Blockchain - Demystified

Oriental University, Indore

06 November 2020

Saraju P. Mohanty University of North Texas, USA. Email: saraju.mohanty@unt.edu More Info: http://www.smohanty.org

Talk Outline

- Blockchain Introduction
- Blockchain Consensus Algorithms
- Blockchain Applications
- Smart Agriculture
- Blockchain Challenges
- Blockchain for Business
- Hardware for Blockchain
- Software Simulation of Blockchain
- Conclusions and Future Directions

Introduction – Banking → Cryptocurrency

3

Traditional Banking System

Issues in Banking system

- Transaction fees
- Delay
- Central authority
- Fraud
- Walk-In transactions

5

Digital Assets

- Digital asset can be anything of value, such as the combination to your home safe, a secret password, a list, a message, electronic cash, a document, a photo, and so on.
- Encryption + Decryption = Cryptography
- Digital Assets + Cryptography = Cryptocurrency
- Cryptocurrency + Economics = Cryptoeconomics

Double Spending may Happen in Digital Assets

Traditional exchange of physical money – No Double Spending

Blockchain - Prof./Dr. Saraju P. Mohanty

art Electroni

aboratory (S

Blockchain Technology

This Photo by Unknown Author is licensed under CC BY

What is **Blockchain**

11/6/2020

Blockchain - Prof./Dr. Saraju P. Mohanty

What is Blockchain?

- Technical Definition: A blockchain is a linked list that is built with hash pointers instead of regular pointers.
- Socio–Political–Economic Definition: A blockchain is an open, borderless, decentralized, public, trustless, permission less, immutable record of transactions.
- Financial Accounting Definition: A blockchain is a public, distributed ledger of peer-to-peer transactions.

Source: D. Puthal, N. Malik, S. P. Mohanty, E. Kougianos, and C. Yang, "The Blockchain as a Decentralized Security Framework", *IEEE Consumer Electronics Magazine (CEM)*, Volume 7, Issue 2, March 2018, pp. 18--21.

Source: D. Puthal, N. Malik, S. P. Mohanty, E. Kougianos, and G. Das, "Everything you Wanted to Know about the Blockchain", *IEEE Consumer Electronics Magazine*, Volume 7, Issue 4, July 2018, pp. 06--14.

Private vs Public Ledger

UNT

Blockchain vs. Distributed Ledger

<mark>% 101 Blockchains |</mark> Blockchain VS. Distributed Ledger Technology

WHAT IS A **DISTRIBUTED LEDGER?**

.

A distributed ledger is a database that is decentralized, i.e., distributed across several computers or nodes. In this technology, every node will maintain the ledger, and if any data changes happen, the ledger will get updated. The updating takes place independently at each node.

WHAT IS A Blockchain?

The blockchain is one of the distributed ledger technology where every node gets its very own copy of the ledger. Every time someone adds a new transaction, all the copies of the ledger gets updated.

You can consider DLT as the parent technology of blockchain. blockchain market is expected to increase from half a billion USD in 2018 to 16 billion USD in 2024.

BLOCKCHAIN VS. DISTRIBUTED LEDGER THE DIFFERENCE

000

Ý, Ô

B

The blockchain is a type of distributed ledger. However, you cannot call every distributed ledger a blockchain.

Blockchain represents the data as a chain of blocks. This structure is not the genuine data structure of distributed ledgers. A distributed ledger is simply a database spread across different nodes. However, you can represent this data in different ways for different ledgers.

In blockchain technology, you can find all the blocks in a particular sequence. Distributed ledgers do not need to follow blockchain's sequence of data. Other DLTs have a different kind of sequence of data; it depends on the technology.

POWER HUNGRY CONSENSUS

SEQUENCE

BLOCK STRUCTURE

REAL-LIFE IMPLEMENTATIONS Many enterprises and governmental institutions are already using blockchain technology, but DLT projects or usage is still under development. So, it doesn't have many real-life implementations.

consensus, so in short, they are comparatively more scalable.

In most cases, there is typically a wide usage of proof of work mechanism in

the blockchain. However, there are also other mechanisms, but in the end,

they also take up power. But distributed ledger doesn't need this kind of

TOKENS

In a distributed ledger technology, it's not necessary to have tokens or any kind of currency on the network. On the other hand, many blockchain platforms have some sort of token economy. However, modern blockchain technology is trying to come out of the cryptocurrency shadow.

Source: https://101blockchains.com/blockchain-vs-distributed-ledger-technology/

Blockchain - Prof./Dr. Saraju P. Mohanty

11/6/2020

Blockchain - Prof./Dr. Saraju P. Mohanty

Blockchain Structure

Crypto Mining and Miners

- To prevent double spending all the peers in P2P network is carrying a shared ledger.
- A peer can use this to verify the transactions and help in adding records to ledger.
- Such process is called crypto mining and those peers are called crypto miners.
- Miners will be awarded with some rewards for the work.

Consensus Mechanism

- As blockchain deals with untrusted peers sharing a ledger, there is a need for rules that will ensure security and data integrity.
- An agreement in the network to operate properly even in events of failure.
- This will also determine the rewards to do the work of storing and creating transactions in the network.

How Blockchain Works?

11/6/2020

Blockchain - Prof./Dr. Saraju P. Mohanty

Blockchain - Working Model

Source: Deepak Puthal, Nisha Malik, Saraju P. Mohanty, Elias Kougianos, and Gautam Das, "Everything you Wanted to Know about the Blockchain", *IEEE Consumer Electronics Magazine*, Vol. 8, No. 4, pp. 6--14, 2018.

Transaction Validation

Block Generation

Block Validation

Transaction Verification

- General nodes are not required to store all the transactions
- Only block headers are stored
- To verify a transaction
 - Get the latest longest chain
 - Obtain the Merkle branch linking the transaction to block
 - If the node is accepted and block is created, transaction is verified

Blockchain Consensus Algorithms

74

Trust in Blockchain

Strangers in Blockchain

Blockchain Consensus Algorithm - Timeline

Source: U. Bodkhe, D. Mehta, S. Tanwar, P. Bhattacharya, P. K. Singh and W. Hong, "A Survey on Decentralized Consensus Mechanisms for Cyber Physical Systems," in *IEEE Access*, vol. 8, pp. 54371-54401, 2020, doi: 10.1109/ACCESS.2020.2981415.

Blockchain Consensus - Parameters

Source: U. Bodkhe, D. Mehta, S. Tanwar, P. Bhattacharya, P. K. Singh and W. Hong, "A Survey on Decentralized Consensus Mechanisms for Cyber Physical Systems," in *IEEE Access*, vol. 8, pp. 54371-54401, 2020, doi: 10.1109/ACCESS.2020.2981415.

Consensus Algorithm Types

Proof-of-Work (PoW)

Source: S. P. Mohanty, V. P. Yanambaka, E. Kougianos, and D. Puthal, "PUFchain: Hardware-Assisted Blockchain for Sustainable Simultaneous Device and DataSecurity in the Internet of Everything(IoE)", arXiv Computer Science, arXiv:1909.06496, Sep 2019, 37-pages.

84

11/6/2020

Proof-of-Stake (PoS)

- Stake of coins instead of mining
- Creator of new block is chosen randomly by various combinations of wealth and age of stake
- Coin age is used to select the node
 - Coin age= number of coins * number of days coins are held
- Once a block is signed by elected node, coin age for that node will go back to zero and start again
- No mining rewards, only transaction fees.

PoW Vs PoS

VS.

Proof of Work

Proof of Stake

To add each block to the chain, miners must compete to solve a difficult puzzle using their computers processing power.

In order to add a malicious block, you'd have to have a computer more powerful than 51% of the network.

The first miner to solve the puzzle is given a reward for their work. Source: https://blockgeeks.com/guides/proof-of-work-vs-proof-of-stake/

There is no competition as the block creator is chosen by an algorithm based on the user's stake.

In order to add a malicious block, you'd have to own 51% of all the cryptocurrency on the network.

There is no reward for making a block, so the block creator takes a transaction fee.

Blockchain Challenges

11/6/2020

Blockchain - Prof./Dr. Saraju P. Mohanty

Blockchain has Many Challenges

Source: D. Puthal, N. Malik, S. P. Mohanty, E. Kougianos, and G. Das, "Everything you Wanted to Know about the Blockchain", *IEEE Consumer Electronics Magazine (CEM)*, Volume 7, Issue 4, July 2018, pp. 06--14.

Blockchain Energy Need is Huge

Energy for mining of 1 bitcoin

Energy consumption 2 years of a US household

113

Blockchain Energy Need is Huge

Energy consumption for each bitcoin transaction

80,000X

Energy consumption or a credit card processing

Energy aspect of bitcoin

Embodied Energy: Manufacturing equipment

- Decreases overtime
- Returns to scale

Electricity: Computations of algorithms

- Increases overtime
- Returns to scale
- Cooling: Protection of equipment
 - Increases with scale of mining rig

Blockchain Challenges - Energy

Source: D. Puthal, N. Malik, S. P. Mohanty, E. Kougianos, and G. Das, "Everything you Wanted to Know about the Blockchain", *IEEE Consumer Electronics Magazine*, Volume 7, Issue 4, July 2018, pp. 06--14.

Blockchain has Security Challenges

Selected attacks on the blockchain and defences					
Attacks	Descriptions	Defence			
Double spending	Many payments are made with a body of funds	Complexity of mining process			
Record hacking	Blocks are modified, and fraudulent transactions are inserted	Distributed consensus			
51% attack	A miner with more than half of the network's computational power dominates the verification process	Detection methods and design of incentives			
Identity theft	An entity's private key is stolen	Reputation of the blockchain on identities			
System hacking	The software systems that implement a blockchain are compromised	Advanced intrusion detection systems			

Source: N. Kolokotronis, K. Limniotis, S. Shiaeles, and R. Griffiths, "Secured by Blockchain: Safeguarding Internet of Things Devices," *IEEE Consumer Electronics Magazine*, vol. 8, no. 3, pp. 28–34, May 2019.

11/6/2020

Blockchain Security Threats

122

Blockchain has Serious Privacy Issue

	Bitcoin	Dash	Monero	Verge	PIVX	Zcash
Origin	-	Bitcoin	Bytecoin	Bitcoin	Dash	Bitcoin
Release	January	January	April	October	February	October
	2009	2014	2014	2014	2016	2016
Consensus Algorithm	PoW	PoW	PoW	PoW	PoS	PoW
Hardware Mineable	Yes	Yes	Yes	Yes	No	Yes
Block Time	600 sec.	150 sec.	120 sec.	30 sec.	60 sec.	150 sec.
Rich List	Yes	Yes	No	Yes	Yes	No
Master Node	No	Yes	No	No	Yes	No
Sender Address Hidden	No	Yes	Yes	No	Yes	Yes
Receiver Address Hidden	No	Yes	Yes	No	Yes	Yes
Sent Amount Hidden	No	No	Yes	No	No	Yes
IP Addresses Hidden	No	No	No	Yes	No	No
Privacy	No	No	Yes	No	No	Yes
Untraceability	No	No	Yes	No	No	Yes
Fungibility	No	No	Yes	No	No	Yes

Source: J. Lee, "Rise of Anonymous Cryptocurrencies: Brief Introduction", IEEE Consumer Electronics Magazine, vol. 8, no. 5, pp. 20-25, 1 Sept. 2019.

Blockchain - 51% Attack

Blockchain Challenges – Anonymity Can be Broken

With careful analysis, anonymity can be broken

Blockchain Scalability Issue

- Since Blockchain is an immutable and irreversible database, the blockchain will grow over time.
- The amount of data stored will bring up other problems such as the power consumed while searching or analyzing the huge database.

Blockchain Latency Issue

 Latency is another challenge caused by the huge amount of data.

Blockchain Memory Usage

- A transaction is charged based in the amount of data
- Multiple transactions needed for larger files to break them into chunks and send multiple transactions
- This will increase cost in terms of base transaction fee, fee per byte of data
- All these factors limited amount of data to be stored on the blockchain
- Solution: Usage of hash to be stored on the blockchain and actual data to be stored off-chain like RDBMS and File sharing systems

Some of our Blockchain Solutions

136

PoAh: A Novel Consensus Algorithm for Fast Scalable Private Blockchain for Large-scale IoT Frameworks

137

Source: D. Puthal and S. P. Mohanty, "Proof of Authentication: IoT-Friendly Blockchains", IEEE Potentials Magazine, Vol. 38, No. 1, January 2019, pp. 26--29.

Blockchain - Prof./Dr. Saraju P. Mohanty

Laboratory (SES

Our PoAh-Chain: Proposed New Block Structure

Source: S. P. Mohanty, V. P. Yanambaka, E. Kougianos, and D. Puthal, "PUFchain: Hardware-Assisted Blockchain for Sustainable Simultaneous Device and DataSecurity in the Internet of Everything(IoE)", arXiv Computer Science, arXiv:1909.06496, Sep 2019, 37-pages.

144

IoT Simulators - Node-RED - Example

Blockchain - Prof./Dr. Saraju P. Mohanty

Laboratory (SES

UNT SCIENCE

Blockchain - Prof./Dr. Saraju P. Mohanty

11/6/2020

151

Our PoAh is 200X Faster than PoW While Consuming a Very Minimal Energy

Consensus Algorithm	Blockchain Type	Prone To Attacks	Power Consumption	Time for Consensus
Proof-of-Work (PoW)	Public	Sybil, 51%	538 KWh	10 min
Proof-of-Stake (PoS)	Public	Sybil, Dos	5.5 KWh	
Proof-of-Authentication (PoAh)	Private	Not Known	3.5 W	3 sec

Source: D. Puthal, S. P. Mohanty, P. Manda, E. Kougianos, and G. Das, "Proof-of-Authentication for Scalable Blockchain in Resource-Constrained Distributed Systems", in *Proc. 37th IEEE International Conference on Consumer Electronics (ICCE)*, 2019.

152

PUFchain: Hardware-Assisted Blockchain for Sustainable Simultaneous Device and Data Security in Internet of Everything (IoE)

154

We Proposed World's First Hardware-Integrated Blockchain (PUFchain) that is Scalable, Energy-Efficient, and Fast

Challenges and Novel Contribution

- Challenges for blockchain to adopt in IoT architecture
 - Scalability
 - High computational requirement
 - High Power consumption
- A high level of security by integrating Hardware assisted security module
 - A hybrid oscillator arbiter PUF module is used
 - Key generated is used for cryptography
- A novel consensus mechanism for IoT environment, proof-of-PUF-Enabled Authentication (PoP)
 - PUF keys are used in cryptography
 - Keys are not transmitted over network

PUFchain: The Hardware-Assisted Scalable Blockchain

Source: S. P. Mohanty, V. P. Yanambaka, E. Kougianos, and D. Puthal, "PUFchain: Hardware-Assisted Blockchain for Sustainable Simultaneous Device and Data Security in Internet of Everything (IoE)", *IEEE Consumer Electronics Magazine (MCE)*, Vol. 9, No. 2, March 2020, pp. in Press.

PUFchain: Proposed New Block Structure

PUFchain node

- Contains PUF module and hashing module attached to IoT device
- PUF Module
 - PUF module is responsible for generating unique key for IOT device
 - PUF key uses process variations during manufacturing process to generate device fingerprints
 - Key is not fixed and depends on challenge posed to the PUF module
 - Key is not transmitted over the network
- Hashing Module
 - Makes uses of the unique key generated from PUF module
 - Off-loads computational overhead on the IoT device

PUFchain – A Typical Node

Node in A PUF – Chain Environment

Source: S. P. Mohanty, V. P. Yanambaka, E. Kougianos and D. Puthal, "PUFchain: A Hardware-Assisted Blockchain for Sustainable Simultaneous Device and Data Security in the Internet of Everything (IoE)," *IEEE Consumer Electronics Magazine*, vol. 9, no. 2, pp. 8-16, 1 March 2020.

PUFchain: Device Enrollment Steps

Source: S. P. Mohanty, V. P. Yanambaka, E. Kougianos, and D. Puthal, "PUFchain: Hardware-Assisted Blockchain for Sustainable Simultaneous Device and Data Security in Internet of Everything (IoE)", *IEEE Consumer Electronics Magazine (MCE)*, Vol. 9, No. 2, March 2020, pp. in Press.

164

11/6/2020

PUFchain - Transactions Initiation

Source: S. P. Mohanty, V. P. Yanambaka, E. Kougianos, and D. Puthal, "PUFchain: Hardware-Assisted Blockchain for Sustainable Simultaneous Device and Data Security in Internet of Everything (IoE)", *IEEE Consumer Electronics Magazine (MCE)*, Vol. 9, No. 2, March 2020, pp. in Press.

11/6/2020

Blockchain - Prof./Dr. Saraju P. Mohanty

Source: S. P. Mohanty, V. P. Yanambaka, E. Kougianos, and D. Puthal, "PUFchain: Hardware-Assisted Blockchain for Sustainable Simultaneous Device and Data Security in Internet of Everything (IoE)", *IEEE Consumer Electronics Magazine (MCE)*, Vol. 9, No. 2, March 2020, pp. in Press.

169

11/6/2020

P	JFcha	in S	36	ecuri	ty Va	lida	tion
8 🖱 🗊 Scyther: PUFChain.s	pdl						
Protocol description Settings	5						
Verification parameters Maximum number of runs O disables bound)	100						
1atching type	typed matching ‡			S - the sou	rce of the bl	ock	
dvanced parameters							
earch pruning	Find best attack 💲		L	J - the min	er or auther	iticator n	ode in the networks
1aximum number of patterns er claim	10	😣 Scythe	r res	ults : verify			
dditional backend parameters		Claim				Status	Comments
Graph output parameter	rs					~	
ttack graph font size n points)	14	PUFChain	D	PUFChain,D2	Secretni	Ok	No attacks within bounds.
		1		PUFChain,D3	Secret nr	Ok	No attacks within bounds.
				PUFChain,D4	Commit S,ni,nr	Ok	No attacks within bounds.
		Done.					
			_				

PUFchain Security Verification in Scyther simulation environment proves that PUFChain is secure against potential network threats.

Consensus Algorithms – Comparative Perspectives

Consensus Algorithm	Blockchain Type	Mining/ Consensus	Prone To Attacks	Power Consu.	Time for Consen.
Proof-of-Work (PoW)	Public	Computation Power Based	Sybil, 51%	538 KWh	10 min
Proof-of-Stake (PoS)	Public	Validation	Sybil, DoS	5.5 KWh	NA
Ripple	Permissioned	Vote Based Mining	DoS, Sybil	NA	NA
Proof-of-Vote	Consortium	Vote Based Mining	NA	NA	NA
Proof-of-Trust	Permissioned	Probability & Voting Based	DDoS Attack	NA	NA
Proof-of- Authentication (PoAh)	Private	Authentication	Not Known	3.5 W	3 sec
Proof of PUF-Enabled Authentication (PoP)	Private	Authentication	Not Known	5 W	1 sec

Source: D. Puthal, S. P. Mohanty, V. P. Yanambaka, and E. Kougianos, "PoAh: A Novel Consensus Algorithm for Fast Scalable Private Blockchain for Large-scale IoT Frameworks", *arXiv Computer Science*, arXiv:2001.07297, January 2020, 26-pages.

Our PoP is 1000X Faster than PoW

PoW - 10 min in cloud	PoAh – 950ms in Raspberry Pi	PoP - 192ms in Raspberry Pi
High Power	3 W Power	5 W Power

✓ PoP is 1,000X faster than PoW ✓ PoP is 5X faster than PoAh

Source: S. P. Mohanty, V. P. Yanambaka, E. Kougianos, and D. Puthal, "PUFchain: Hardware-Assisted Blockchain for Sustainable Simultaneous Device and DataSecurity in the Internet of Everything(IoE)", arXiv Computer Science, arXiv:1909.06496, Sep 2019, 37-pages.

Blockchain Applications

Blockchain Applications

Source: D. Puthal, N. Malik, S. P. Mohanty, E. Kougianos, and G. Das, "Everything you Wanted to Know about the Blockchain", *IEEE Consumer Electronics Magazine (CEM)*, Volume 7, Issue 4, July 2018, pp. 06--14.

Blockchain Adoption for Applications

Source: U. Bodkhe, D. Mehta, S. Tanwar, P. Bhattacharya, P. K. Singh and W. Hong, "A Survey on Decentralized Consensus Mechanisms for Cyber Physical Systems," in *IEEE Access*, vol. 8, pp. 54371-54401, 2020, doi: 10.1109/ACCESS.2020.2981415.

Smart Healthcare - 4-Layer Architecture

Source: M. Ghamari, B. Janko, R.S. Sherratt, W. Harwin, R. Piechockic, and C. Soltanpur, "A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments", *Sensors*, 2016. 16(6): p. 831.

Blockchain can be a Solution for many Security Challenges in Smart Healthcare

Source: P. Sundaravadivel, E. Kougianos, S. P. Mohanty, and M. Ganapathiraju, "Everything You Wanted to Know about Smart Health Care", *IEEE Consumer Electronics Magazine (CEM)*, Volume 7, Issue 1, January 2018, pp. 18-28.

Blockchain - Prof./Dr. Saraju P. Mohanty

220

aboratory (S

Blockchain in Smart Healthcare

Source: C. Esposito, A. De Santis, G. Tortora, H. Chang and K. R. Choo, "Blockchain: A Panacea for Healthcare Cloud-Based Data Security and Privacy?," IEEE Cloud Computing, vol. 5, no. 1, pp. 31-37, Jan./Feb. 2018.

The block is inserted in the chain and linked with the previous blocks.

MedRec - Overview

- Blockchain developed at MIT Media Lab.
- Permissions for ownership, viewership and is shared among private, peer-to-peer network.
- Ethereum Smart Contract is used.
- Smart contract allows automation and tracking changes.
- Cryptographic hash is used for Data integrity.
- Public key cryptography is used for patient identity.

Source: A. Azaria, A. Ekblaw, Thiago Vieira and Andrew Lippman, "MedRec: Using Blockchain for Medical Data Access and Permission Management", pp. 25--30, 2016.

Smart-Yoga Pillow (SaYoPillow) - Idea

Source: L. Rachakonda, A. K. Bapatla, S. P. Mohanty, and E. Kougianos, "SaYoPillow: A Blockchain-Enabled, Privacy-Assured Framework for Stress Detection, Prediction and Control Considering Sleeping Habits in the IoMT", *arXiv Computer Science*, arXiv:2007.07377, July 2020, 38-pages.

Blockchain - Prof./Dr. Saraju P. Mohanty

Laboratory (SE

UNT DERVE

SaYoPillow: Prototyping

Ъ #38,549	UNCLES (CORRENT / LAST SO)	LAST BLOCK 65 ago	AVG BLOCK TIME 13.92 S	AVG NETWORK HA	ISHRATE	
ACTIVE NODES 3/3	GAS PRICE I gwei	GAS LIMIT 8000000 gas	PAGE LATENCY 44 ms	💮 UPTIME	10	
		BLOCK PROPAGATION	LAST BLOCKS MINERS 0x0adfcca1b2a1132f02188516aca086d/c24ca3380			
CLE COUNT (25 BLOCKS PER BAB)	TRANSACTIONS	GAS SPENDING	GAS LIMIT		Logradina	16°
ATTENTIONI		SaYoPillow Da	shboard		0x9537cb86f5a03c8ccb52c44t	s. b49757861eca0004b
<u> </u>		Hours Slept	2 Snoring Range	75 Respiration Rate	22 Reart Ra	
ip 10 0 1 42	2 m		91	61 🟂	15 🜔	
ip-10-0-1-25	Gemyklusz szabie nanatimylinus amotolygolisza. 2 m 1 m	Blood Oxygen Level	Eye Movement	Limb Movement	Hours SI	lept
hereum Blo	ckchain Statu	S Detected Stress Level				Medium
		Follow below suggestions Play lullaby's or peaceful r Average Values (Last 24 ho	to relieve stress nusic to regulate sleep. nurs)	ng Cary_1		
		12mg	Average Hours S	lept	2	
		0	Average Snoring	Range	64	
		63	Average Respirat	erage Respiration Rate 2		
		*	Average Heart Ra	ate	54	
		•	Average Blood C	xygen Level	92	
		0	Average Eye Mo	Average Eye Movement 72		
		3.	Average Limb M	ovement	13	

User Interface with Access

Source: L. Rachakonda, A. K. Bapatla, S. P. Mohanty, and E. Kougianos, "SaYoPillow: A Blockchain-Enabled, Privacy-Assured Framework for Stress Detection, Prediction and Control Considering Sleeping Habits in the IoMT", *arXiv Computer Science*, arXiv:2007.07377, July 2020, 38-pages.

Average Temperature

96

SaYoPillow: Prototyping

				_							
	bout an Ethereum tra	nsaction									
0x8629d9ee638a181b1454771666bc579ba8189bdb2f78665b7392	14184587d3b9										
0x0adfcca4b2a1132f82488546aca086d7e24ea324	→ 0x21	<u>2c30420fce0f7ed11</u>	92b6e01de238f29 15297 Co	5f8505 onfirmations	O ETH O ETH						
Summary											
Block Hash	0x44214514875cdcb9d8e27	ed1290716ce7a1d52	2bd0c1575771a8e	c4298c9aed0b							
Received Time	Jul 2, 2020 8:49:19 AM										
Included In Block	23663			ddress, or Blo	ck #				QS	earch	
Gas Used	241,526 m/s	Current I	Block:	ETH/USD P	rice:	Gas Limit:	Block Tin	ne:	Current Diff:	Hat	shrate:
Gas Price	0.000000010 ETH	3855	1	Loading	;	8,000,000 m/s	23 second	d(s)	0.000 T	Lo	ading
Transaction Confirmations	15297										
Number of transactions made by the sender prior to this one	53	🙈 Re	ecent R	locks	Most D	ecent Blocks in	the Ethereur	n Netwo			
Transaction price	0.000241526 ETH				MOSUN		r the Linereur	IIINCUW	лк		
Data	0x8e9cf29c0000000000000000000000000000000000	Block #	Block Hash	Difficulty	Miner			Size	Date	# of TXs	Gas used
		38551	0xb8cb996	0.000 T		4b2a1132f82488546a		0.537 kB	Jul 4, 2020 6:15:21 PM		0 m/s
reating a Transaction in	Ethereum	38550	0x085a226	0.000 T	<u>0x0adfcca</u>	4b2a1132f82488546a	:a086d7e24ea324	0.537 kB	Jul 4, 2020 6:14:58 PM	o	0 m/s
		🗊 38549	0x3c7480b	0.000 T		4b2a1132f82488546a	:a086d7e24ea324	0.537 kB	Jul 4, 2020 6:13:34 PM	o	0 m/s
		38548	0xe7fc8bc	0.000 T	0x0adfcca	4b2a1132f82488546a	:a086d7e24ea324	0.537 kB	Jul 4, 2020 6:13:22 PM	o	0 m/s
		38547	0xca7041d	0.000 T	<u>0x0adfcca</u>	4b2a1132f82488546a	ta086d7e24ea324	0.537 kB	Jul 4, 2020 6:12:35 PM	0	0 m/s
Ethoroum Plookshair		1 38546	0хс072а53	0.000 T	0x0adfcca	4b2a1132f82488546a	:a086d7e24ea324	0.537 kB	Jul 4, 2020 6:12:07 PM	o	0 m/s
Emereum biockchair	i Explorer	38545	0xefd5511	0.000 T	0x0adfcca	4b2a1132f82488546a		0.537 kB	Jul 4, 2020 6:12:01 PM		0 m/s

Source: L. Rachakonda, A. K. Bapatla, S. P. Mohanty, and E. Kougianos, "SaYoPillow: A Blockchain-Enabled, Privacy-Assured Framework for Stress Detection, Prediction and Control Considering Sleeping Habits in the IoMT", *arXiv Computer Science*, arXiv:2007.07377, July 2020, 38-pages.

Smart Transportation

- Applications meet the definition of blockchain and needs the characteristics of blockchain in smart transportation domain:
 - Car History.
 - Car locations.
 - Car Trace.
 - Car Training.
 - Car Rentals.
 - Car Ownership.
 - Blockchain could be used in the communication between cars, car – building.

Blockchain in Smart Transportation

Source: U. Bodkhe, D. Mehta, S. Tanwar, P. Bhattacharya, P. K. Singh and W. Hong, "A Survey on Decentralized Consensus Mechanisms for Cyber Physical Systems," in *IEEE Access*, vol. 8, pp. 54371-54401, 2020, doi: 10.1109/ACCESS.2020.2981415.

11/6/2020

Blockchain based Energy Trading in Electric Vehicles

Source: I. A. Umoren, S. S. A. Jaffary, M. Z. Shakir, K. Katzis and H. Ahmadi, "Blockchain-Based Energy Trading in Electric-Vehicle-Enabled Microgrids," *IEEE Consumer Electronics Magazine*, vol. 9, no. 6, pp. 66-71, 1 Nov. 2020, doi: 10.1109/MCE.2020.2988904.

11/6/2020

Smart Agriculture - Food Supply Chain

- Actors involved
 - Farmers
 - Shipping companies
 - Wholesalers
 - Retailers
 - Distributors
 - Grocerries

Food Supply Chain: Farm → Dinning

269

Inefficiency in Traditional Supply Chain

- High risk between buyer and seller.
- Not transparent and heavy paper based transactions
- Transactions are vulnerable to fraud
- Cost of operating supply chain will contribute to two third of the final product cost

Blockchain Potentials in Smart Agriculture

- Blockchain is expected to grow at a rate of 87% in supply chain industry
- Expected 3314.6\$ million by 2023
- AgriDigital implemented settlement of 23.46 tons of grain in blockchain.
- Louis Dreyfus along with Dutch and French banks to build efficient Food stuff traders over blockchain.

Demand side

Source: U. Bodkhe, D. Mehta, S. Tanwar, P. Bhattacharya, P. K. Singh and W. Hong, "A Survey on Decentralized Consensus Mechanisms for Cyber Physical Systems," in *IEEE Access*, vol. 8, pp. 54371-54401, 2020, doi: 10.1109/ACCESS.2020.2981415.

11/6/2020

Blockchain in Smart Grid

Source: A. S. Musleh, G. Yao and S. M. Muyeen, "Blockchain Applications in Smart Grid–Review and Frameworks," IEEE Access, vol. 7, pp. 86746-86757, 2019.

Hardware for Blockchain

Blockchain - Application Specific Hardware

- It is a hardware assistance to speed up the transactions process and increase the network throughput.
- The accelerator could be built using an FPGA, GPU, or ASIC processors.
- These acceleration hardware could be targeting one aspect of the blockchain or contribute in the whole network.
 - For example, an ASIC could be programmed to accelerate the trust process among nodes with lowest time and power consumption.
 - Also, increases the mining process with lowest power consumption.
- Devices in market:
- BITMAIN company has many versions of hardware mining accelerators for Blockchain applications.
- KRAMBU company provides different models of accelerators using FPGA, GPU, and ASIC.

ASIC Miner

- An application specific hardware designed for mining cryptocurrency
- ASIC's consume less power and perform better than CPU and GPU as they are application specific
- Avoids unnecessary circuitry
- Properties of miners to be considered:
 - Hash rate
 - Power efficiency
 - Price

Hardware wallets

Image source: https://www.buybitcoinworldwide.com/wallets/ledger-nano-s/

297

Software for Blockchain

Blockchain Platforms

- 1. Tezos
- 2. Ethereum
- 3. Hyperledger Fabric
- 4. Hyperledger Sawtooth
- 5. Hedera Hashgraph
- 6. Ripple
- 7. Quorum
- 8. Hyperledger Iroha
- 9. Corda
- 10. EOS
- 11. OpenChain
- 12. Stellar
- 13. Dragonchain
- 14. NEO

Source: https://www.leewayhertz.com/blockchain-platforms-for-top-blockchain-companies/

Blockchain Platforms

Ethereum	Hyperled ger Fabric	R3 Corda	Ripple	Quorum	Hyperled ger Sawtooth	EOS	Hyperled ger Iroha	OpenCha in	Stellar
Industry focus	Cross- Industry	Cross- Industry	Financial Services	Financial Services	Cross- Industry	Cross- Industry	Cross- Industry	Cross- Industry	Digital Asset Managem ent
Ledger Type	Permissio nless	Permissio ned	Permissio ned	Permissio ned	Permissio ned	Permissio ned	Permissio ned	Permissio ned	Permissio ned
Consens us Algorith m	Proof of Work	Pluggable Framewor k	Pluggable Framewor k	Probabilis tic Voting	Majority Voting	Pluggable Framewor k	Delegated Proof-of- Stake	Chain- based Byzantine Fault Tolerant	Partionne d Consensu s
Smart Contract	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes
Governa nce	Ethereum Developer s	Linux Foundatio n	R3 Consortiu m	Ripple Labs	Ethereum Developer s and JP Morgan Chase	Linux Foundatio n	EOSIO Core Arbitration Forum(EC AF)	Linux Foundatio n	CoinPrism

Source: https://www.leewayhertz.com/blockchain-platforms-for-top-blockchain-companies/

Blockchain Development Tools

- 1. Geth
- 2. Mist
- 3. Solc
- 4. Remix
- 5. Testnet
- 6. GanacheCLI
- 7. Coinbase
- 8. EtherScripter
- 9. BaaS
- 10. Metamask
- 11. Ethers.js
- 12. Tierion
- 13. Embark
- 14. Truffle
- 15. MyEtherWallet

Source: https://blockgeeks.com/guides/15-best-tools-blockchain-development/

Blockchain Performance Metrics

398

Gas Price

- Gas is defined as the fundamental network cost unit in Ethereum networks
- It exists only inside the Ethereum computational Engine
- Gas may not be considered as proper metric because:
 - It is cost unit and used only in execution stage
 - Doesn't evaluate during other stages like block committing, validation etc.
 - Gas price is floating and may vary time to time

Transactions per Second (TPS)

- Different blockchains will have different execution times for deploying, invoking and executing of smart contracts.
- The throughput can be measured by Transactions per second
- TPS = count(Tx in (ti,tj))/(ti-tj) txns/second

where ti,tj are time in between which transactions are counted

Throughput for n peers in the network can be calculated $\overline{TPS} = \frac{\sum_{u} TPSu}{N} \frac{txns}{sec}$

Where TPSu = Throughput of each node and N is number of nodes

Source: Zheng, Peilin & Zheng, Zibin & Luo, Xiapu & Chen, Xiangping & Liu, Xuanzhe. (2018). A detailed and realtime performance monitoring framework for blockchain systems. 134-143. 10.1145/3183519.3183546.

Blockchain - Prof./Dr. Saraju P. Mohanty

Average Response Delay

- Time between the transaction being sent to the peer and transaction is confirmed is called Average Response Delay (ARD).
- Tx is number of transactions and tTxconfirmed, tTxinput are time at which the transaction is confirmed and sent respectively

$$ARD_{u} = \frac{\sum_{Tx} (t_{Tx} \ confirmed - t_{Tx} \ input)}{Count \left(Tx \ in \left(t_{i}, t_{j}\right)\right)} (txs/s).$$

$$\overline{ARD} = \frac{\sum_{u} ARD_{u}}{N} (txs/s).$$

Source: Zheng, Peilin & Zheng, Zibin & Luo, Xiapu & Chen, Xiangping & Liu, Xuanzhe. (2018). A detailed and realtime performance monitoring framework for blockchain systems. 134-143. 10.1145/3183519.3183546.

Transaction per CPU

- As different networks work on different CPU powers and the CPU utilization depends on business logic complexity and block validation capacity of CPU
- To quantify below Transaction per CPU will help
- F is the frequency of CPU and CPU(t) is the utilization of CPU at that time.

$$TPC_{u} = \frac{Count\left(Tx\ in\left(t_{i}, t_{j}\right)\right)}{\int_{t_{i}}^{t_{j}} F * CPU(t)} (txs/(GHz \cdot s)),$$

$$\overline{TPC} = \frac{\sum_{u} TPC_{u}}{N} (txs/(GHz \cdot s)).$$

Source: Zheng, Peilin & Zheng, Zibin & Luo, Xiapu & Chen, Xiangping & Liu, Xuanzhe. (2018). A detailed and realtime performance monitoring framework for blockchain systems. 134-143. 10.1145/3183519.3183546.

Transaction per Memory Second

- Execution the account data is loaded into main memory.
- RMEM(t) is real memory consumed by blockchain program at time t and VMEM(t) is the virtual memory consumed.

$$\text{TPMS}_{u} = \frac{Count\left(Tx \ in\left(t_{i}, t_{j}\right)\right)}{\int_{t_{i}}^{t_{j}} RMEM(t) + VMEM(t)} (txs/(MB \cdot s))$$

$$\overline{TPMS} = \frac{\sum_{u} TPMS_{u}}{N} (txs/(MB \cdot s)).$$

Source: Zheng, Peilin & Zheng, Zibin & Luo, Xiapu & Chen, Xiangping & Liu, Xuanzhe. (2018). A detailed and realtime performance monitoring framework for blockchain systems. 134-143. 10.1145/3183519.3183546.

Transactions per Disk I/O

- Blockchain will have separate disk space to store data including world ledger state
- DISKR(t) is size of data read from the disk at time t and DISKW(t) is the size of data write to disk at time t

$$\text{TPDIO}_{u} = \frac{Count \left(Tx \ in \left(t_{i}, t_{j}\right)\right)}{\int_{t_{i}}^{t_{j}} DISKR(t) + DISKW(t)} (txs/kilobytes),$$

$$\overline{TPDIO} = \frac{\sum_{u} TPDIO_{u}}{N} (txs/kilobytes).$$

Source: Zheng, Peilin & Zheng, Zibin & Luo, Xiapu & Chen, Xiangping & Liu, Xuanzhe. (2018). A detailed and realtime performance monitoring framework for blockchain systems. 134-143. 10.1145/3183519.3183546.

Transactions Per Network Data

- Bases on different consensus mechanism, the data will be shared over network to append to ledgers
- UPLOAD(t) is size of upstream and DOWNLOAD(t) is size of downstream in the network at time t

$$\text{TPND}_{u} = \frac{Count\left(Tx \ in\left(t_{i}, t_{j}\right)\right)}{\int_{t_{i}}^{t_{j}} UPLOAD(t) + DOWNLOAD(t)} (txs/kilobytes),$$

$$\overline{TPND} = \frac{\sum_{u} TPND_{u}}{N} (txs/kilobytes).$$

Source: Zheng, Peilin & Zheng, Zibin & Luo, Xiapu & Chen, Xiangping & Liu, Xuanzhe. (2018). A detailed and realtime performance monitoring framework for blockchain systems. 134-143. 10.1145/3183519.3183546.

Block Generation Time

- Block Time / Block creation time is defined as time taken to create a new block in the blockchain
- This depends on complexity of consensus mechanism
- Bitcoins network's block time is nearly 10 minutes and Ethereum it is 20 seconds nearly
- Consensus determines the ordering of events and coming up on an agreement between all the nodes
- It is performed by miners

Blockchain Validation Time

- Blockchain validation is different from blockchain consensus
- Any full-node can validate a transaction
- There is no incentive for validation, except security which is not a motivation
- Miners will be validators in most of the chains
- Validation checks the double spending maliciousness of the transactions

Blockchain Memory Usage

- As discussed in limitations, Memory is directly impacting the costs of operating the blockchain
- Less data to store on blockchain is desirable, hashing can help in storing such large data

Next Generation Blockchain/Ledger Solutions

Blockchain - Prof./Dr. Saraju P. Mohanty

Tangle Technology

- One disadvantage of blockchain-based cryptocurrencies like bitcoin: The concept of a transaction fee that is levied for all transactions occurring on the network irrespective of the transaction value.
- Transaction costs make the use of blockchain-based cryptocurrency impractical for such small payments.
- Tangle: A directed acyclic graph (DAG) structure stores the transactions occurring on the public ledger. It does not incorporate blockchain technology, thereby attempting to address the issue of transaction costs by using the Tangle storage system.

Source: https://www.investopedia.com/terms/t/tangle-cryptocurrency.asp

Tangle Technology

- The working mechanism of Tangle requires a new transaction to approve the previous two transactions.
- Tangle forces a transaction issuing-participant, or node, to contribute towards the agility and security of the network by making him/her approve earlier two pending transactions.
- The nodes also ensure that there are no duplicate transactions leading to double spending, and there are no conflicts among the various transactions as per the Tangle transaction history.

Source: https://www.investopedia.com/terms/t/tangle-cryptocurrency.asp

Source: A. J. Alkhodair, S. P. Mohanty, E. Kougianos, and D. Puthal, "McPoRA: A Multi-Chain Proof of Rapid Authentication for Post-Blockchain based Security in Large Scale Complex Cyber-Physical Systems", *Proc. 9th IEEE-CS Annual Sympo. on VLSI (ISVLSI)*, 2020, pp. 446--451.

A Perspective of BC, Tangle Vs Our Multichain

Features/Technology	Blockchain (Bitcoin)	Proof of Authentication	Tangle	HashGraph	McPoRA (current Paper)
Linked Lists	 One linked list of blocks. Block of transactions. 	 One linked list of blocks. Block of transactions. 	DAG linked list.One transaction.	 DAG linked List. Container of transactions hash 	 DAG linked List. Block of transactions. Reduced block.
Validation	Mining	Authentication	Mining	Virtual Voting (witness)	Authentication
Type of validation	Miners	Trusted Nodes	Transactions	Containers	All Nodes
Ledger Requirement	Full ledger required	Full ledger required	Portion based on longest and shortest paths.	Full ledger required	Portion based on authenticators' number
Cryptography	Digital Signatures	Digital Signatures	Quantum key signature	Digital Signatures	Digital Signatures
Hash function	SHA 256	SHA 256	KECCAK-384	SHA 384	SCRYPT
Consensus	Proof of Work	Cryptographic Authentication	Proof of Work	aBFT	Predefined UID
Numeric System	Binary	Binary	Trinity	Binary	Binary
Involved Algorithms	HashCash	No	Selection AlgorithmHashCash	No	BFP
Decentralization	Partially	Partially	Fully	Fully	Fully
Appending Requirements	Longest chain	One chain	Selection Algorithm	Full Randomness	Filtration Process
Energy Requirements	High	Low	High	Medium	Low
Node Requirements	High Resources Node	Limited Resources Node	High Resources Node	High Resources Node	Limited Resources Node
Design Purpose	Cryptocurrency	IoT applications	IoT/Cryptocurrency	Cryptocurrency	IoT/CPS applications

Source: A. J. Alkhodair, S. P. Mohanty, E. Kougianos, and D. Puthal, "McPoRA: A Multi-Chain Proof of Rapid Authentication for Post-Blockchain based Security in Large Scale Complex Cyber-Physical Systems", *Proc.19th IEEE-CS Annual Symposium on VLSI (ISVLSI)*, 2020, pp. 446--451.

Our Multi-Chain Technology to Enhance Scalability

Source: A. J. Alkhodair, S. P. Mohanty, E. Kougianos, and D. Puthal, "McPoRA: A Multi-Chain Proof of Rapid Authentication for Post-Blockchain based Security in Large Scale Complex Cyber-Physical Systems", *Proceedings of the 19th IEEE Computer Society Annual Symposium on VLSI (ISVLSI)*, 2020, pp. 446--451.

11/6/2020

McPoRA -- Components

Source: A. J. Alkhodair, S. P. Mohanty, E. Kougianos, and D. Puthal, "McPoRA: A Multi-Chain Proof of Rapid Authentication for Post-Blockchain based Security in Large Scale Complex Cyber-Physical Systems", *Proceedings of the 19th IEEE Computer Society Annual Symposium on VLSI (ISVLSI)*, 2020, pp. 446–451.

11/6/2020

(a) For Traditional Blockchain

(b) For Proposed Post-Blockchain

Source: A. J. Alkhodair, S. P. Mohanty, E. Kougianos, and D. Puthal, "McPoRA: A Multi-Chain Proof of Rapid Authentication for Post-Blockchain based Security in Large Scale Complex Cyber-Physical Systems", *Proceedings of the 19th IEEE Computer Society Annual Symposium on VLSI (ISVLSI)*, 2020, pp. 446–451.

11/6/2020

McPoRA – Experimental Results

Time (ms)	Authentication (ms)	Reduction (ms)
Minimum	1.51	252.6
Maximum	35.14	1354.6
Average	3.97	772.53

Source: A. J. Alkhodair, S. P. Mohanty, E. Kougianos, and D. Puthal, "McPoRA: A Multi-Chain Proof of Rapid Authentication for Post-Blockchain based Security in Large Scale Complex Cyber-Physical Systems", *Proceedings of the 19th IEEE Computer Society Annual Symposium on VLSI (ISVLSI)*, 2020, pp. 446–451.

Conclusions and Future Directions

425

When do You Need the Blockchain?

Information of the System that may need a blockchain?

Conclusions

- Blockchain technology has many advantages and applicability in different fields.
- Blockchain is a secure platform that could contribute in smart healthcare, smart transportation, smart contract, and smart agriculture.
- Blockchain could consolidate IoT applications in smart environments.
- DAG is an alternative technique for blockchain technology and could be used of applications that require rapid responses.
- Acceleration hardware is a new hardware assistance to fasten the calculation and processes of the blockchain.

Future Directions

- As future directions, more efficient and low power algorithms for blockchain can be developed.
- Even though Blockchain has many advantages, it has some limitations.
- These limitations created opportunities for researchers, and companies to figure out a way to overcome it.

Mechanisms for Cyber Physical Systems," in *IEEE Access*, vol. 8, pp. 54371-54401, 2020, doi: 10.1109/ACCESS.2020.2981415.

11/6/2020

Blockchain - Prof./Dr. Saraju P. Mohanty

Source: S. P. Mohanty, V. P. Yanambaka, E. Kougianos, and D. Puthal, "PUFchain: Hardware-Assisted Blockchain for Sustainable Simultaneous Device and Data Security in the Internet of Everything (IoE)", *arXiv Computer Science*, arXiv:1909.06496, September 2019, 37-pages.

References

- D. Puthal, N. Malik, S. P. Mohanty, E. Kougianos, and C. Yang, "The Blockchain as A Decentralized Security Framework", IEEE Consumer Electronics Magazine, Vol. 7, No. 2, pp. 18--21, 2018.
- D. Puthal, N. Malik, S. P. Mohanty, E. Kougianos, and G. Das, "Everything you Wanted to Know about the Blockchain", IEEE Consumer Electronics Magazine, Vol. 8, No. 4, pp. 6--14, 2018.
- M. Samaniego and R. Deters, "Blockchain as a Service for IoT", 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 433--436, 2016.
- S. Nakamoto, "Bitcoin: A peer-to-peer electronic cash system.", https://bitcoin.org/bitcoin.pdf, Last visited 08 Oct 2018.
- A. Azaria, A. Ekblaw, T. Vieira and A. Lippman, "MedRec: Using Blockchain for Medical Data Access and Permission Management", pp. 25--30, 2016.

References

- D. Puthal, N. Malik, S. P. Mohanty, E. Kougianos, and G. Das, "Everything You Wanted to Know About Blockchain," IEEE Consum. Electron. Mag., vol. 7, no. 4, pp. 6–14, 2018.
- D. Puthal, N. Malik, S. P. Mohanty, E. Kougianos, and C. Yang, "The blockchain as a decentralized security framework," IEEE Consum. Electron. Mag., vol. 7, no. 2, pp. 18–21, 2018.
- D. Puthal, N. Malik, and S. P. Mohanty, "Proof of authentication: IoT-friendly blockchains," IEEE Consum. Electron. Mag., vol. 38, no. 1, pp. 26–29, 2018.
- S. P. Mohanty, U Choppali, and E Kougianos "Everything You Wanted to Know About Smart Cities," IEEE Consum. Electron. Mag., vol.5, no. 3, pp. 60–70, 2016.
- D. Puthal, N. Malik, and S. P. Mohanty, "Everything You Wanted to Know About Smart Healthcare," IEEE Consum. Electron. Mag., vol.7, no. 1, pp. 18–28, 2018.
- A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell, A. Miller, A. Poelstra, J. Timón, and P. Wuille, "Enabling Blockchain Innovations with Pegged Sidechains," Public Domain, 2014.
- Y. Ribero, D. Raissar, "DAGCOIN," Public Domain, 2015.
- Bitmain S9 model Datasheet.

