 16 bit address

op 26 bit address

I

J

CSCE 2610: Computer Organization 28

Control Flow
• We have: beq, bne, what about Branch-if-less-than?
• New instruction:New instruction:

if $s1 < $s2 then
$t0 = 1

slt $t0, $s1, $s2 else
$t0 = 0

• Can use this instruction to build "blt $s1, $s2, Label"
can now build general control structures— can now build general control structures

• Note that the assembler needs a register to do this,
— there are policy of use conventions for registersthere are policy of use conventions for registers

CSCE 2610: Computer Organization 29 2

Constants or Immediate Operands
• Small constants are used quite frequently (50% of

operands).p)
e.g.,
A = A + 15;
B = B - 18;
counter = counter + 1;

I t t t ill fit i 16 bit ll t d• In most programs, constants will fit in 16 bits allocated
for immediate field.

• Design Principle: Make the common case fast• Design Principle: Make the common case fast
• MIPS instruction:

addi $s3 $s3 4 # $s3 = $s3 + 4– addi $s3, $s3, 4 # $s3 = $s3 + 4

CSCE 2610: Computer Organization 30

Assembly versus Machine Languagey g g

• Assembly provides convenient symbolic representationsse b y p o des co e e t sy bo c ep ese tat o
– much easier than writing down numbers
– e.g., destination firste.g., destination first

• Machine language is the underlying reality
– e g destination is no longer firste.g., destination is no longer first

• Assembly can provide 'pseudoinstructions'
– e g “move $t0 $t1” exists only in Assemblye.g., move $t0, $t1 exists only in Assembly
– would be implemented using “add $t0,$t1,$zero”

• When considering performance you should count real• When considering performance you should count real
instructions.

CSCE 2610: Computer Organization 31

Other Issues
• Several other issues can be considered:

support for procedures
linkers, loaders, memory layout
stacks, frames, recursion
manipulating strings and pointersmanipulating strings and pointers
interrupts and exceptions
system calls and conventionssystem calls and conventions

• We've focused on architectural issues
– basics of MIPS assembly language and machine codebasics of MIPS assembly language and machine code.
– we’ll build a processor to execute these instructions.

CSCE 2610: Computer Organization 32

Stack Pointer

Before During After

• Values of stack pointer and stack for procedure call.
• The stack pointer always points to the “top” of theThe stack pointer always points to the top of the

stack, or the last word in the stack in this drawing.

CSCE 2610: Computer Organization 33

Stack Pointer

Before During After
• The frame pointer points to the first word in the frame ofThe frame pointer points to the first word in the frame of

a procedure.
• Frame pointer is a saved argument register.g g
• The stack is adjusted to make room for all saved

registers and any memory-resident local variables.

CSCE 2610: Computer Organization 34

Calls: Why Are Stacks So Great?
Stacking of Subroutine Calls & Returns and Environments:

A:
CALL B
B:

A

A B
CALL C

C: A B C
RET

RET
A B

RET
A

• Some machines provide a memory stack as part of thep y p
architecture (e.g., VAX)

• Sometimes stacks are implemented via software convention (e.g.,
MIPS)

CSCE 2610: Computer Organization 35

)

MIPS Memory Allocation

• Global pointer is set to an
address to make it easy toaddress to make it easy to
access data.

• Text segment: The segment
of a Unix object file that
contains machine language
code for routines in thecode for routines in the
source file.

CSCE 2610: Computer Organization 36

Overview of MIPS
• simple instructions all 32 bits wide
• very structured no unnecessary baggagevery structured, no unnecessary baggage
• only three instruction formats

6 bits 5 bits 6 bits5 bits 5 bits 5 bits
op rs rt rd shamt funct

op rs rt 16 bit address

R

I

op 26 bit addressJ

• rely on compiler to achieve performance
— what are the compiler's goals?what are the compiler s goals?

• help compiler where we can.

CSCE 2610: Computer Organization 37

Addresses in Branches and Jumps
• Instructions:

bne $t4 $t5 Label Next instruction is at Label if $t4 !=$t5bne $t4,$t5,Label, Next instruction is at Label if $t4 !=$t5
beq $t4,$t5,Label, Next instruction is at Label if $t4 = $t5
j Label Next instruction is at Labelj Label Next instruction is at Label

• Formats:
op rs rt 16 bit address

op 26 bit address

I

J

• Addresses are not 32 bits
--How do we handle this with load and store instructions?

CSCE 2610: Computer Organization 38

Addresses in Branches
• Instructions:

bne $t4 $t5 Label Next instruction is at Label if $t4!=$t5bne $t4,$t5,Label,Next instruction is at Label if $t4! $t5
beq $t4,$t5,Label,Next instruction is at Label if $t4=$t5

• Formats:• Formats:
op rs rt 16 bit addressI

• Could specify a register (like lw and sw) and add it to
address

I t ti Add R i t (PC t)– use Instruction Address Register (PC = program counter)
– most branches are local (principle of locality)

J i i j hi h d bi f PC• Jump instructions just use high order bits of PC
– address boundaries of 256 MB

CSCE 2610: Computer Organization 39

To summarize:
MIPS operands

Name Example Comments
$s0-$s7, $t0-$t9, $zero, Fast locations for data. In MIPS, data must be in registers to perform

32 registers $a0-$a3, $v0-$v1, $gp, arithmetic. MIPS register $zero always equals 0. Register $at is
$fp, $sp, $ra, $at reserved for the assembler to handle large constants.
Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so

30230 memory Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language
Category Instruction Example Meaning Comments

add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants
load word lw $s1, 100($s2) $s1 = Memory[$s2 + 100] Word from memory to register
store word sw $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb $s1, 100($s2) $s1 = Memory[$s2 + 100] Byte from memory to register
store byte sb $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory
load upper immediate lui $s1, 100 $s1 = 100 * 216 Loads constant in upper 16 bits

branch on equal beq $s1 $s2 25 if ($s1 == $s2) go to Equal test; PC relative branchbranch on equal beq $s1, $s2, 25 if ($s1 == $s2) go to
PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne $s1, $s2, 25 if ($s1 != $s2) go to
PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt $s1, $s2, $s3 if ($s2 < $s3) $s1 = 1;
else $s1 = 0

Compare less than; for beq, bne
else $s1 = 0

set less than
immediate

slti $s1, $s2, 100 if ($s2 < 100) $s1 = 1;
else $s1 = 0

Compare less than constant

jump j 2500 go to 10000 Jump to target address
Uncondi- jump register jr $ra go to $ra For switch, procedure return
tional j mp j d li k jal 2500 $ra PC + 4 go to 10000 F d ll

CSCE 2610: Computer Organization 40

tional jump jump and link jal 2500 $ra = PC + 4; go to 10000 For procedure call

MIPS Addressing Modes

CSCE 2610: Computer Organization 41

Alternative Architectures
• Design alternative:

id f l ti– provide more powerful operations

– goal is to reduce number of instructions executed

– danger is a slower cycle time and/or a higher CPI

• Sometimes referred to as “RISC vs CISC”Sometimes referred to as RISC vs. CISC

– virtually all new instruction sets since 1982 have been
RISCRISC

– VAX: minimize code size, make assembly language
feasy instructions from 1 to 54 bytes long!

CSCE 2610: Computer Organization 42

80x86
• 1978: The Intel 8086 is announced (16 bit architecture)
• 1980: The 8087 floating point coprocessor is added1980: The 8087 floating point coprocessor is added
• 1982: The 80286 increases address space to 24 bits,

+instructions
• 1985: The 80386 extends to 32 bits, new addressing modes
• 1989-1995: The 80486, Pentium, Pentium Pro add a few

instructions (mostly designed for higher performance)
• 1997: MMX is added

“This history illustrates the impact of the “golden handcuffs” ofThis history illustrates the impact of the golden handcuffs of
compatibility
“adding new features as someone might add clothing to a
packed bag”
“an architecture that is difficult to explain and impossible to love”

CSCE 2610: Computer Organization 43

A dominant architecture: 80x86
• See your textbook for a more detailed description
• Complexity:p y

– Instructions from 1 to 17 bytes long
– one operand must act as both a source and destination
– one operand can come from memory
– complex addressing mode e.g., “base or scaled index with 8 or

32 bit displacement”32 bit displacement
• Saving grace:

– the most frequently used instructions are not too difficult to build
– compilers avoid the portions of the architecture that are slow

“what the 80x86 lacks in style is made up in quantitywhat the 80x86 lacks in style is made up in quantity,
making it beautiful from the right perspective”

CSCE 2610: Computer Organization 44

Summary: Salient features of MIPS I
• 32-bit fixed format inst (3 formats)
• 32 32-bit GPR (R0 contains zero) and 32 FP registers (and HI LO)

•partitioned by software convention
• 3-address, register-register arithmetic instruction

Si l dd d f l d/ t b + di l t• Single address mode for load/store: base + displacement
–no indirection, scaled
–16-bit immediate plus load upper immediate (lui)

•Simple branch conditions
• compare against zero or two registers
• no integer condition codes

•Delayed branch
•execute instruction after the branch (or jump) even if the branch•execute instruction after the branch (or jump) even if the branch
is taken (Compiler can fill a delayed branch with useful work
about 50% of the time).

CSCE 2610: Computer Organization 45

Summary: Instruction set design (MIPS)

• Use general purpose registers with a load store• Use general purpose registers with a load-store
architecture: YES

• Provide at least 16 general purpose registers plus• Provide at least 16 general purpose registers plus
separate floating-point registers: 31 GPR & 32 FPR

• Support basic addressing modes: displacement (with anSupport basic addressing modes: displacement (with an
address offset size of 12 to 16 bits), immediate (size 8 to
16 bits), and register deferred; : YES: 16 bits for
immediate, displacement (disp=0 => register deferred)

• All addressing modes apply to all data transfer
i i YESinstructions : YES

CSCE 2610: Computer Organization 46

Summary: Instruction set design (MIPS)
• Use fixed instruction encoding if interested in performance

and use variable instruction encoding if interested in codeand use variable instruction encoding if interested in code
size : Fixed

• Support these data sizes and types: 8-bit, 16-bit, 32-bitSupport these data sizes and types: 8 bit, 16 bit, 32 bit
integers and 32-bit and 64-bit IEEE 754 floating point
numbers: YES

• Support these simple instructions, since they will dominate
the number of instructions executed: load, store, add,

bt t i t i t d hift lsubtract, move register-register, and, shift, compare equal,
compare not equal, branch (with a PC-relative address at
least 8-bits long) jump call and return: YES 16bleast 8-bits long), jump, call, and return: YES, 16b

• Aim for a minimalist instruction set: YES

CSCE 2610: Computer Organization 47

Data Types
Bit: 0 1Bit: 0, 1

Bit String: sequence of bits of a particular length
4 bits is a nibble
8 bits is a byte8 bits is a byte

16 bits is a half-word
32 bits is a word
64 bits is a double-word

Character:
ASCII 7 bit code

Decimal:
digits 0-9 encoded as 0000b thru 1001b
two decimal digits packed per 8 bit byte

Integers:
2's Complement How many +/- #'s?

Where is decimal pt?exponent
Floating Point:

Single Precision
Double Precision
Extended Precision

M x R
E Where is decimal pt?

How are +/- exponents
represented?base

mantissa

CSCE 2610: Computer Organization 48

Extended Precision a t ssa

Data Types: Binary to Hexadecimal

e c a 8 6 4 2 0

1100 1010 10001110 0100 00100110 0000

CSCE 2610: Computer Organization 49

Data Types: Hexadecimal to Binary

0011 0101 01110001 1011 11011001 11110011 0101 01110001 1011 11011001 1111

1 3 5 7 9 b d f

CSCE 2610: Computer Organization 50

Translation Hierarchy for C

CSCE 2610: Computer Organization 51

Translation Hierarchy for C: Compiler

Compiler is a systemCompiler is a system
program that translates a
high-level language program
into assembly language
computer language.

Source: http://en.wikipedia.org/

CSCE 2610: Computer Organization 52

Source: http://en.wikipedia.org/

Translation Hierarchy for C: Assembler

Assembler is a system program that translates assemblyy p g y
language statements into the target computer's machine
code. Unlike a compiler, the assembler performs a one-
t i) f i t t t i tto-one mapping) from mnemonic statements into
machine instructions and data.

Source: http://en.wikipedia.org/

CSCE 2610: Computer Organization 53

Source: http://en.wikipedia.org/

Translation Hierarchy for C: Linker

A linker is a system programy p g
that takes one or more objects
generated by compilers and
assembles them into a single
executable program

Source: http://en.wikipedia.org/

CSCE 2610: Computer Organization 54

Source: http://en.wikipedia.org/

Translation Hierarchy for C: Loader

A loader is a system program that isA loader is a system program that is
responsible for loading programs from
executables into memory, preparing them for
execution and then executing them.

Source: http://en.wikipedia.org/

CSCE 2610: Computer Organization 55

Source: http://en.wikipedia.org/

Dynamically Linked Library via Linkage
•Dynamic Link Library (DLL) is a
library of executable functions
of data that can be used byof data that can be used by
applications.

•A DLL provides one or more
particular functions and aparticular functions and a
program accesses the functions
by creating either a static or
d i li k t th DLLdynamic link to the DLL.

•A static link remains constant
during program execution while
a dynamic link is created by the
program as needed.

•A DLL can be used by severaly
applications at the same time.

Source: http://www.webopedia.com/

CSCE 2610: Computer Organization 56

p p

Translation Hierarchy for JAVA

CSCE 2610: Computer Organization 57

Translation Hierarchy for JAVA ….

• Java bytecode: This instruction set is designed to be
l t J l f il ticlose to Java language for easy compilation.

• Java Virtual Machine: It is a software interpreter that
simulates an instruction set architecture.

• Just in Time Compiler (JIT): It is a system program that
turns Java bytecodes into instructions that can be sentturns Java bytecodes into instructions that can be sent
directly to the processors. It converts code at runtime
prior to execution. It is also known as dynamic translation.p y
JIT preserve portability and improve execution time.

CSCE 2610: Computer Organization 58

Compilers and Instruction Set Architecturesp
(A) Ease of compilation

• orthogonality: no special registers, few special cases, all
operand modes available with any data type or instruction
type.yp

• completeness: support for a wide range of operations and
target applications

• regularity: no overloading for the meanings of instruction
fields

• streamlined: resource needs easily determinedstreamlined: resource needs easily determined

(B) Register Assignment is critical too(B) Register Assignment is critical too
• easier if lots of registers

CSCE 2610: Computer Organization 59

Summary of Compiler Considerationsy p

• Provide at least 16 general purpose registers plusg p p g p
separate floating-point registers,

• Be sure all addressing modes apply to all data transfer• Be sure all addressing modes apply to all data transfer
instructions,

Ai f i i li t i t ti t• Aim for a minimalist instruction set.

CSCE 2610: Computer Organization 60

High-Level Optimizations

• High-level optimizations are transformations that are
d d F l l llidone at sources end. For example, loop unrolling.

• Local Optimization works within a single basic block.Local Optimization works within a single basic block.

• Global optimization works across multiple basic blocks.

• Register allocation assigns variables to registers for
regions of the code.g

CSCE 2610: Computer Organization 61

High-Level Optimizations

CSCE 2610: Computer Organization 62

The 80386 Register Set

CSCE 2610: Computer Organization 63

Typical IA-32 Instruction Formats
• The IA-32 instruction set was

introduced in the Intel 80386
microprocessor in 1985 and
remains the basis of most PC
microprocessorsmicroprocessors.

• IA-32 is also referred to as the
"i386" architecturei386 architecture.

• The IA-32 instruction set is a
CISC (C l I t ti S tCISC (Complex Instruction Set
Computer) architecture.

Source: http://en.wikipedia.org/

CSCE 2610: Computer Organization 64

Source: http://en.wikipedia.org/

An Abstract Syntax Tree for while

while (save[i] == k)
i += 1;

CSCE 2610: Computer Organization 65

A Control Flow Graph (CFG) for the while

CSCE 2610: Computer Organization 66

The while CFG after code motion and
induction variable elimination

CSCE 2610: Computer Organization 67

The while CFG after code motion and
i d ti i bl li i ti dinduction variable elimination and
register allocation, using the MIPS g g

register names.

CSCE 2610: Computer Organization 68

Summary: Evaluating Instruction Sets?
Design-time metrics:

° Can it be implemented, in how long, at what cost?
° C it b d? E f il ti ?° Can it be programmed? Ease of compilation?

Static Metrics:
° How many bytes does the program occupy in memory?How many bytes does the program occupy in memory?

Dynamic Metrics:
° How many instructions are executed?How many instructions are executed?
° How many bytes does the processor fetch to execute the program?
° How many clocks are required per instruction? CPI

° How "lean" a clock is practical?

Best Metric: Time to execute the program!Best Metric: Time to execute the program!

NOTE: This depends on instructions set, processor organization, and compilation
techniques.

Inst. Count Cycle Time

CSCE 2610: Computer Organization 69

techniques.

Architecture Styles …
According to the operand(s) locations..

• Accumulator-style: One of the operands is in an implicit registery p p g
known as accumulator

• Load-store architecture: Both operands must be in the registersp g

• Register-memory: One operand in register, the other in Memory

• Memory-Memory: Both operands can be in Memory

• Stack-style: Stack is used to evaluate expressions

CSCE 2610: Computer Organization 70

