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My background
◼ My research is on Smart Electronic Systems, the

backbone of which is a combination of AI/ML, Data

Analytics, Security at the Edge of IoT in the Cyber-

Physical Systems (CPS) that make the smart cities.

◼ My Smart Electronic Systems research can be grouped

into the following inter-related thrusts:

❑ Security and Energy Aware Cyber-Physical Systems (CPS)

❑ IoMT Based Approaches for Smart Healthcare

❑ IoT-Enabled Consumer Electronics for Smart Cities

◼ Existing collaboration with Indian researchers at:

❑ IIT Kanpur

❑ MNIT Jaipur

❑ NIT Rourkela

❑ IIIT Naya Raipur



Smart Cities  is a Solution for 

Urban Migration 
◼ Smart Cities: For effective

management of limited

resource to serve largest

possible population to improve:

❑ Livability

❑ Workability

❑ Sustainability
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July 2016

At Different Levels:

➢ Smart Village

➢ Smart State

➢ Smart Country

Source: S. P. Mohanty, U. Choppali, and E. Kougianos, “Everything You wanted to Know about

Smart Cities”, IEEE Consumer Electronics Magazine, Vol. 5, No. 3, July 2016, pp. 60--70.

➢ Year 2050: 70% of world

population will be urban



Smart City Data Challenges are Multifold
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Smart Healthcare (Healthcare CPS) 

is Data Dependent
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https://ctsoc.ieee.org

H-CPS  Biosensors + Medical Devices +

Wearable Medical Devices (WMDs) +

Implantable Medical Devices (IMDs) + Internet

+ Healthcare database + AI/ML + Applications

that connected through Internet.
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Smart Agriculture (Agriculture CPS)

Source: V. Udutalapally, S. P. Mohanty, V. Pallagani, and V. Khandelwal, “sCrop: A Novel Device for Sustainable Automatic Disease Prediction, Crop

Selection, and Irrigation in Internet-of-Agro-Things for Smart Agriculture”, IEEE Sensors Journal, Vol. XX, No. YY, ZZ 2020, pp. Accepted on 14 Oct

2020.

Solar powered smart 

device for plant disease 

and growth prediction.
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Data Modeling - ML Challenges

16 Oct 2020 (Fri) 7

TinyML for Smart Cities - Prof./Dr. Saraju P. 

Mohanty

Machine 
Learning Issues

High Energy Requirements

High Computational Resource Requirements

Large Amount of Data Requirements

Underfitting/Overfitting Issue

Class Imbalance Issue

Fake Data Issue

Source: Mohanty ISCT Keynote 2019



Deep Neural Network (DNN) -

Resource and Energy Costs
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Source: https://www.mathworks.com/campaigns/offers/mastering-machine-learning-with-matlab.html
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PREDICTION

TRAIN: Iterate until you achieve satisfactory performance.

PREDICT: Integrate trained models into applications.

Needs Significant:

➢Resource

➢Energy

Needs: 
➢ Resource
➢ Energy

Solution: 

Reduce 

Training 

Time / 

Resource

Solution: TinyML



Our Distributed Kriging-

Bootstrapped DNN Modeling for 

Fast Detection of Seizure
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Source: I. L. Olokodana, S. P. Mohanty, and E. Kougianos, “Distributed Kriging-Bootstrapped DNN Model for Fast, Accurate

Seizure Detection from EEG Signals”, Proceedings of the 19th IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2020.

Training Time reduced by 91%



Our Intelligent Non-Invasive Glucose 

Monitoring with Insulin Control Device (iGLU)
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Source: A. M. Joshi, U. P. Shukla and S. P. Mohanty, "Smart Healthcare for Diabetes during COVID-19," IEEE Consumer

Electronics Magazine, doi: 10.1109/MCE.2020.3018775.
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Smart Healthcare - Seizure Detection & Control

A

BC

A – Typical Latency - 6 sec

B – Early Detection - 1 to 2 sec

C – Seizure Predication -

at least 6 sec before

Seizure 

Detection

Seizure 

Onset
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Source: M. A. Sayeed, S. P. Mohanty, E. Kougianos, and H. Zaveri, “eSeiz: An Edge-Device for Accurate Seizure Detection

for Smart Healthcare”, IEEE Transactions on Consumer Electronics (TCE), Volume 65, Issue 3, August 2019, pp. 379--387.

TinyML at 

IoMT-End 

and/or IoMT-

Edge



Data

Quality

Validity
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Smart Healthcare – Data Quality
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Source: H. Zhu, C. K. Wu, C. H. KOO, Y. T. Tsang, Y.Liu, H. R. Chi, and K. F. Tsang, "Smart Healthcare in the Era of

Internet-of-Things", IEEE Consumer Electronics Magazine, vol. 8, no. 5, pp. 26-30, Sep 2019.



Fake Data and Fake Hardware –
Both are Equally Dangerous in CPS
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AI can be fooled by fake data

A plug-in for car-engine computers
FakeAuthentic

An implantable medical device
Authentic Fake

AI can create fake data (Deepfake)



Data - Where to Store and Process?
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July 2018October 2016

Sensor, Edge, Fog, Cloud?
ASIC, FGPA, SoC, FP-SoC, GPU, 
Neuromorphic, Quantum?



CPS – IoT-Edge Vs IoT-Cloud 
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➢Less Data

➢Less Computational Resource

➢Less Accurate Data Analytics

➢Rapid Response

➢Minimal Data
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➢ Least Accurate Data Analytics

➢ Very Rapid Response
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➢Big Data

➢Lots of Computational 

Resource

➢Accurate Data 

Analytics

➢Latency in Network

➢Energy overhead in 
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TinyML at End and/or Edge is key for smart villages and smart cities



Our Smart-Yoga Pillow (SaYoPillow)

Source: L. Rachakonda, A. K. Bapatla, S. P. Mohanty, and E. Kougianos, “SaYoPillow: A Blockchain-Enabled, Privacy-Assured Framework for

Stress Detection, Prediction and Control Considering Sleeping Habits in the IoMT”, arXiv Computer Science, arXiv:2007.07377, July 2020, 38-pages.
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Source: D. Puthal, M. S. Obaidat, P. Nanda, M. Prasad, S. P. Mohanty, and A. Y. Zomaya, “Secure and Sustainable Load

Balancing of Edge Data Centers in Fog Computing”, IEEE Communications Magazine, Volume 56, Issue 5, May 2018, pp. 60--65.

Collaborative Edge Computing Can 

Important for Smart Villages

Collaborative edge

computing connects the

IoT-edges of multiple

organizations that can

be near or far from each

other

→ Providing bigger

computational capability

at the edge.

TinyML at 

IoT-Edge

TinyML at IoT-End



Suggestions for collaboration
◼ Potential collaboration modes

❑ One to one faculty interactions

❑ Serving on Ph.D. students’ committee

❑ Mentoring junior faculty

❑ Indo-USA Science and Technology Forum (IUSSTF)

❑ Participating as expert in India Govt. funding

◼ From my experience what works

❑ One to one faculty interactions

◼ From my experience what are the challenges

❑ Funding to compensate USA faculty time


