iFace: A Deepfake Resilient Digital Identification Framework for Smart Cities

Presenter: Alakananda Mitra

 A. Mitra¹, S. P. Mohanty², P. Corcoran³, and E. Kougianos⁴ University of North Texas, Denton, TX, USA.^{1,2,4} and National University of Ireland, Galway, Ireland³.
 Email: alakanandamitra@my.unt.edu¹, saraju.mohanty@unt.edu², peter.corcoran@nuigalway.ie³, and elias.kougianos@unt.edu⁴

Outline

- Smart City & Digital ID
- iFace: Digital ID System
- iFace Resilient to Various Attacks
- iFace Implementation
- iFace Performance Evaluation
- Conclusions & Future Work

Smart City Components

3

iFace - Alakananda Mitra

Digital Identification (ID)

- Person Specific
- Unique
- Bio-metrics Based
- No Need to Keep Any Secret Key
- User Him/Herself is His/Her Secret Key
- Gateway of Smart City
 - Robust
 - Resilient to Attacks

Challenges of Digital ID

Related Work

Paper	Method	IoT Environment	Remarks
Chen et al.	Entropy Based Key Generation + Reed Solomon ECC + LUT	No	Processing Location Not Specific
Turk et al.	Eigen Function Based FRS + Tracks Head + No Generation of Keys	No	Processing Location Not Specific
Wu et al.	PCA + LUT+ Reed Solomon	No	Processing Location Not Specific
Zhang et al.	Bio Key from Multi Bit Keys	No	Processing Location Not Specific
Oh et al.	Deep Learning Based Method	Yes	Scope Different
Hossain et al.	Bio metric Based + Pairing Based Cryptography	Yes	FR* at Cloud
Masud et al.	Tree Based Cloud Model for Face Recognition	Yes	FA* at Cloud
iFace	Facial Biometrics + Reed Solomon	Yes	FA* at Edge

FR* -> Facial Recognition FA* -> Facial Authentication

6

11/11/2021

iFace : Digital ID System for Smart City

- Facial Biometric Based
- Two Phases
 - Registration Phase
 - Authentication Phase
- Prerequisite
 - Neutral Frontal Face (NFF) Photo
 - Photo Taken at Edge
 - Photo Taken at Each Time

Novel Contribution

- Registration Process at the Edge.
 - Secured
- Authentication at the Edge too.
 Free of Indirect Attacks.
- Deepfake Attack Resilient.

- Accommodate Certain Amount of Modified Biometric Data.
- Robust against Unconstrained Environments.
 - Different Lighting Conditions.
 - Light Makeup.

iFace - Alakananda Mitra

Laboratory (SES

UNT DEPARTME

Smart Electronic Systems Laboratory (SESL)

iFace - Alakananda Mitra

EST, 1890

iFace: Implementation

- Implemented in Python.
- Dataset for Deepfake Detection DeepFakeDetection dataset part of Face Forensics ++.
- For Facial Authentication System 3 Different Datasets.
- Message Length during Error Correction of Encoded Message : 148.
- 4-bit Reed Solomon Codec.

iFace: Dataset Details

Dataset	Source of the Dataset	# of Images
For Deepfake Detection	Part of Face Forensics ++	1,50,000

For iFace Implementation

Dataset Name	Source of the Dataset	# of Images
Dataset -1	CelebA	250
Dataset -2	Frontal Faces Neutral Expression 95 Landmarks	240
Dataset -3	Internet	60

iFace: Sample Images of Dataset

CelebA

Frontal Faces Neutral Expression 95 Landmarks

Dataset-1

Dataset-3

Internet

iFace - Alakananda Mitra

iFace: Face Landmark Points Detection Workflow

iFace : Deepfake Attack Detection

- Feature Extractor : MobileNetV2
- Classifier : Softmax Layer
- Fine tuned a pre-trained MobileNetV2
- Trained last 40 layers in this 53 layers structure

iFace : Face Detection & Alignment

Face is Detected from NFF photo.

 dlib library using Histogram of Oriented Gradient (HOG) + Linear Support Vector Machine (SVM).

Reasons for Choosing HOG Based dlib -

- Best Choice for Resource Limited HOG based dlib face detector.
- Fastest and Lightest.
- □ Frontal Face Photo No Side View.
- Model Works Better with CPU. No GPU Required.

Face Aligned with OpenCV.

□ Limits some positional discrepancies of two photos taken at different times.

iFace : Face Landmark Detection

Detected : 68 facial Landmarks Points related to Jaw, Both Eyebrows and Eyes, Nose, and Mouth.

Feature Vector F1 Size : 68×2

Feature Vector F2

 (x_1, y_1) (x_2, y_2) $d_{j} = d_{1j}$ $d_{1j} \in \mathcal{F}2^{(1 \times 6)}$

iFace : Biometric Features Extraction

- *F*1 is reshaped : 1 × 136
- Threshold Value Calculation
- Calculation of F1_b (Binarization of F1)
- Calculation of Final Feature Vector F_{io}

$$(x_1, y_1, x_2, y_2, ..., x_{68}, y_{68})$$

 $d_m = d_5 + d_6$
 $f_{bi} = \begin{cases} 0, & \text{if } f_i < d_m \\ 1, & \text{if } f_i \ge d_m \end{cases}$
 $\mathcal{F}_{io} = \mathcal{F} 1_b + \mathcal{F} 2$

iFace: New User Registration

Various Times and by Various Cameras of a Smart City Different Photos

- These Variations in Pictures Alter the Bio Key at a Certain Percent
- To Accommodate These Variations and Avoid False Rejection, Reed Solomon (RS) Codes to Correct Errors

iFace: Metrices

FAR : The percentage of identification instances a Facial Recognition System authorizes an unauthorized person incorrectly.
Number of False Accentance

 $FAR = \frac{Number of False Acceptance}{Total Number of Attempts} \times 100 \%$

FRR : The percentage of identification instances a Facial Recognition System fails to authorize or identify an authorized person incorrectly.

 $FRR = \frac{Number of False Rejection}{Total Number of Attempts} \times 100 \%$

iFace: Performance Evaluation

Dataset	# of Test Image	Correct	Falsely Accepted	Falsely Rejected	Accuracy (%)
Dataset -1	1000	1000	0	0	100 %
Dataset - 2	1000	1000	0	0	100 %
Dataset - 3	900	875	0	25	97.22 %
Total	2900	2875	0	25	99.12 %

Smart Electronic Systems

Laboratory (SES

UNT DEPARTMENT SCIENCE & EN College of Ch

iFace: Limitations

- If the person looks considerably different from the photo taken at registration, the system can not authenticate.
- Heavy eye make up like smokey eyes can generate a false rejection.
- Identical twin scenario has not been considered.

iFace & Other Works

Work	loT Friendly	Scalability	FAR (%)	FRR (%)	Accuracy (%)
iFace	Yes	Any Size of Population for Smart City	0	2.77	99.12
Hossain et al.	Yes	NA	-	-	97.3 - 99.5
Masud et al.	Yes	NA	-	-	99.4

Conclusions & Future Work

- Biometric based End-to-End Digital ID System of a smart city.
- Our system can detect certain deepfake attacks.
- Does not allow impostors to access users' data.
- Robust to various lighting conditions.
- As a future work,
 - Presentation Attack Detection Module
 - Deepfake Detection Module Update
 - People with glasses, mask, hats and certain age-related changes.

Scalability Increase.

Thank You!!

