L ecture 4: Arithmetic for
Computers

CSCE 2610 Computer Organization

Instructor: Saraju P. Mohanty, Ph. D.

NOTE: The figures, text etc included in slides are borrowed
from various books, websites, authors pages, and other
sources for academic purpose only. The instructor does
not claim any originality.

UNT CSCE 2610: Computer Organization

UNIVERSITY GOF NORTH TEXAS
Driscover the power of ideas

Outline of this Lecture

Addition/Subtraction operation

Logic operation

Design of arithmetic and logic unit (ALU)
Multiplication operation

« Design of hardware for multiplication

» Division operation

« Design of hardware for division

* Floating point operation

* Design of hardware for floating point operation

UNT CSCE 2610: Computer Organization

UNIVERSITY ©OF NORITH TEXAS
Drscover the power of ideas

1

Arithmetic

 Where we've been:
— Performance (seconds, cycles, instructions)

— Abstractions:
Instruction Set Architecture
Assembly Language and Machine Language

 What's up ahead:

operation

— Implementing the Architecture T
a 32
/ result
Let us first learn numbers!! b §

32

UNT CSCE 2610: Computer Organization

UNIVERSITY @QF NORITH TEXAS
+ the 1 or of ideas

r);‘\LU\U Lhe power Ol 1;1

Numbers

Bits are just bits (no inherent meaning)

— conventions define relationship between bits and
numbers

Binary numbers (base 2)

— 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001...
decimal: 0...2"-1

e Of course it gets more complicated:
— numbers are finite (overflow)
— fractions and real numbers
— negative numbers
— e.g., no MIPS subi instruction; addi can add a negative number

How do we represent negative numbers?
— 1.e., which bit patterns will represent which numbers?

UNT CSCE 2610: Computer Organization

UNIVERSITY @QF NORITH TEXAS
+ the 1 or of ideas

r);‘\LU\U Lhe power Ol 1;1

Value of a Digit or Number

* |n any number base, the value of ith digit d is: d x Base!
e “I” starts at O and increases from right to left.
 For decimal base is 10, for binary base is 2.
 For clarity decimals will have subscript 10 and binary
will have subscript 2 and so on....
« Example: 10117 represents
(1x23) + (0x22) + (1x21) + (1x29),
= (1x8) + (0x4) + (1x2) + (1x1),,
=8 +0 + 2 + 1,
= 119

UNT CSCE 2610: Computer Organization

UNIVERSITY ©OF NORITH TEXAS
Drscover the power of ideas

1

Why Don’t Computers Use Decimals?

e Easy hardware implementation

* The building block of digital computers, the transistors, act
as a switch. A switch has two states ON or OFF.

e Converting back and forth between binary and decimal can
be for infrequent input/output events can be inefficient.

UNT CSCE 2610: Computer Organization

UNIVERSITY ©F NORTH TEXAS
Diiscover the power of ideas

Possible Representations

. Sign One's Two's
Magnitude Complement Complement
000 =+0 000 =+0 000 =+0
001 =+1 001 =+1 001 =+1
010 = +2 010 = +2 010 = +2
011 =+3 011 =+3 011 =+3
100 =-0 100 = -3 100 =-4
101 =-1 101 =-2 101 =-3
110 =-2 110=-1 110 =-2
111 =-3 111 =-0 111 =-1

e |Issues: balance, number of zeros, ease of operations
e Which one is best? Why?

UNT CSCE 2610: Computer Organization

UNIVERSITY ©OF NORITH TEXAS
Drscover the power of ideas

MIPS

32 bit signed numbers:

0000 0000 0000 0000 0000 0000 0000 0000, = 0.,
0000 0000 0000 0000 0000 0000 0000 0001, = + 1.,
0000 0000 0000 0000 0000 0000 0000 0010, = + 2.,

01111111 1111112111171 1111 1111 1110,,,, = + 2,147,483,646

011111111111 11111111 11111111 1111, =
1000 0000 0000 0000 0000 0000 0000 0000,
1000 0000 0000 0000 0000 0000 0000 0001,
1000 0000 0000 0000 0000 0000 0000 0010,

1111 1111 111111111111 1111 1111 1101, =
1111 1111 11111111 11111111 1111 1110, =
1111111111711 1111 1111 1111 1111 1111, =

UNT CSCE 2610: Computer Organization

UNIVE R‘:J [Y 9F NORITH l]_}!."\b

[Dris

* the power of ide:

ten maxint

=+ 2,147,483,647,2

—2,147,483,647
—2,147,483,646

ten
2,147,483,648ten minint
ten

ten

— 3ien
— 2ien
- 1.,

Two's Complement Operations

 Negating a two's complement number: invert all bits and add 1
— remember: “negate” and “invert” are quite different!
e Converting n bit numbers into numbers with more than n bits:
— MIPS 16 bit immediate gets converted to 32 bits for arithmetic

— copy the most significant bit (the sign bit) into the other bits
0010 -> 0000 0010
1010 -> 1111 1010

— "sign extension" (lbu vs. Ib)

UNT CSCE 2610: Computer Organization

L'Nl"'.-"_l_'.l‘iSl 'Y ©OF NORTH TEXAS

Driscover the power of ideas

Decimal Value of a 2's Complement Binary

o 32-bit 2's complement number

1111 1111 1717 1217 1131 1111 1111 1100,
 Decimal value:
(1x-231) + (1x239) + (1x22°) + + (Ox21) + (0x2Y%),,
23t +230 +229 + . +0 + 044

-2,147,483,648,, +-2,147,483,644,,
'410

UNT

CSCE 2610: Computer Organization
L'NIV_LHSI 'Y @F NORTH TEXAS

Driscover the power of ideas

Negation

 Negate 2,
2., = 0000 0000 0000 0000 0000 0000 0000 0010,

Inverting bits:
1111 1111 21121 1111 1211 1217 1111 1101,

Adding 1.
1111 1111 1111 1111 17171 1717 1711 1110, = -2,

 Negate -2,,
-2, = 1111 1111 1111 1711 1111 11717 1111 1110,

Inverting bits:
0000 0000 0000 0000 0000 0000 0000 0001,

Adding 1.
0000 0000 0000 0000 0000 0000 0000 0010, =24,

UNT CSCE 2610: Computer Organization

UNIVERSITY ©OF NORITH TEXAS
Drscover the power of ideas

1

Memory Space for Different Data Type

Type Description Size

char Character or small integer. 1byte

short int (short) Short Integer. 2bytes

int Integer. 4bytes

long int (long) Long integer. 4bytes
Boolean value. It can take one of two values:

bool 1lbyte
true or false.

float Floating point number. 4bytes

double Double precision floating point number. 8bytes

long double Long double precision floating point number. 8bytes

Source: http://www.cplusplus.com/doc/tutorial/variables.html

UNT CSCE 2610: Computer Organization

L'Nl"'.-"_l_'.l‘iSl 'Y ©OF NORTH TEXAS

Driscover the power of ideas

Addition and Subtraction

e Just like in grade school (carry/borrow 1s)
0111 0111 0110
+ 0110 - 0110 - 0101

« Two's complement operations easy

— subtraction using addition of negative numbers
0111
+ 1010

 Overflow (result too large for finite computer word):
— e.g., adding two n-bit numbers does not yield an n-bit number

0111
+ 0001 note that overflow term is somewhat misleading,
_ 1000 It does not mean a carry “overflowed”

UNT CSCE 2610: Computer Organization

UNIVERSITY @QF NORITH TEXAS
+ the 1 or of ideas

r);‘\LU\U Lhe power Ol 1;1

Detecting Overflow

* No overflow when adding a positive and a negative number
* No overflow when signs are the same for subtraction
« Overflow occurs when the value affects the sign:
— overflow when adding two positives yields a negative
— or, adding two negatives gives a positive
— or, subtract a negative from a positive and get a negative
— ofr, subtract a positive from a negative and get a positive

UNT

TEXAS
eas

UNIVERSITY ©OF NORIH
23t > F 1

r);‘\LU\U Lhe power Ol 1;1

Operation | Operand A | Operand B Result
A+B >=0 >=0 <0
A+B <0 <0 >=0
A-B >=0 <0 <0
A -B <0 >= 0 >=0

CSCE 2610: Computer Organization

Effects of Overflow

* An exception (interrupt) occurs
— Control jJumps to predefined address for exception
— Interrupted address is saved for possible resumption
— Detalls based on software system / language
Example: flight control vs. homework assignment

 MIPS instructions:add, addi, sub cause exceptions on
overflow

« Don't always want to detect overflow
— MIPS instructions: addu, addiu, subu

do not cause exceptions on overflow

UNT CSCE 2610: Computer Organization

UNIVERSITY ©OF NORITH TEXAS
Drscover the power of ideas

1

Exception and Interrupt

« Exception: An unscheduled event that disrupts
program execution.

e Interrupt: An exception that comes from outside of the
Drocessor.

e Some architectures use the term interrupt for all
exceptions.

UNT CSCE 2610: Computer Organization

L'Nl"'.-"_l_'.l‘iSl 'Y ©OF NORTH TEXAS

Driscover the power of ideas

Exception in MIPS

« MIPS has a register called “exception program counter”
(EPC) to contain the address of the instruction that
caused exception.

 The Instruction “move from system control” (mfcO) copies
EPC into a GPR so that program can return to the
offending instruction via a “jump register” (jr) instruction.

UNT CSCE 2610: Computer Organization

UNIVERSITY ©OF NORITH TEXAS
Drscover the power of ideas

1

What Happens in a Computer When

Interrupt/Exception Occurs?

o States of the associated registers are saved.

e Su
cal
(IS

proutines In an operating system or device driver
ed interrupt handlers or an interrupt service routines

RS), IS triggered for execution.

* Interrupt service routines (ISRs), have a several functions
to handle different types of interrupt/exception.

* |ISRs serve the interrupt.
* Registers are loaded back.

« Execution of the program that caused exception
continues.

UNT CSCE 2610: Computer Organization

L'Nl"'.-"_l_'.l‘iSl 'Y ©OF NORTH TEXAS

Driscover the power of ideas

Logical Operations

o Shift left logical (sll)
Sl $10, $16, 8 #reg $10 =reg $16 << 8 bits

op rs rt rd shamt Tunct

0 0 16 10 8 0

« Shift right logical (srl)
 AND, OR operations (and, andi, or , ori)

UNT CSCE 2610: Computer Organization

L'Nl"'.-"_l_'.l‘iSl 'Y ©OF NORTH TEXAS

Driscover the power of ideas

An ALU (arithmetic logic unit)
e Let's build an ALU to support the and and or

Instructions

— we'll just build a 1 bit ALU, and use 32 of them

operation op |a

b

result

l

a —— result

——»

b—>

e Possible Implementation (sum-of-products):

UNT CSCE 2610: Computer Organization

L'Nl"'.-"_l_'.l‘iSl 'Y ©OF NORTH TEXAS

Driscover the power of ideas

Review: The Multiplexor

o Selects one of the Inputs to be the output,
based on a control input

S
) _)
A_°, note: we call this a 2-input mux
B -~ ,C even though it has 3 inputs!
1
\/

e Lets build our ALU using MUXes:

UNT CSCE 2610: Computer Organization

L'Nl"'.-"_l_'.l‘iSl 'Y ©OF NORTH TEXAS

Driscover the power of ideas

Different Implementations

* Not easy to decide the “best” way to build

something

— Don't want too many inputs to a single gate
— Dont want to have to go through too many gates
— for our purposes, ease of comprehension is important

e Let's look at a 1-bit ALU for addition:

a—» Cout:ab'l_acin-l-bCin

sum = a Xor b Xor c;,

UNT CSCE 2610: Computer Organization

UNIVERSITY ©OF NORITH TEXAS
Drscover the POwWeT of ideas

1

Different Implementations ...

e How could we build a 1-bit ALU for add, and, and or?
e How could we build a 32-bit ALU?

UNT CSCE 2610: Computer Organization

L'Nl"'.-"_l_'.l‘iSl 'Y ©OF NORTH TEXAS

Driscover the power of ideas

Building a 32 bit ALU

Carryln Operation
Operation l l
a0 —»| Carryln
(‘arrym » Result0
b0 —» ALUO
CarryOut
! | !
a—+—» \ m l
0 al —»| Carryln
— j ALU1 » Resultl
bl —»
. CarryOut
1 l t
> Resullt l
a2 —»| Carryln
» Result2
{ b2 —— ALU2
> CarryOut
+ 2]
b—T——— U : :

Ll

\/
a3l —»| Carryln
CarryOut » Result31

b31 ALU31

UNT CSCE 2610: Computer Organization

UNIVERSITY @F NORTH TEXAS

Driscover the power of ideas

What about subtraction (a—b) ?

« Two's complement approach: just negate b and

add. . —
 How do we negate? Camyin
!
? T
—/
* A very clever solution: UK
*— 1 » Result
A~ U
b 0 + 2
ol &
o—1
_/
. \/
CSCE 2610: Computer Organization
UNT CamyO

UNIVERSITY GOF NORTH TEXAS
Driscover the power of ideas

Tailoring the ALU to the MIPS

* Need to support the set-on-less-than instruction (slt)
— remember: slt is an arithmetic instruction
— produces a 1 if rs < rt and O otherwise

— use subtraction: (a-b) <O impliesa<b

* Need to support test for equality (beq $t5, $t6, $t7)

— use subtraction: (a-b) =0 impliesa=>b

UNT CSCE 2610: Computer Organization

UNIVERSITY ©OF NORITH TEXAS
Drscover the power of ideas

Binvert

Supporting slt for MIPS

Operation
Carrdn |

-

Lezs

- :__\". rﬁ

(S
>

= R esudt

b
b T 0 1o+ 2
1
K
e
"
Zarry Ot

UNT

L'Nl"'.-"_l_'.l‘iSl 'Y ©OF NORTH TEXAS

Dhsc

over the power of ideas

CSCE 2610: Computer Organization

Less will be zero for all
bits other than LSB which
will be 0 or 1 coming from
the “set” output of MSB.

Supporting sit and Overflow: 1-bit ALU for MSB

Binver Dperation
Carrin J
l
| O
t——r—“\-\]
I_ — -
h A P -rest Overflow detection logic at
— + 2 - o o -
\i L | o1 the most significant bit
- 1 (MSB) ALU.
LA
I——-SE’[

UNT CSCE 2610: Computer Organization

L'Nl"'.-"_l_'.l‘iSl 'Y ©OF NORTH TEXAS

Driscover the power of ideas

32-bit ALU for MIPS: Using 32 1-bit ALUs

Binvert Carryln Operation

4 l 4

a0 —»| Carryln
bO —| ALUO

»| Less
CarryOut

 /

Result0

A 4 JV v
al —»| Carryln
bl —»| ALU1
0 ——»| Less
CarryOut

Resultl

A 4 JV v
a2 —»| Carryln
b2 —| ALU2
0 —»| Less
CarryOut

}

\ 4

Result2

| lCarryIn
A 4 v

a3l —| Carryln > Result31
b31 —»| ALU31 Set
0 —»| Less » Overflow

UNT CSCE 2610: Computer Organization

UNIVERSITY ©F NORTH TEXAS
Diiscover the power of ideas

32 blt ALU for MIPS: Using 32 1-bit ALUsS

Operation
oo * “Bnegate” is a single control line
0| ALD == combining Carryln and Binvert.
CanyOu
E‘i_’ %”Y'U‘l” Resuitl
. — =
Tl) Do
| | Res || » Testing for equality needed for
07 conditional branch instructions.
i o |f subtraction results is 0O, then
I Do I : they are equal.
\ e “Zero” is a 1 when the result is 0!
v \/ mlt&
a3l —»| Caryin
b31 —» ALU3L Set
0—>» Less » Qverflon

UNT CSCE 2610: Computer Organization

L'Nl\-"LRSlIY OF NORTH TEXAS
Dris t the power of ideas

ALU Design: Summary

 We can build an ALU to support the MIPS instruction set
— key idea: use multiplexor to select the output we want
— we can efficiently perform subtraction using two’s complement
— we can replicate a 1-bit ALU to produce a 32-bit ALU
* Important points about hardware
— all of the gates are always working

— the speed of a gate is affected by the number of inputs to the
gate

— the speed of a circuit is affected by the number of gates in series
(on the “critical path” or the “deepest level of logic”)

 Our primary focus: comprehension, however,

— Clever changes to organization can improve performance
(similar to using better algorithms in software)

— we’ll look at two examples for addition and multiplication

UNT CSCE 2610: Computer Organization

LJ\l"'.-"J_.R‘:J [Y l J"\U“l[li l]_}!."\.':

Disadvantage of Ripple Carry Adder

 The design of the 4-bit ripple carry adder with the usual
method would require a truth table with 512 entries, since
there are nine inputs to the circuit.

e Long circuit delay due to the many gates in the carry path
from the LSB to the MSB.

 The longest path delay through an n-bit ripple carry adder
IS 2n+2 gate delays.

 Carry lookahead adder reduces critical path delay, but
there Is area penalty involved.

UNT CSCE 2610: Computer Organization

UNIVERSITY ©OF NORITH TEXAS
Drscover the power of ideas

1

Binary Adders : Full adder
Boolean Functions:
S=XYZ+XYZ'+XY'Z'+XYZ = (X XOR Y) XOR Z
C = XY+XZ+YZ = XY+Z(X XOR Y)

Inputs Outputs

X Y Z C S X A
A AV

0 0 0 0 0 Y ,),] /] S
0 0 1 0 1 H—
I 1 0 0 1
01 1 10 }
1 0 0 0 1 C
| 0 | | 0
1 1 0 | 0 z
1 1 1 1 1 Logic Diagram of Full Adder

Truth Table of Full Adder

UNT CSCE 2610: Computer Organization

L'Nl"'.-"_l_'.l‘iSl 'Y ©OF NORTH TEXAS

Driscover the power of ideas

Binary Ripple Carry adder: 4-bit example

The full adders are connected in cascade, with the carry output from
one full adder connected to the carry input of the next full adder.

Since a 1 carry may appear near the LSB of the adder and yet
propagate through many full adders to the MSB - the name ripple
carry adder. An n-bit ripple carry adder requires n full adders.

B Ag Ba Ag B A4 B0 Ag Input carry: 0110
l - l l - l l . l l Augend A: 1011
FA Pl Fa | ra " ora Co
l l i l Addend B: 0011
C4 S3 Sz S So Sum S: 1110
Fig. 3-28 4-Bit Bipple Carry Adder
\ Output carry: 0011

UNT CSCE 2610: Computer Organization

L'Nl"'.-"_l_'.l‘iSl 'Y ©OF NORTH TEXAS

Driscover the power of ideas

Carry Lookahead Adder

 Reduced delay at the price of more complex hardware.

« The design can be obtained by a transformation of the
ripple carry design in which the carry logic over fixed
groups of bits of the adder is reduced to two-level logic.

e Construct a new logic hierarchy separating the parts of
the full adders not involving the carry propagation path
from those containing the path.

o Call the first path of each full adder a partial full adder
(PFA).

UNT CSCE 2610: Computer Organization

UNIVERSITY ©OF NORITH TEXAS
Drscover the power of ideas

1

Carry Lookahead Adder PFA model

__

» Two outputs: P, G, from each PFA to the ripple carry path.
« One input: C,, the carry input, from the carry path to each PFA.

 Propagate function: P,= A, XOR B;. When It Is equal to 1 an incoming carry
IS propagated through the bit posrtron from C, to C,,,; when equal to zero,
carry propagation is blocked.

« Generate function: G;= A*B,. Whenever equal to 1 regardless of the P,
value, the carry output from the position is 1, so a carry has been
generated In the position. When equal to zero, no carry is generated, so
that C,,, is O If the carry propagated through the position from C, is also O

UNT CSCE 2610: Computer Organization

UNIWVE K‘JJ [Y JF MNORIH l]_){."\b
Dis * the power of idea

Carry Lookahead Adder: PFA model

[LI 1 |1
r___ls_:J:*:___Piu'i:____*lie_|:*_-__ﬁ*[_|'_5=____Ell_L_'__F_"J_lc_'____|5-1.f1°__f~*_|_J_,
Ripple Carry Path

= Carry Lookahead circuit
i . will replace the ripple
i . carry path above.

4-bit ripple carry adder
has delay of 10 gate
. delays, for carry
. lookahead it is 6 gate
| . delays. Assume XOR has

2 OR gate delays.

Development of a Carry Lookahead Adder

UNT CSCE 2610: Computer Organization

LN[VLFS“Y &F NO‘RJ“ ILX!'\."J
Disco the power r of idea

Use principle to build bigger adders

Carryln

|
)

a0F—>»| Carryin
b0 —> » Result0--3

blE—> A yo v

PO »| pi

b3 —> Carry-lookahead uni

r—ci+1 . . .
aa—[canyin eculi « Can’t build a 16 bit adder this

A J

S M way... (too big)
ar’E+—»

b7 —> co | » Could use ripple carry of 4-bit
e[S CLA adders

bg[—l—» » Result8--11
a E . L -
bOF—>| Ai o . h I
e Az || e Better: use the CLA principle
b10G—» G2 > gi+ 2 .
= again!
C3 .
l_—_ ci+3
al23—»| Carryln
b12E—> » Result12--15
al3+—»
al4+—— P3 » pi+ 3
b145— G3 » gi+ 3
als5+—» C4 .
ci+4

bl15 — l——

“CarryOut
UNT CSCE 2610: Computer Organization

UNIVERSITY @F NORTH TEXAS

Driscover the power of ideas

Binary Multiplication

 More complicated than addition
— accomplished via shifting and addition
 More time and more area
 Negative numbers: convert and multiply
— there are better techniques.

UNT CSCE 2610: Computer Organization

L'Nl"'.-"_l_'.l‘iSl 'Y ©OF NORTH TEXAS

Driscover the power of ideas

Binary Multiplication

e Example:
Multiplicand: 1011
Multiplier: x 101
1011
0000
1011
Product: 110111

 Observation : The multiplier bits are always 1 or 0O, therefore the
partial products are equal to either the multiplicand or to O.

« The above fact has been exploited in various ways, and many time
and hardware efficient multiplication algorithms have been
developed.

e Booth’s multiplier and Wallace-Tree multiplier are two examples.

UNT CSCE 2610: Computer Organization 40

UNIVERSITY @QF NORITH TEXAS
+ the 1 or of ideas

r);‘\LU\U Lhe power Ol 1;1

Binary Multipliers: A 2-bit example

By Bg Ag
J.:l,l1 ’E'llj T1 E|’EI
AqBy AyBg
AB, AB LJ LJ Product A, and B,
C; Co ©Cy Gy A . . IS 1 If both are 1,
else it i1s 0. Thus,
the product Is
| same | as AND
A N operation.
Helo

A 2-Bit by 2-Bit Binary Multiplier

UNT CSCE 2610: Computer Organization

L'Nl"'.-"_l_'.l‘iSl 'Y ©OF NORTH TEXAS

Driscover the power of ideas

Binary Multipliers: A 4-bit by 3-bit example

Aq
By B, By Bg
Bq LJ
B Ba By By
Addend Augend
4-bit addar
Carry
oufput Sum
Az
[i
r L J L L
Addend Augand
4-bit addar
Carry
output Sum
l l l l l ¥ ¥
Cg Cg Cy Cq Gy Gy Cp

UNT

L'Nl"'.-"_l_'.l‘iSl 'Y ©OF NORTH TEXAS

Driscover the power of ideas

A 4-Bit by 3-Bit Binary Multiplier

CSCE 2610: Computer Organization

For J multiplier bits
and K multiplicand
bits, we need JxK
AND gates and (J-1)
K-bit adders to
produce a product
of J+K bits.

Multiplication Implementation: vl

«—

Multiplicand

Shift left

Multiplier0 = 1

A

y

Co

1. Testd
Multiplier0

Multiplier0 = 0

la. Add multiplicand to product and
place the result in Product register

64 bits

A

N7
64bit ALU /"

y

Product
Write

UNT

UNIVERSITY @F NORTH TEXAS

Driscover the power of ideas

64 bits

CSCE 2610: Computer Organization

—

Multiplier
Shift right

v v

2. Shift the Multiplicand register left 1 bit

v

3. Shift the Multiplier register right 1 bit

32 hits

Control test

A

l

No: < 32 repetitions

32nd repetition?

Yes: 32 repetitions

Multiplication Implementation: v2
=

A

Multiplier0o = 1

1. TestO Multiplier0 = 0

Multiplier0

A4

la. Add multiplicand to the left half of0
the product and place the result inO

the left half of the Product register
Muitiplicand
3P hits 2. Shiftthe Product register right 1 bit
| 4
\/ 3. Shift the Multiplier register right 1 bit
/ Muitiplier
P-ht ALU/ Shift right |«
. No: < 32 repetitions
32hts 32nd repetition?
2
Yes: 32 repetitions
Shift right j¢——
Product Wit @dtﬁ (. ooe)
64 bits

UNT CSCE 2610: Computer Organization

UNIVERSITY @F NORTH TEXAS

Driscover the power of ideas

Multiplication Implementation: v3
=

<
<

v

ProductO = l/rkli’roducto =0

la. Add multiplicand to the left half of
the product and place the result in
the left half of the Product register

A\ 4

Multiplicand

32 bits v v
l 2. Shift the Product register right 1 bit

32-bit ALU

No: < 32 repetitions

32nd repetition?
—_

Shift right Controlld
Profluct Write test

| 64 bits T C Done)
UNT CSCE 2610: Computer Organization

UNIVERSITY @F NORTH TEXAS

Driscover the power of ideas

Yes: 32 repetitions

Fast Multiplication Hardware: Unrolls the Loop

Mpliert = Mcand bpland - Meand

| o= Rather than using a single 32-bit
__/ adder 32 times, this hardware
mlm“““" “unrolls the loop” to use 32
Y ' adders.
wlm e Each adder produces a 32-bit sum

‘v’/ and a carry out.

e 1st jnput: multiplicand ANDed with
a multiplier bit.

 The LSB bit is a bit of the product.

1 bit -1

Mpliard - Mcand
1 vj'r e The carry out and the upper 31bits
\T/ of the sum are passed along the
100 next adder as 2"9 input.

ProductEd. 32 Product 31 --- Product? Produst! ProductD

UNT CSCE 2610: Computer Organization

LN[VLFS“Y &F NO‘RJ“ ILX!'\."J
Driscover the power ol of idea

Multiplication: MIPS Instructions

A pair of 32-bit registers Hi and Lo available for 64-bit
product.

e Two instructions: mult and multu
e Both instructions ignore overflow.

* Pseudo-instructions mflo mfhi are used to place products
Into regqisters.

UNT CSCE 2610: Computer Organization

L'Nl"'.-"_l_'.l‘iSl 'Y ©OF NORTH TEXAS

Driscover the power of ideas

Division
 Example:
1001, Quotient

Divisor 1000,., | 1001010, Dividend
- 1000
10

101

1010

-1000

10

ren Remainder

e Observation : Dividend = Quotient X Divisor + Remainder

UNT CSCE 2610: Computer Organization

L'Nl"'.-"_l_'.l‘iSl 'Y ©OF NORTH TEXAS

Driscover the power of ideas

Division Implementation: vl
(e)

—
-

L
1. Subitract the Divisor registes kom the
Ramainder regiater aad place the
result in the Reamainder regiser

H“ﬂ:rm Ramaindar = 0 Aamaindar < 0

1
Za. Shitt the Quatient register to tha leh, | | 2b. Aiestare the oniginal valua by adding
sating tha new rightmos? kit 1o 1 tha Divisar regstar o tha Aemainder
regstar &nd placa the sum i the
Aomaindar ragistar. Also shift tha
Quotiant registar 1o tha loh, sefting the
naw loast significart bt 1o 0

L Y
4. Shift the Divisor negisbar dght 1 b

Wo! < 33 repet@ons

fes: 33 repeifions

UNT CSCE 2610: Computer Organization

UNIVERSITY ©F NORTH TEXAS
Diiscover the power of ideas

Division Implementation: v2

i Sht right -
Hamancar Sk lpfy -
Wiria e -

NOTE: We can not use 32 adders as we did In
multiplier case to speed up as we need to know the
sign of difference each time to perform the next step.

UNT CSCE 2610: Computer Organization e B i

L'Nl"'.-"_l_'.l‘iSl 'Y ©OF NORTH TEXAS

Driscover the power of ideas

Division: MIPS Instructions

* The palir of 32-bit registers Hi and Lo are used.
e Two Instructions: div and divu

 Hi contains the remainder and Lo contains the
guotient after the divide instruction is complete.

* Pseudo-instructions mflo mfhi are used to place
results into registers.

UNT CSCE 2610: Computer Organization

UNIVERSITY ©OF NORITH TEXAS
Drscover the power of ideas

Floating Point : a brief look

 We need a way to represent
— numbers with fractions, e.g., 3.1416
— very small numbers, e.g., 0.000000001
— very large numbers, e.g., 3.15576 E 10°
* Representation:
— sign, exponent, significand: (-=1)%9" X significant X 2exponent
— more bits for significand gives more accuracy
— more bits for exponent increases range
« |EEE 754 floating point standard:
— single precision: 8 bit exponent, 23 bit significand

— double precision: 11 bit exponent, 52 bit significand

UNT CSCE 2610: Computer Organization

UNIVERSITY @QF NORITH TEXAS
+ the 1 or of ideas

r);‘\LU\U Lhe power Ol 1;1

IEEE 754 floating-point standard

 Leading “1” bit of significand is implicit.

 Exponentis “biased” to make sorting easier (as only positive
numbers are to be dealt with)

— all Os is smallest exponent all 1s is largest
— Dbias of 127 for single precision and 1023 for double precision
— summary: (-1)s9" X (1+fraction) X 2exponent - bias

 Example:

— decimal: -0.75 =-3/4 = -3/2°

— binary: -0.11 =-1.1x21=-1.1 x 2(126-127)

— floating point: exponent =126 =01111110

— |EEE single precision: 10111111010000000000000000000000

UNT CSCE 2610: Computer Organization

UNIVERSITY @QF NORITH TEXAS
+ the 1 or of ideas

r);‘\LU\U Lhe power Ol 1;1

Float-Point Representation: Single Precision

« A floating-point value is represented in a single 32-bit word.
« Bias value for single precision is 127.

322 (2222222 |21 |1 |1 |1 |1 |11 (1|1 (12|98 |7 |6 |5]|4]|3|2]|1]|O0
O(98 (7|6 (5432|109]|8]|7]|6 |54 (3|21]O0

Exponent Fraction
8 bits 23 bits

Rlo| R, w

 Decimal number -0.75 is represented as follows:

313|222 |22 (|2|2]|2(2|2]1 |12 (1|1 |2 (2|12 (212]|9|8 |7 |6 |54 (3]|2]1]|O0
1 98|76]|5|4 (3|2 |1]|0]|9(8 |7 |6 (5|43 |2]|1]|O0
1 1{1:1112t0}210l0}0tO0O}{O0O}O0OfO!O}OfO}O}OIO}OlO}JO}O0O{OJO}JO}lO}O
S Exponent Fraction
1 8 bits 23 bits

UNT CSCE 2610: Computer Organization

UNIVERSITY OF NORIH TEXAS
£as

Discover the power of id

Float-Point Representation: Double Precision

« A floating-point value is represented in two 32-bit words.
« Bias value for single precision is 1023.

 Decimal number -0.75 is represented as follows:

222222211111111119876543210Register_l
6543 110
1]1j1|0|1|1f{0f2f0|O|J0O|JO|]O|O|OfOfO|O|jO|O]JO|O|JO|O|OfO]fO
Exponent Fraction

11 bits 20 bits

o
©
©
~
N
=
o
©
©
~
o
a1
IN
w
N

Rlo|lkR]l, w
o
=
P
=

w
w
N
N
N
N
N
N
N
N
N
N
=
=
=

Register - 2

-
o
©
©
~
o
ol
IN
w
N
=
o
©
©
~
ol
N
w
N
=
o

UNT CSCE 2610: Computer Organization

UNIVERSITY OF NORIH TEXAS
£as

Discover the power of id

Floating Point Complexities

Operations are somewhat more complicated

In addition to overflow we can have “underflow”

Accuracy can be a big problem
— |EEE 754 keeps two extra bits, guard and round
— four rounding modes
— positive divided by zero yields “infinity”
— zero divide by zero yields “not a number”

— other complexities

Implementing the standard can be tricky
Not using the standard can be even worse
— see text for description of 80x86 and Pentium bug!

UNT CSCE 2610: Computer Organization

UNIVERSITY ©OF NORITH TEXAS
Drscover the power of ideas

1

Floating Point Addition
(s)

T

1. Compars the axpanents of the two numbsars, Sign | Exponan Fraction Sign | Expanen Fraction
Shift the smaller numibes i the fght untl s |
expanind wauld maich the laper exponani :
L
P Com
r Senll ALLY H}:ZIMT';I.B
2. Add the signilicands !
'-:1' Exponent &
diffenence
3. Nonmmaiza tha sum, aither shifing right and rr T rr
inctementing e axpanant or shifting it ':_“_T:""'—l (0 1) —={0 1)
mmmmm i L] 'S ' i
l,.-“' ’ it emaler
L I..'|r-'"l.'l|f’) i-l Shili righl | rumDer right
S
l‘l- ¥ "
Overiow or ™, Tes S
ko Ezcepticn

vy v
4 Round the aigricand to the appropriate ' " (o 1)

. Increment or i |

" Exil marmalizad? #=| Rounding hardwarnn Round
a
vt Y
e lslgn I Exponeni l Fracsan

UNT CSCE 2610: Computer Organization

UNIVERSITY ©F NORTH TEXAS
Diiscover the power of ideas

Floating Point Multiplication

1. Add the biesad expananis of the o
nismbare, subtracing the biaa fram the sum
li it thi Fissa bigsed exponet

| 2. Mutily the significands
A Mormalze the product if necessary. shifing
& night and Incremnenting the axponant

5, St tha sign of tha product to pesive if e
sgns of the ariginal oparands ara the sama;
i thay dar make tha sign negathe

.,
UNT CSCE 2610: Computer Organization

UNIVERSITY ©F NORTH TEXAS
Diiscover the power of ideas

Floating-Point Instruction in MIPS

Addition: add.s (single) and add.d
e Subtraction: sub.s and sub.d

e Multiplication: mul.s and mul.d

e Division: div.s and div.d

UNT CSCE 2610: Computer Organization

L'Nl"'.-"_l_'.RSl 'Y ©OF NORTH TEXAS
SCOover The

D1 er the power of ideas

Summary

« Computer arithmetic is constrained by limited precision

e Bit patterns have no inherent meaning but standards do
exist

— two’s complement
— |EEE 754 floating point
 Computer Instructions determine “meaning” of the bit

patterns
 Performance and accuracy are important so there are
many complexities in real machines (i.e., algorithms

and implementation).
« We are ready to move on (and implement the processor)

UNT CSCE 2610: Computer Organization

UNIVERSITY @QF NORITH TEXAS
+ the 1 or of ideas

r);‘\LU\U Lhe power Ol 1;1

