McPoRA: A Multi-Chain Proof of Rapid Authentication for Post-Blockchain based Security in Large Scale Complex Cyber-Physical Systems

> A. Alkhodair¹, S. P. Mohanty¹, E. Kougianos², and D. Puthal³

University of North Texas, Denton, TX, USA.^{1,2} Newcastle University, United Kingdom³ Email: <u>ahmadalkhodair@my.unt.edu</u>¹, saraju.mohanty@unt.edu¹, elias.kougianos@unt.edu², Deepak.Puthal@newcastle.ac.uk³

Outline

- Introduction
- Blockchain and Post-Blockchain Technologies
- The Proposed McPoRa
- Novel Contributions
- Multichain Technology Framework
- McPoRa Components
- McPoRa Algorithms and Operations
- Results
- McPoRa Versus Previous Related Work
- Conclusion
- References

Introduction

Introduction/Challenges

Security

Power

Consumption

Scalability

Accuracy

110

Blockchain Technology

This Photo by Unknown Author is licensed under CC BY

Introduction/Blockchain

The Blockchain faces Many Challenges

Source: D. Puthal, N. Malik, S. P. Mohanty, E. Kougianos, and G. Das, "Everything you Wanted to Know about the Blockchain", *IEEE Consumer Electronics Magazine (CEM)*, Volume 7, Issue 4, July 2018, pp. 06--14.

111

Blockchain – Next Generation or Post-Blockchain

Hashgraph

Tangle

Current Paper (McPoRa for CPS)

Hashgraph Technology

110

Tangle Technology

Comparative Perspective of BC, Tangle, Versus Propose MC

Comparative Perspective of BC, Tangle, MC							
Features/TechnologyBlockchain (Bitcoin)Proof of Auther	entication Tangle	HashGraph	McPoRa (current Paper)				
Linked Lists•One linked list of blocks. ••One linked ••Block of transactions.•Block of transactions.	d list of blocks.•DAG linked list.ransactions.•One transaction.	 DAG linked List. Container of transactions hash 	DAG linked List.Block of transactions.Reduced block.				
ValidationMiningAuthentication	Mining	Virtual Voting (witness)	Authentication				
Type of validationMinersTrusted Nodes	Transactions	Containers	All Nodes				
Ledger RequirementFull ledger requiredFull ledger requ	uired Portion based on long shortest paths.	est and Full ledger required	Portion based on authenticators' number				
Cryptography Digital Signatures Digital Signatu	res Quantum key signatur	re Digital Signatures	Digital Signatures				
Hash functionSHA 256SHA 256	KECCAK-384	SHA 384	SCRYPT				
Consensus Proof of Work Cryptographic.	Authentication Proof of Work	aBFT	Predefined UID				
Numeric SystemBinaryBinary	Trinity	Binary	Binary				
Involved Algorithms HashCash No	Selection AlgoritHashCash	hm No	BFP				
Decentralization Partially Partially	Fully	Fully	Fully				
Appending RequirementsLongest chainOne chain	Selection Algorithm	Full Randomness	Filtration Process				
Energy Requirements High Low	High	Medium	Low				
Node RequirementsHigh Resources NodeLimited Resources	rces Node High Resources Node	High Resources Node	Limited Resources Node				
Design Purpose Cryptocurrency IoT application	IS IoT/Cryptocurrency	Cryptocurrency	IoT/CPS applications				

111

Current Paper: Post-Blockchain (McPoRa)

Novel Contributions

Multi-Chain Technology

08 July 2020

McPoRa Components

Proposed Block Structure

(a) For Traditional Blockchain

(b) For Proposed Post-Blockchain

111

Proposed Post-Blockchain Features

Proposed Algorithms & Operations Collecting values from actuators Check DBL Blocks Form and sign a Block If confirmations number !==0If confirmations No No Run BFP (Find Location) number = = 0Yes Locate randomly and Authenticate Blocks Yes Pick Block 1 = 0, and Block 2 = 1Pick Block 1 and 2 = 0No Authenticated? Input : *Data* D_i collected from *node* N_i Yes Output: Authenticated Blocks Ab_i or Discarded Blocks Db_i , and Appended Block Nb_i Broadcast new block Terms : Confirmations = blocks' number of authentication, N is the number of nodes Append new block to location **Check DBL Blocks** Run reduction process Yes If confirmations Reduce number = = NDone No mart Electronic

aboratory (S

Results/ 5 Nodes Scenario

111

Results/ 10 Nodes Scenario

Time (ms)	Authentication (ms)	Reduction (ms)
Minimum	1.21	145.8
Maximum	494	1420
Average	5.6	740

111

Results/15 Nodes Scenario

21

UNT S

Results/ Authentication Time

Results/ Reduction Time

23

08 July 2020

Comparative Perspective of McPoRA with Previous Related Work

Consensus Algorithms	Authentication Time (ms)	Ledger	Miners	Blockchain Type	Data Structure
Proof of Work (PoW) [14]	240,000	Full	Yes	Public	Blockchain
Proof of Importance (Pol) [20], [21]	60,000	Full	Yes	Public	Blockchain
Proof of Authority (PoA) [22], [23]	5000	Full	Yes	Permissioned	Blockchain
Proof of Authentication (PoAh) [15]	3000	Full	Yes	Private	Blockchain
Proof of PUF-Enabled Authentication (PoP) [12]	192.3	Full	Yes	Private	Blockchain
Proof of Block and Trade (PoBT) [24]	80-210	Full	Yes	Private	Blockchain
McPoRA (Current Paper)	3.9-19.23 (Avg.)	Portion	No	Private	Multi-Chain

111

Conclusions

IoT/CPS

Distributed Ledger Technology.

Issue: Consensus Algorithm & Linked List.

Proposed Multi-Chain Technology.

Contributions.

Future work.

- Blockchain.
- Post-Blockchain
 - Tangle.
 - Hedera Hashgraph.
- Consensus Algorithm Design.
- New.

References

- [2] B. Cao, Y. Li, L. Zhang, L. Zhang, S. Mumtaz, Z. Zhou, and M. Peng, "When internet of things meets blockchain: Challenges in distributed consensus," IEEE Network, pp. 1–7, 2019.
- [4] S. P. Mohanty, U. Choppali, and E. Kougianos, "Everything you wanted to know about smart cities: The internet of things is the backbone," IEEE Consumer Electronics Magazine, vol. 5, no. 3, pp. 60–70, July 2016.
- [6] D.Puthal, N.Malik, S.P.Mohanty, E.Kougianos, and G.Das, "Everything You Wanted to Know About the Blockchain: Its Promise, Components, Processes, and Problems," IEEE Consumer Electronics Magazine, vol. 7, no. 4, pp. 6–14, July 2018.
- [7] A. Ahi and A. V. Singh, "Role of Distributed Ledger Technology (DLT) to Enhance Resiliency in Internet of Things (IoT) Ecosystem," in Proc. Amity International Conference on Artificial Intelligence (AICAI), 2019, pp. 782–786.
- [8] S. Popov, "The Tangle," Jinn Labs, 2016, version 0.6.
- [10] N. Kolokotronis, K. Limniotis, S. Shiaeles, and R. Griffiths, "Secured by Blockchain: Safeguarding Internet of Things Devices," IEEE Consumer Electronics Magazine, vol. 8, no. 3, pp. 28–34, May 2019.
- [15] D. Puthal, S. P. Mohanty, P. Nanda, E. Kougianos, and G. Das, "Proof of-Authentication for Scalable Blockchain in Resource-Constrained Distributed Systems," in Proc. IEEE International Conference on Consumer Electronics (ICCE), 2019, pp. 1–5.
- [17] L. Baird, "The Swirlds Hashgraph Consensus Algorithm: Fair, Fast, Byzantine Fault Tolerance," Swirlds, May 2016.

Acknowledgement(s)

The authors would like to acknowledge financial support from the Saudi Arabian Cultural Mission (SACM).

