Lecture 5: Wire and Delay

CSCE 5730
Digital CMOS VLSI Design

Instructor: Saraju P. Mohanty, Ph. D.

NOTE: The figures, text etc included in slides are borrowed from various books, websites, authors pages, and other sources for academic purpose only. The instructor does not claim any originality.
Outline of the Lecture

• Capacitance of wire
• Resistance of wire
• Inductance of wire
• Elmore Delay Model
• Delay Definitions
The Wire

transmitters

receivers

schematics

physical
Interconnect Impact on Chip
Impact of Interconnect Parasitics

• Interconnect parasitics
 – reduce reliability
 – affect performance and power consumption

• Classes of parasitics
 – Capacitive
 – Resistive
 – Inductive
Wire Models

- If resistance of the wire is substantial then inductance can be ignored.
- For short and large cross-section wires or low-resistivity wires capacitance only model can be used.
- When separation between neighboring wires is large, or when the wires run for short distance, then interwire capacitance can be ignored, and capacitances can be modeled as capacitances to the ground.
Capacitance of Wire Interconnect

\[V_{DD} \]

\[V_{in} \]

\[C_{gd12} \]

\[C_{db1} \]

\[C_{db2} \]

\[M1 \]

\[M2 \]

\[V_{out} \]

\[C_{g3} \]

\[C_{g4} \]

\[M3 \]

\[M4 \]

\[V_{out2} \]

\[V_{in} \]

\[V_{out} \]

\[C_L \]

\[\text{Interconnect} \]

\[\text{Fanout} \]

\[\text{Simplified Model} \]
• When the width of the wire is substantially larger than thickness of the insulating material, the total capacitance of the wire:

\[C_{\text{int}} = \frac{\varepsilon_{\text{di}}}{t_{\text{di}}} WL \]
Permittivity

<table>
<thead>
<tr>
<th>Material</th>
<th>(\varepsilon_r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free space</td>
<td>1</td>
</tr>
<tr>
<td>Aerogels</td>
<td>(~1.5)</td>
</tr>
<tr>
<td>Polyimides (organic)</td>
<td>3-4</td>
</tr>
<tr>
<td>Silicon dioxide</td>
<td>3.9</td>
</tr>
<tr>
<td>Glass-epoxy (PC board)</td>
<td>5</td>
</tr>
<tr>
<td>Silicon Nitride (Si(_3)N(_4))</td>
<td>7.5</td>
</tr>
<tr>
<td>Alumina (package)</td>
<td>9.5</td>
</tr>
<tr>
<td>Silicon</td>
<td>11.7</td>
</tr>
</tbody>
</table>
Fringing Capacitance

Fringing capacitance (Capacitance between side walls of the wires and the substrate.)

Parallel-plate capacitance

Fringing capacitance is modeled by a cylindrical wire with a diameter equal to the thickness of the wire.

Total wire capacitance:

\[C_{wire} = C_{pp} + C_{fringe} = \frac{w \varepsilon_{di}}{t_{di}} + \frac{2\pi \varepsilon_{di}}{\log(t_{di}/H)} \]
Fringing versus Parallel Plate Capacitance

Two values of \((T/H)\) considered.

Larger \((W/H)\): \(c_{wire} \rightarrow C_{pp}\)

For \((W/H) < 1.5\): \(c_{fringe} \) dominates \(c_{wire}\)

\[C_{parallel-plate} \quad \text{and} \quad C_{parallel-plate} \]
Interwire Capacitance

- Fringing capacitance
- Parallel connections

Coupling to the neighboring wires
Coupling to the grounded substrate
Wires
Impact of Interwire Capacitance
Crosstalk

• Interwire capacitances can be a source of noise (crosstalk) as well as can have negative impact on performance.

• A capacitor does not like to change its voltage instantaneously.

• A wire has high capacitance to its neighbor.
 – When the neighbor switches from 1-> 0 or 0->1, the wire tends to switch too.
 – Called capacitive coupling or crosstalk.

• Crosstalk effects
 – Noise on nonswitching wires
 – Increased delay on switching wires
Wiring Capacitances (0.25 μm CMOS)

Wire area (parallel-plate) (in aF/μm²) and fringe capacitances (in aF/μm)

<table>
<thead>
<tr>
<th>Layer</th>
<th>Field</th>
<th>Active</th>
<th>Poly</th>
<th>Al1</th>
<th>Al2</th>
<th>Al3</th>
<th>Al4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poly</td>
<td>88</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al1</td>
<td>30</td>
<td>41</td>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>47</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al2</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>27</td>
<td>29</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al3</td>
<td>8.9</td>
<td>9.4</td>
<td>10</td>
<td>15</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>19</td>
<td>20</td>
<td>27</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al4</td>
<td>6.5</td>
<td>6.8</td>
<td>7</td>
<td>8.9</td>
<td>15</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>18</td>
<td>27</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Al5</td>
<td>5.2</td>
<td>5.4</td>
<td>5.4</td>
<td>6.6</td>
<td>9.1</td>
<td>14</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>14</td>
<td>19</td>
<td>23</td>
<td>32</td>
</tr>
</tbody>
</table>

Inter-wire capacitance per unit wire length (aF/μm)

<table>
<thead>
<tr>
<th>Layer</th>
<th>Poly</th>
<th>Al1</th>
<th>Al2</th>
<th>Al3</th>
<th>Al4</th>
<th>Al5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitance</td>
<td>40</td>
<td>95</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>115</td>
</tr>
</tbody>
</table>

Solve example 4.1 page-144 of Rabaey book.
Wire Resistance

\[R = \frac{\rho L}{H W} \]

Sheet Resistance \(R_0 \)

\[R_1 \equiv R_2 \]
Interconnect Resistance

<table>
<thead>
<tr>
<th>Material</th>
<th>ρ ((\Omega\cdot m))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver (Ag)</td>
<td>1.6×10^{-8}</td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>1.7×10^{-8}</td>
</tr>
<tr>
<td>Gold (Au)</td>
<td>2.2×10^{-8}</td>
</tr>
<tr>
<td>Aluminum (Al)</td>
<td>2.7×10^{-8}</td>
</tr>
<tr>
<td>Tungsten (W)</td>
<td>5.5×10^{-8}</td>
</tr>
</tbody>
</table>
Dealing with Resistance

• Selective Technology Scaling
• Use Better Interconnect Materials
 – reduce average wire-length
 – e.g. copper, silicides
• More Interconnect Layers
 – reduce average wire-length
Polycide Gate MOSFET

Silicides: WSi\textsubscript{2}, TiSi\textsubscript{2}, PtSi\textsubscript{2} and TaSi

Conductivity: 8-10 times better than Poly
Sheet Resistance

<table>
<thead>
<tr>
<th>Material</th>
<th>Sheet Resistance (Ω/\square)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n- or p-well diffusion</td>
<td>1000 – 1500</td>
</tr>
<tr>
<td>n^+, p^+ diffusion</td>
<td>50 – 150</td>
</tr>
<tr>
<td>n^+, p^+ diffusion with silicide</td>
<td>3 – 5</td>
</tr>
<tr>
<td>n^+, p^+ polysilicon</td>
<td>150 – 200</td>
</tr>
<tr>
<td>n^+, p^+ polysilicon with silicide</td>
<td>4 – 5</td>
</tr>
<tr>
<td>Aluminum</td>
<td>0.05 – 0.1</td>
</tr>
</tbody>
</table>

Solve example 4.2 page-146 of Rabaey book.
Modern Interconnect
Example: Intel 0.25 micron Process

5 metal layers
Ti/Al - Cu/Ti/TiN
Polysilicon dielectric

<table>
<thead>
<tr>
<th>LAYER</th>
<th>PITCH</th>
<th>THICK</th>
<th>A.R.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolation</td>
<td>0.67</td>
<td>0.40</td>
<td>-</td>
</tr>
<tr>
<td>Polysilicon</td>
<td>0.64</td>
<td>0.25</td>
<td>-</td>
</tr>
<tr>
<td>Metal 1</td>
<td>0.64</td>
<td>0.48</td>
<td>1.5</td>
</tr>
<tr>
<td>Metal 2</td>
<td>0.93</td>
<td>0.90</td>
<td>1.9</td>
</tr>
<tr>
<td>Metal 3</td>
<td>0.93</td>
<td>0.90</td>
<td>1.9</td>
</tr>
<tr>
<td>Metal 4</td>
<td>1.60</td>
<td>1.33</td>
<td>1.7</td>
</tr>
<tr>
<td>Metal 5</td>
<td>2.56</td>
<td>1.90</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Layer pitch, thickness and aspect ratio
The Lumped Model
The Lumped RC-Model
The Elmore Delay

Shared path resistance to nodes k and i from the root node s:

$$R_{ik} = \sum R_j \Rightarrow (R_j \in \text{path}(s \rightarrow i) \cap \text{path}(s \rightarrow k))$$

Elmore delay at i:

$$\tau_{Di} = \sum_{k=1}^{N} C_k R_{ik}$$

This time constant is approximation of actual delay between source node and node i.

Elmore delay at i in the above case:

$$\tau_{Di} = R_1 C_1 + R_1 C_2 + (R_1 + R_3) C_3 + (R_1 + R_3) C_4 + (R_1 + R_3 + R_i) C_i$$
The Elmore Delay: Steps for Calculation

1. Identify path from source node to node of interest.
2. Identify rest of the nodes and node capacitances to the ground.
3. For each node other than the source node:
 a) Find the path from the source node.
 b) Find the common (shared) path between this path and the path between source node and node of interest in step 1.
 c) Calculate the sum of resistances in the shared path.
 d) Multiply the node capacitances and shared resistance.
4. Sum the RC products of Step 3(d).
The Elmore Delay: RC Chain

Elmore delay of node i: $\tau_i = R_1 C_1 + (R_1+R_2) C_2 + \ldots + (R_1+R_2+\ldots+R_i) C_i$

Elmore delay of the chain: $\tau_N = \sum_{i=1}^{N} R_i \sum_{j=i}^{N} C_j = \sum_{i=1}^{N} C_i \sum_{j=1}^{i} R_j$
Wire Model

Assume: Wire modeled by N equal-length segments

$$
\tau_{DN} = \left(\frac{L}{N}\right)^2 (rc + 2rc + \ldots + Nrc) = (rcL^2) \frac{N(N+1)}{2N^2} = RC \frac{N+1}{2N}
$$

For large values of N:

$$
\tau_{DN} = \frac{RC}{2} = \frac{rcL^2}{2}
$$
The Distributed RC-line

\[
\frac{rc}{\Delta t} \frac{\partial V}{\partial t} = \frac{2}{\Delta x^2} \frac{\partial V}{\partial x}
\]

\[
\tau(V_{out}) = \frac{rc L^2}{2}
\]
Step-response of RC wire as a function of time and space

\[v(x, t) = \frac{1}{\sqrt{\pi \tau}} \int_0^t e^{-\frac{x^2}{\tau}} dt \]

\[\tau = \frac{L^2}{4R \ln(2)} \]

\[x = \frac{L}{10}, \frac{L}{4}, \frac{L}{2}, L \]

- Voltage vs. time (nsec) for different lengths of the wire.
RC-Models

<table>
<thead>
<tr>
<th>Voltage Range</th>
<th>Lumped RC-network</th>
<th>Distributed RC-network</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 → 50% (t_p)</td>
<td>0.69 RC</td>
<td>0.38 RC</td>
</tr>
<tr>
<td>0 → 63% (τ)</td>
<td>RC</td>
<td>0.5 RC</td>
</tr>
<tr>
<td>10% → 90% (t_i)</td>
<td>2.2 RC</td>
<td>0.9 RC</td>
</tr>
</tbody>
</table>

Step Response of Lumped and Distributed RC Networks:
Points of Interest.

Solve example 4.8 page-157 of Rabaey book.
Driving an RC-line

\[\tau_D = R_s C_w + \frac{R_w C_w}{2} = R_s C_w + 0.5 r_w c_w L^2 \]

\[t_p = 0.69 R_s C_w + 0.38 R_w C_w \]
Design Rules of Thumb

• RC delays should only be considered when $t_{pRC} >> t_{pgate}$ of the driving gate

\[L_{crit} >> \sqrt{t_{pgate}/0.38RC} \]

• RC delays should only be considered when the rise (fall) time at the line input is smaller than RC, the rise (fall) time of the line

\[t_{rise} < RC \]

– when not met, the change in the signal is slower than the propagation delay of the wire
Delay Definitions

• Combinational logic has two types of delay:
 – Propagation
 – Contamination

• When the input changes, output retains its old value for at least the contamination delay and take on its new value in at most the propagation delay.

• The gate that charges or discharges a node is called driver, and the gates and wires that being driven are called load.
Delay Definitions: Prop. Vs Contamination

- The output remains unchanged for a time period equal to the contamination delay, t_{cd}

- The new output value is guaranteed to be valid after a time period equal to the propagation delay, t_{pd}
Delay Definitions: Propagation

Source: http://www.unc.edu/courses/2003fall/comp/120/001/handouts/Lecture04.pdf
Delay Definitions: Contamination

Source: http://www.unc.edu/courses/2003fall/comp/120/001/handouts/Lecture04.pdf
Delay Definitions: Propagation

• \(t_{pdr} \): rising propagation delay
 – Time delay from the reference voltage \((V_{DD}/2) \) at the input to the reference voltage at the output, when output voltage is going from low-to-high.

• \(t_{pdf} \): falling propagation delay
 – Time delay from the reference voltage \((V_{DD}/2) \) at the input to the reference voltage at the output, when output voltage is going from high-to-low.

• \(t_{pd} \): (average) propagation delay (also max-time)
 – defined in two ways: (maximum or average of two)
 • maximum \((t_{pdr}, t_{pdf}) \)
 • \(t_{pd} = (t_{pdr} + t_{pdf})/2 \)
Delay Definitions: Rise and Fall

- t_r: rise time
 - From output crossing 0.2 V_{DD} to 0.8 V_{DD}
- t_f: fall time
 - From output crossing 0.8 V_{DD} to 0.2 V_{DD}
- Rise / Fall times are also called slope or edge rates.
- Edge Rate: $t_{rf} = (t_r + t_f)/2$
Delay Definitions: Rise and Fall

\[\begin{align*}
V_{\text{DD}} & \quad \text{IN} \\
\text{A} & \quad \text{Y} \\
\text{GND} & \\
\end{align*} \]

\[\begin{align*}
\text{OUT} & \\
80\% & \quad \text{t}_f \\
20\% & \\
80\% & \\
20\% & \quad \text{t}_r \\
\end{align*} \]
Simulated Inverter Delay

- Solving differential equations by hand is too hard
- SPICE simulator solves the equations numerically
 - Uses more accurate I-V models too!
- But simulations take time to write
Delay Estimation

- We would like to be able to easily estimate delay
 - Not as accurate as simulation
- The step response usually looks like a 1st order RC response with a decaying exponential.
- Use RC delay models to estimate delay
 - C = total capacitance on output node
 - Use effective resistance R
 - So that $t_{pd} = RC$
- Characterize transistors by finding their effective R
 - Depends on average current as gate switches
Switch-level RC Delay Models

- RC models treat MOSFETs as switches in series with resistors.
- Unit effective resistance R can be obtained from any operating point of I-V characteristics as:
 \[R = \frac{1}{\left(\frac{\partial I_{ds}}{\partial V_{ds}} \right)} \]
- When ∂V_{ds} is small the resistance R can be obtained by differentiating the I_{ds} equation:
 \[R = \frac{1}{\beta (V_{gs} - V_t)} \]
- **NOTE**: The above way of calculating resistance is not practically accurate as the non-ideal effects (velocity saturation) have strong impact on it.
Switch-level RC Delay Models …

The slope of a curve gives conductance, which is the inverse of resistance.

\[\dot{I}_{ds} \] \[\dot{V}_{ds} \]

\[V_{gs} = 1.8 \]
Switch-level RC Delay Models …

• Use equivalent circuits for MOS transistors
 – Ideal switch + capacitance and ON resistance
 – Unit NMOS has resistance R, capacitance C
 – Unit PMOS has resistance $2R$, capacitance C

• Resistance is inversely proportional to width: If unit effective resistance is R, then the transistor of width k units has resistance R/k.

• Capacitance is proportional to width: If C is the capacitance of a unit transistor, then the transistor of width k units has capacitance kC.
RC Delay Models: Inverter

PMOS equivalent RC model:
- Width of transistor is k units
- Both gate and diffusion capacitances shown
- One terminal is shown connected to V_{dd} (n-well)

NMOS equivalent RC model:
- Width of transistor is k units
- Both gate and diffusion capacitances shown
- One terminal is shown connected to GND (substrate)
RC Delay Models: Inverter …

Estimation of delay of a fanout-of-1 inverter.

NMOS is of 1-unit width and PMOS is of 2-unit width to achieve equal fall / rise resistance.

Inverter fanout-of-1

Equivalent circuit: 1st inverter driving 2nd
RC Delay Models: Inverter …

Not charged / discharged, connected to supply

\[T_{pd} = R \times (6C) = 6RC \]

Time constant
\[\tau = RC \]

Equivalent circuit:
No switches

Equivalent circuit:
1st inverter driving 2nd

Not charged / discharged, connected to GND
Effective Resistance and Capacitance

- Parallel and series transistors combine like conventional resistors.
- **When in series**: Total resistance is the sum of all.
- **When in parallel**: Total conductance is the sum of conductance, inverse of which is the total resistance.
- Resistance is low if they are in parallel.
- Worst case delay \rightarrow when only one of several parallel transistors is ON.
Effective R and C : 3-input NAND Example

Question: Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R).

- Each NMOS should have $R/3$ resistance
- Each PMOS should have R resistance (worst case one even one ON should provide R resistance).
- Since 1-unit NMOS has R resistance, so its W/L is 3.
- Also 1-unit PMOS has $2R$ resistance, so its W/L is 2.
Question: Annotate the 3-input NAND gate with gate and diffusion capacitance.
Effective R and C: 3-input NAND Capacitance

Recall

- Unit NMOS has resistance R, capacitance C
- Unit PMOS has resistance $2R$, capacitance C
- k units has capacitance kC.

3-input NAND
Effective R and C : 3-input NAND Capacitance

3-input NAND

Shorted capacitances deleted and remaining capacitances lumped.