Healthcare Cyber-Physical System -Pandemic Era Perspectives

Invite Talk – Conference on Social Connections to Promote Individual and Community Resilience in Post-COVID-19 Society

Hilton Arlington

07 October 2021

Saraju P. Mohanty

University of North Texas, USA.

Email: saraju.mohanty@unt.edu, Website: http://www.smohanty.org

Outline

- Healthcare → Smart Healthcare
- Smart Healthcare Characteristics
- Smart Healthcare Components
- Smart Healthcare Examples
- Smart Healthcare Challenges
- Smart Healthcare Solutions of Challenges
- Smart Healthcare COVID-19 Perspectives
- Conclusions and Future Directions

2

Healthcare to Smart Healthcare

3

Human Body and Health

Human Body

From an engineering perspective -Human body can be defined as a combination of multi-disciplinary subsystems (electrical, mechanical, chemical ...).

Health Human health is a state of complete physical, mental and social well-being.

Traditional Healthcare

- Physical presence needed
- Deals with many stakeholders
- Stakeholders may not interact
- May not be personalized
- Not much active feedback
- Less effective follow-up from physicians

Telemedicine

Telemedicine: The use of telecommunication and information technology to provide clinical health care from a distance.

Electronic Health (eHealth)

Source: W. O. Nijeweme-d'Hollosy, L. van Velsen, M. Huygens and H. Hermens, "Requirements for and Barriers towards Interoperable eHealth Technology in Primary Care," *IEEE Internet Computing*, vol. 19, no. 4, pp. 10-19, July-Aug. 2015.

eHealth: The use of information technology to improve healthcare services.

7

Connected Health (cHealth)

to

Healthcare CPS -- Prof./Dr. Saraju P. Mohanty

through

share

Mobile Health (mHealth)

mHealth: Healthcare supported by *mobile devices* that uses mobile telecommunications and multimedia technologies for the delivery of healthcare services and health information.

Source: H. Zhu, C. K. Wu, C. H. KOO, Y. T. Tsang, Y.Liu, H. R. Chi, and K. F. Tsang, "Smart Healthcare in the Era of Internet-of-Things", *IEEE Consumer Electronics Magazine*, vol. 8, no. 5, pp. 26-30, Sep 2019.

9

Electronics Magazine (MCE), Vol. 7, Issue 1, January 2018, pp. 18-28.

Smart Healthcare -Characteristics

What is Smart Healthcare?

Internet of Medical Things (IoMT)

Internet of Health Things (IoHT)

Healthcare Cyber-Physical Systems (H-CPS)

Source: P. Sundaravadivel, E. Kougianos, S. P. Mohanty, and M. Ganapathiraju, "Everything You Wanted to Know about Smart Health Care", *IEEE Consumer Electronics Magazine (MCE)*, Volume 7, Issue 1, January 2018, pp. 18-28.

Smart Healthcare - 4-Layer Architecture

Source: M. Ghamari, B. Janko, R.S. Sherratt, W. Harwin, R. Piechockic, and C. Soltanpur, "A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments", *Sensors*, 2016. 16(6): p. 831.

Wearable Medical Devices (WMDs)

Source: https://www.empatica.com/embrace2/ Medical grade smart watch to detect seizure

Headband with Embedded Neurosensors

Insulin Pump

Source: https://www.webmd.com

17

Data Recorder

((m))

Source: P. Sundaravadivel, E. Kougianos, S. P. Mohanty, and M. Ganapathiraju, *"Everything You Wanted to Know about Smart Health Care"*, IEEE Consumer Electronics Magazine (MCE), Volume 7, Issue 1, January 2018, pp. 18-28.

Electromagnet

Collectively: Implantable and Wearable Medical Devices (IWMDs)

RF Transmitter

Implantable MEMS Device

Source: http://web.mit.edu/cprl/www/research.shtml

Smart Healthcare – 7Ps

Source: H. Zhu, C. K. Wu, C. H. KOO, Y. T. Tsang, Y.Liu, H. R. Chi, and K. F. Tsang, "Smart Healthcare in the Era of Internet-of-Things", *IEEE Consumer Electronics Magazine*, vol. 8, no. 5, pp. 26-30, Sep 2019.

IoMT Advantages & Limitations

Advantages

Patients/Users

- Real-time interventions in emergency
- Cost reduction
- Reduced morbidity and financial burden due to less follow up visits

Healthcare Service Providers

- Optimal utilization of resources
- Reduced response time in emergency

Manufacturers

- Standardization/compatibility and uniformity of data available
- Capability to sense and communicate health related information to remote location

Limitations

Technical Challenges

- Security of IoT data hacking and unauthorized use of IoT
- Lack of standards and communication protocols
- Errors in patient data handling
- ✤ Data integration
- Need for medical expertise
- Managing device diversity and interoperability
- Scale, data volume and performance

Market Challenges

- Physician compliance
- Data overload on healthcare facility
- Mobile hesitation
- Security policy compliance

Source: Y. Shelke and A. Sharma, "Internet of Medical Things", 2016, Aranca, https://www.aranca.com/knowledge-library/special-reports/ip-research/the-internet-of-medical-things-iomt, Last Visited 10/18/2017.

Smart Healthcare -Components

23

Internet of Medical Things (IoMT)

IoMT is a collection of medical sensors, devices, healthcare database, and applications that connected through Internet.

Source: http://www.icemiller.com/ice-on-fire-insights/publications/the-internet-of-health-things-privacy-and-security/ Source: http://internetofthingsagenda.techtarget.com/definition/IoMT-Internet-of-Medical-Things

Smart Healthcare Sensors

Smart Healthcare Communication

Frequency Band	Data Rate	Range	Transmission Power
2.4 GHz	50–200 Kbps	30 m	~10 mW
868 MHz/ 915 MHz/ 2.4 GHz	20–250 Kbps	30 m	30 mW
2400-2485 MHz	1 Mbps	Up to 10 m	0.01–1 mW
2,360-2,400/ 2,400- 2,483.5 MHz UWB: 3–10 GHz HBC: 16/27 MHz	NB: 57.5–485.7 Kbps UWB: 0.5–10 Mbps	1.2 m	0.1 μW
402-405 MHz	Up to 500 Kbps	2 m	25 μW
	Frequency Band 2.4 GHz 868 MHz/ 915 MHz/ 2.4 GHz 2400-2485 MHz 2,360-2,400/ 2,400- 2,483.5 MHz UWB: 3-10 GHz HBC: 16/27 MHz 402-405 MHz	Frequency Band Data Rate 2.4 GHz 50–200 Kbps 868 MHz/ 915 MHz/ 2.4 GHz 20–250 Kbps 2400-2485 MHz 1 Mbps 2,360-2,400/ 2,400- 2,483.5 MHz NB: 57.5–485.7 Kbps UWB: 3–10 GHz HBC: 16/27 MHz 402-405 MHz Up to 500 Kbps	Frequency Band Data Rate Range 2.4 GHz 50–200 Kbps 30 m 868 MHz/ 915 MHz/ 2.4 GHz 20–250 Kbps 30 m 2400-2485 MHz 1 Mbps Up to 10 m 2,360-2,400/ 2,400- 2,483.5 MHz NB: 57.5–485.7 Kbps 1.2 m VWB: 3–10 GHz HBC: 16/27 MHz Up to 500 Kbps 2 m

Source: V. Custodio, F.J. Herrera, G. López, and J. I. Moreno, "A Review on Architectures and Communications Technologies for Wearable Health-Monitoring Systems", Sensors, 2012. 12(10): p. 13907-13946.

Electronics Health Record (EHR)

- Electronic Health Record (EHR) is the systematized collection of health information of individuals stored in a digital format.
- Created by various health providers such as hospitals and clinics.

Electronic Medical Record (EMR)

Smart Healthcare – AI/ML Framework

Source: Hongxu Yin, Ayten Ozge Akmandor, Arsalan Mosenia and Niraj K. Jha (2018), "Smart Healthcare", *Foundations and Trends® in Electronic Design Automation*, Vol. 12: No. 4, pp 401-466. http://dx.doi.org/10.1561/100000054

28

Brain Computer Interface (BCI)

Healthcare CPS -- Prof./Dr. Saraju P. Mohanty

Smart Electronic Systems

Laboratory (SE

UNT

Virtual Reality in Healthcare

Source: http://medicalfuturist.com/5-ways-medical-vr-is-changing-healthcare/

Source: https://touchstoneresearch.com/tag/applied-vr/

In Surgery

Smart Healthcare – Specific Examples

34

Stress is a Global Issue

- In major global economies 6 in 10 workers experiencing increased workplace stress.
- In USA: 75% of adults reported experiencing moderate to high levels of stress. 1 out of 75 people may experience panic disorder.
- In Australia: 91% of adults feel stress in at least one important area of their lives.
- In UK: An estimated 442,000 individuals, who worked in 2007/08 believed that they were experiencing work-related stress
- Depression is among the leading causes of disability worldwide.
 25% of those with depression world-wide have access to effective treatments → 75% don't have.

Source: http://www.gostress.com/stress-facts/

Stress Monitoring & Control – Our Vision

Source: L. Rachakonda, S. P. Mohanty, E. Kougianos, and P. Sundaravadivel, "Stress-Lysis: A DNN-Integrated Edge Device for Stress Level Detection in the IoMT", *IEEE Transactions on Consumer Electronics (TCE*), Vol 65, No 4, Nov 2019, pp. 474--483.

Smart Healthcare – Smart-Pillow

Source: L. Rachakonda, S. P. Mohanty, E. Kougianos, K. Karunakaran, and M. Ganapathiraju, "Smart-Pillow: An IoT based Device for Stress Detection Considering Sleeping Habits", in *Proceedings of the 4th IEEE International Symposium on Smart Electronic Systems (iSES)*, 2018, pp. 161--166.

Smart-Yoga Pillow (SaYoPillow) - Sleeping Pattern

Source: L. Rachakonda, A. K. Bapatla, S. P. Mohanty, and E. Kougianos, "SaYoPillow: Blockchain-Integrated Privacy-Assured IoMT Framework for Stress Management Considering Sleeping Habits", *IEEE Transactions on Consumer Electronics (TCE)*, Vol. 67, No. 1, Feb 2021, pp. 20-29.

on Consumer Electronics (TCE), Vol. 67, No. 1, Feb 2021, pp. 20-29.

Healthcare CPS -- Prof./Dr. Saraju P. Mohanty

Smart Electronic S

Laboratory (SES

UNT DEPART SCIENCE College

using the IoMT", in Proc. of IEEE Smart Cities Conference (ISC2), 2020.

Imbalance Diet is a Global Issue

- Imbalanced diet can be either more or fewer of certain nutrients than the body needs.
- In 2017, 11 million deaths and 255 million disability-adjusted lifeyears (DALYs) were attributable to dietary risk factors.
- Eating wrong type of food is potential cause of a dietary imbalance:

Psychiatric disorders
 Coronary heart disease
 High blood pressure

Obesity
Tooth decay
Diabetes

Source: https://obesity-diet.nutritionalconference.com/events-list/imbalanced-diet-effects-and-causes https://www.thelancet.com/article/S0140-6736(19)30041-8/fulltext

Automatic Diet Monitoring & Control - Our Vision

Source: L. Rachakonda, S. P. Mohanty, and E. Kougianos, "iLog: An Intelligent Device for Automatic Food Intake Monitoring and Stress Detection in the IoMT", *IEEE Transactions on Consumer Electronics (TCE)*, Vol. 66, No. 2, May 2020, pp. 115--124.

Smart Healthcare – Diet Monitoring - iLog

iLog- Fully Automated Detection System with 98% accuracy.

Source: L. Rachakonda, S. P. Mohanty, and E. Kougianos, "iLog: An Intelligent Device for Automatic Food Intake Monitoring and Stress Detection in the IoMT", *IEEE Transactions on Consumer Electronics (TCE)*, Vol. 66, No. 2, May 2020, pp. 115--124.

07 Oct 2021
Smart Healthcare – Diet Prediction – Smart-Log

Source: P. Sundaravadivel, K. Kesavan, L. Kesavan, S. P. Mohanty, and E. Kougianos, "Smart-Log: A Deep-Learning based Automated Nutrition Monitoring System in the IoT", *IEEE Transactions on Consumer Electronics (TCE)*, Vol 64, Issue 3, Aug 2018, pp. 390-398.

Diabetes is a Global Crisis

Smart Electronic Systems Laboratory (SEL)

07 Oct 2021

Blood Glucose Monitoring – Invasive Vs Noninvasive

Unique Near Infrared Spectroscopy for iGLU

Source: A. M. Joshi, P. Jain, and S. P. Mohanty, A Device For Non-Invasive Blood and Serum Glucose-Level Monitoring and Control, India Patent Application Number: 202011027041, Filed on: 25 June 2020.

Source: A. M. Joshi, P. Jain, and S. P. Mohanty, A Device For Non-Invasive Blood and Serum Glucose-Level Monitoring and Control, India Patent Application Number: 202011027041, Filed on: 25 June 2020.

92

MyWear – A Smart Wear for Continuous Body Vital Monitoring – using ECG & EMG

Source: S. C. Sethuraman, P. Kompally, S. P. Mohanty, and U. Choppali, "MyWear: A Novel Smart Garment for Automatic Continuous Vital Monitoring", *IEEE Transactions on Consumer Electronics (TCE)*, Vol. XX, No. YY, ZZ 2021, pp. Accepted on 30 May 2021.

MyWear – A Smart Wear for Continuous Body Vital Monitoring – using ECG & EMG

Embedded Electrodes inside MyWear

Source: S. C. Sethuraman, P. Kompally, **S. P. Mohanty**, and U. Choppali, "MyWear: A Novel Smart Garment for Automatic Continuous Vital Monitoring", *IEEE Transactions on Consumer Electronics (TCE)*, Vol. XX, No. YY, ZZ 2021, pp. Accepted on 30 May 2021.

Smart Electronic

Laboratory (S

Smart Healthcare – Some Challenges

97

Smart Healthcare Architecture – Requirements

Source: H. Zhu, C. K. Wu, C. H. KOO, Y. T. Tsang, Y.Liu, H. R. Chi, and K. F. Tsang, "Smart Healthcare in the Era of Internet-of-Things", *IEEE Consumer Electronics Magazine*, vol. 8, no. 5, pp. 26-30, Sep 2019.

Machine Learning Challenges

Smart Healthcare - Security Challenges

Source: P. Sundaravadivel, E. Kougianos, S. P. Mohanty, and M. Ganapathiraju, "Everything You Wanted to Know about Smart Health Care", *IEEE Consumer Electronics Magazine (CEM)*, Volume 7, Issue 1, January 2018, pp. 18-28.

104

Health Insurance Portability and Accountability Act (HIPPA)

IoMT Security Measures is Hard – Energy Constrained

Pacemaker Battery Life - 10 years

Neurostimulator Battery Life - 8 years

 ➢ Implantable Medical Devices (IMDs) have integrated battery to provide energy to all their functions → Limited Battery Life depending on functions
➢ Higher battery/energy usage → Lower IMD lifetime
➢ Battery/IMD replacement → Needs surgical risky procedures

Source: Carmen Camara, PedroPeris-Lopeza, and Juan E.Tapiadora, "Security and privacy issues in implantable medical devices: A comprehensive survey", *Elsevier Journal of Biomedical Informatics*, Volume 55, June 2015, Pages 272-289.

111

Smart Healthcare – Some Solutions

Smart Healthcare – Edge Vs Cloud

Our Secure by Design Approach for Robust Security in Healthcare CPS

Source: V. P. Yanambaka, S. P. Mohanty, E. Kougianos, and D. Puthal, "PMsec: Physical Unclonable Function-Based Robust and Lightweight Authentication in the Internet of Medical Things", *IEEE Transactions on Consumer Electronics (TCE)*, Volume 65, Issue 3, August 2019, pp. 388--397.

IoMT Security – Our Proposed PMsec

Proposed Approach Characteristics	Value (in a FPGA / Raspberry Pi Platform)
Time to Generate the Key at Server	800 ms
Time to Generate the Key at IoMT Device	800 ms
Time to Authenticate the Device	1.2 sec - 1.5 sec

Source: V. P. Yanambaka, S. P. Mohanty, E. Kougianos, and D. Puthal, "PMsec: Physical Unclonable Function-Based Robust and Lightweight Authentication in the Internet of Medical Things", *IEEE Transactions on Consumer Electronics (TCE)*, Volume 65, Issue 3, August 2019, pp. 388--397.

Our Smart-Yoga Pillow (SaYoPillow)

for Stress Management Considering Sleeping Habits", IEEE Transactions on Consumer Electronics (TCE), Vol. 67, No. 1, Feb 2021, pp. 20-29.

SaYoPillow: Blockchain Details

Healthcare CPS -- Prof./Dr. Saraju P. Mohanty

Source: L. Rachakonda, A. K. Bapatla, S. P. Mohanty, and E. Kougianos, "SaYoPillow: Blockchain-Integrated Privacy-Assured IoMT Framework for Stress Management Considering Sleeping Habits", *IEEE Transactions on Consumer Electronics (TCE)*, Vol. 67, No. 1, Feb 2021, pp. 20-29.

07 Oct 2021

SaYoPillow: Prototyping

	out an Ethereum transaction							
0x8629d9ee638a181b1454771666bc579ba8189bdb2f78665b73921	4184587d3b9							
0x0adfcca4b2a1132f82488546aca086d7e24ea324	0x212c30420fce0f7ed1192b6e01de238f2	95f8505 0 ETH Confirmations 0 ETH						
Summary								
Block Hash	0x44214514875cdcb9d8e27ed1290716ce7a1d52bd0c1575771a8	ec4298c9aed0b						
Received Time	Jul 2, 2020 8:49:19 AM							
Included In Block	23663						Logged in as:	
Gas Used	241,526 m/s	SaYoPillow Dasl			0x9537cb86f5a03	28ccb52c44b49757861ec	a0004b	
Gas Price	0.000000010 ETH	2	0	75	(22	~	51
Transaction Confirmations	15297	Hours Slept	Snoring Range		Respiration Rate		Heart Rate	
Number of transactions made by the sender prior to this one	53	2	O 1	61	3	15	U	95
Transaction price	0.000241526 ETH	Blood Oxygen Level	Eye Movement		Limb Movement		Hours Slept	
Data	0x8e9cf29c0000000000000000000000000000000000	Detected Stress Level						Medium Low
		Follow below suggestions to Play lullaby's or peaceful mu Average Values (Last 24 hou	o relieve stress usic to regulate sleep. rrs)	Benef Song for Day Sleep Lary - 1	en skale Drawy Lakates at N_			
			Avera	ge Hours Slept		2		
		0	Avera	ge Snoring Rang	e .	64		
		<i>i</i> ia	Avera	ge Respiration F	late	21		
L. Rachakonda, A. K. Bapatla, S. P. Mohanty, and E. nos, "SaYoPillow: Blockchain-Integrated Privacy-Assured		*	Average Heart Rate			54		
			Avera	ge Blood Oxyge	n Level	92		
mework for Stress Management Con	nsidering Sleeping	()	Avera	ge Eye Moveme	nt	72		
IEEE Iransactions on Consumer Electronics (TCE), Vol.		-S-	Avera	ge Limb Movem	ient	13		
Feb 2021, pp. 20-29.		U	Avera	ge remperature		90		

Healthcare CPS -- Prof./Dr. Saraju P. Mohanty

Smart Healthcare – COVID-19 Perspectives

137

Comorbidities with Pre-existing medical conditions for COVID-19

Source: A. M. Joshi, U. P. Shukla and S. P. Mohanty, "Smart Healthcare for Diabetes during COVID-19," *IEEE Consumer Electronics Magazine*, Vol. 10, No. 1, January 2021, pp. 66--71.

138

iGLU - Our Intelligent Non-Invasive Glucose Monitoring with Insulin Control Device

iLog + iGLU - Our Diet Automatic Monitoring and Control for Blood Glucose Level

Source: A. M. Joshi, U. P. Shukla and S. P. Mohanty, "Smart Healthcare for Diabetes during COVID-19," IEEE Consumer Electronics Magazine, Vol. 10, No. 1, January 2021, pp. 66--71.

EasyBand – Safety-Aware Mobility during Pandemic

Source: A. M. Joshi, U. P. Shukla and S. P. Mohanty, "Smart Healthcare for Diabetes during COVID-19," IEEE Consumer Electronics Magazine, Vol. 10, No. 1, January 2021, pp. 66--71.

EasyBand in Healthcare CPS (H-CPS)

Source: A. K. Tripathy, A. G. Mohapatra, S. P. Mohanty, E. Kougianos, A. M. Joshi and G. Das, "EasyBand: A Wearable for Safety-Aware Mobility During Pandemic Outbreak," *IEEE Consumer Electronics Magazine*, vol. 9, no. 5, pp. 57-61, 1 Sept. 2020, doi: 10.1109/MCE.2020.2992034.

CoviChain: A Blockchain based Framework for Nonrepudiable Contact Tracing in H-CPS

Source: S. L. T. Vangipuram, S. P. Mohanty, and E. Kougianos, "CoviChain: A Blockchain based Framework for Nonrepudiable Contact Tracing in Healthcare Cyber-Physical Systems during Pandemic Outbreaks", Springer Nature Computer Science (SN-CS), Vol. 2, No. 2, June 2021, Article: 346, 16-pages.

146

CoviChain: A Blockchain based Framework for Nonrepudiable Contact Tracing in H-CPS

Source: S. L. T. Vangipuram, S. P. Mohanty, and E. Kougianos, "CoviChain: A Blockchain based Framework for Nonrepudiable Contact Tracing in Healthcare Cyber-Physical Systems during Pandemic Outbreaks", Springer Nature Computer Science (SN-CS), Vol. 2, No. 2, June 2021, Article: 346, 16-pages.

CoviChain: A Blockchain based Framework for Nonrepudiable Contact Tracing in H-CPS 1. User Interface 2. File Converted to Buffer

- From the front-end, Covid file is submitted to the IPFS and store it.
- Once the file is stored, the hash of the file is returned to the browser console.
- The hash generated from IPFS is stored on the blockchain, instead of the actual file.

3. IPFS returning Hash

4. Confirming Metamask

Source: S. L. T. Vangipuram, S. P. Mohanty, and E. Kougianos, "CoviChain: A Blockchain based Framework for Nonrepudiable Contact Tracing in Healthcare Cyber-Physical Systems during Pandemic Outbreaks", Springer Nature Computer Science (SN-CS), Vol. 2, No. 2, June 2021, Article: 346, 16-pages.

CoviChain: A Blockchain based Framework for Nonrepudiable Contact Tracing in H-CPS

Comparing MedRec and Covichain Mining Time for MB Data

Source: S. L. T. Vangipuram, S. P. Mohanty, and E. Kougianos, "CoviChain: A Blockchain based Framework for Nonrepudiable Contact Tracing in Healthcare Cyber-Physical Systems during Pandemic Outbreaks", Springer Nature Computer Science (SN-CS), Vol. 2, No. 2, June 2021, Article: 346, 16-pages.

Pandemic – Trusted Food Supply Chain

Source: A. M. Joshi, U. P. Shukla and S. P. Mohanty, "Smart Healthcare for Diabetes during COVID-19," IEEE Consumer Electronics Magazine, Vol. 10, No. 1, January 2021, pp. 66--71.

Pandemic - Trusted Pharmaceutical Supply Chain

Source: http://ilikesqldata.com/securing-the-pharmaceutical-supply-chain-with-azure-iot/

Conclusions and Future Research

154

Conclusions

- Healthcare has been evolving to Healthcare-Cyber-Physical-System (H-CPS) i.e. smart healthcare.
- Internet of Medical Things (IoMT) plays a key role smart healthcare.
- Smart healthcare can reduce cost of healthcare and give more personalized experience to the individual.
- IoMT provides advantages but also has limitations in terms of security, and privacy.
- Smart Healthcare can be effective during stay-at-home scenario during pandemic.

155
Future Research

- Machine learning (ML) models for smart healthcare needs research.
- Internet-of-Everything (IoE) with Human as active part as crowdsourcing need research.
- IoE will need robust data, device, and H-CPS security need more research.
- Security of IWMDs needs to have extremely minimal energy overhead to be useful and hence needs research.
- Integration of blockchain for smart healthcare need research due to energy and computational overheads associated with it.
- Privacy-aware limited healthcare data sharing in global scale to reduce spread of pandemic outbreak.

Acknowledgement(s)

This material is based upon work supported by the National Science Foundation under Grant Nos. OAC-1924112 and HBCU-EiR-2101181. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

157