

EasyBand2.0: A Framework with Context-Aware Recommendation Mechanism for Safety-Aware Mobility during Pandemic Outbreaks

Presenter: Seema G. Aarella

Seema G. Aarella¹, Ajaya K. Tripathy², Saraju P.Mohanty³, Elias Kougianos⁴

University of North Texas, Denton, TX 76203, USA.^{1,3,4}

Gangadhar Meher University, India.²

Email: Seema.Aarella@unt.edu¹, ajayatripathy1@gmail.com², Saraju.Mohanty@unt.edu³ and Elias.Kougianos@unt.edu⁴

Outline of the Talk

- Introduction
- Social Distancing & Enabling Technologies
- Related Prior Research
- Novel Contributions of Current Paper
- Proposed EasyBand2.0 Mechanism
- Log Normal Shadow Model
- Proposed CARS Mechanism
- Implementation & Results
- Conclusions & Future Research

ISQED 2022 - EasyBand 2.0

Technologies in Pandemic Management

IoMT

Internet-of-Medical-Things,
healthcare, remote patient
monitoring, reporting etc.

loT

Applications for detection and prevention, alerting systems, safe mobility systems, contact tracing, social distancing applications etc.

Blockchain

Decentralized system for healthcare data, patient data provding security and privacy.

GPS

Location specific applications, preventive applications, travel logging, contact tracing etc.

Artificial Intelligence

Data modelling, Medical systems,, recommendation systems etc.

UAV

Unmanned Ariel Vehicle, crowd 'monitoring, delivery of emergency aid etc.

Bluetooth

Low power, Low cost, interoperable applications for social distancing, notification systems etc.

5G

Enabler for IoT and IoMT based applications

ations

Social Distancing & Enabling Technologies

- Wireless Technology:
 - Crowd Monitoring
 - Social Distancing
 - Alerting Systems
- Image and Visualization technologies:
 - Social Distance Monitoring
 - Mask Detection
 - Monitor COVID Safety Measures

Related Prior Research

Research	Medium	Algorithm	Application
Tripathy et al.	Sensors and BLE	RSSI	Indoor & outdoor Spaces
Hou et al.	Video Feed	Deep CNN	Public Spaces
Ziran et al.	Stereo Vision	HOG Algorithm	Public Spaces
Sharma et al.	Video Feed	DNN	Public Spaces & Indoor Spaces
Kobayashi et al.	BLE Packets	RSSI	University Campus
EasyBand2.0	BLE signal	RSSI	Indoor & outdoor Spaces

Novel Contributions of Current Paper

Bluetooth based distance estimation using RSSI (Received Signal Strength Indicator)

Log Normal Shadow Model for distance estimation

An alerting mechanism which notifies the user of different conditions during contacts, like safe, mildly suspect, and highly suspect

A vibrator to alert the user of proximity to a suspect

A Context Aware Recommender System designed on the 5W-1H code dimension tree model for safe mobility

Problem Addressed in the Current Paper

The need for a user friendly and more approachable design

Low cost and low power consuming application

Easily deployable, interoperable and adaptive application

Safety-aware application that aids in safe mobility

Proposed EasyBand2.0 Mechanism

RSSI of the Bluetooth signal is used to estimate the distance of the device from a client node

The client node also enables data transfer from the Bluetooth devices upon detection

Software & Hardware Used

Log Normal Shadow Model

The most common range-based technology for distance estimation is based on RSSI measurements

To estimate the distance of a transmitter to a receiver using the power of the received signal along with a path loss model

Unreliable estimation due to path loss and shadowing in localization can be modeled considering environmental variables and calibrating path loss exponents

Log Normal Shadow Model

 $PL(d) = PL(d_0 - 10n \log_{10}(d/d_0)) + X(\sigma)$

- PL(d) The received signal power loss (expressed in dBm)
- d The distance between a transmitter and receiver
- d₀ The reference distance, typically 1m
- PL(d₀) The path loss (expressed in dBm) at the reference distance
- n The path loss exponent
- X(σ) Is a Gaussian random variable with zero mean and standard deviation σ that reflects the random variation in the path and shadow fading

Context Aware Recommendation System

Applications Fields: e-commerce, e-learning, Tourism, IoMT, Smart Cities etc.

Proposed CARS Mechanism

Implementation of 5W-1H Recommender System

- The 5W-1H are:
 - Location (WHERE)
 - Role (WHO)
 - Time (WHEN)
 - Interest (WHAT)
 - Utilization (WHY) and
 - Situation (HOW)

5W-1H Recommender System Design

Context Knowledge Base

- 100K dataset from Google's Community Mobility Reports
- 23K dataset which consists of all the COVID-19 measures taken from governments across the globe
- 300K COVID-19 Dataset from Kaggle

Algorithm -1

Algorithm 1: Algorithm for Extracting Information from Context Knowledge Base		
Input: Location data of user device, date, Action item looked up by user		
Output: Information Extracted and Exported to *.CSV file		
/* The COVID Database is queried based on the algorithm to extract the reveleva	int	
COVID-19 data from the Context Knowledge Base	*/	
1 Get User Location UI, date Ud, Action Item Ai /* SQ1 Query and Procedures used to query t	the	
COVID data tables in the Database to extract information From Table A		
(Gov_Measures)	*/	
2 while Check== True do		
3 if A.Location == U_l then		
4 Gm=A.Measures		
5 else		
6 Output = "Data Not Found, Try Again!":		
7 check = False;		
/* Extarcting Mobility Data from Table B	*/	
s for A _i in C and Location == U _i and date== R_i do		
9 if A.Location=B.Location and A.date=B.date and C.Action==B.Action then		
10 Md = B.MobilityData		
11 else		
12 Output ="Data Not Found, Try Again!";		
13 check = False;		
/* Accessing Table D to extract Number of cases in the location	*/	
14 while $D.Location == U \mathbf{d}\mathbf{o}$		
15 Cc=D.ConfirmedCases		
/* After Joiners on tables the resulting data is exported as *.CSV file for fur	ther	
Processing	*/	
-	-	

Algorithm-2

Algorithm 2: Algorithm for Context Fusion and Context Output

Input: Verifying User ID, Extracting user data like Location, Date, Time, Action Item Output: Information Processed and Output Displayed

- 1 while Repeat==True do
- 2 if ID == Ui then
- Output="Select From the Options";
- 4 else
- 5 Output="User not Identified"; Repeat = True;
- 6 Input = UserChoice;
- 7 Repeat = False;
- 8 while Location==Ut do
- 9 CaseData=Cd;
- 10 CKBdata =Kr;
 - /* Switch Block to call funtions based on UserChoice
- 11 if UserChoice==1 then
- 12 call function RetailandRecreation();
- 13 if UserChoice==2 then
- 14 Call function GroceryandPharmacy();
- 15 if UserChoice==3 then
- 16 Call function Parks();
- 17 if UserChoice==4 then
- 18 Call function TransitStations();
- 19 if UserChoice==5 then
- 20 Call function Workplaces();
- 21 if UserChoice==6 then
- 22 Call function Residential();

Smart Electronic Systems Laboratory (SESL)

*/

Algorithm Verification

Command Prompt	-		×
C:\Users\cmaor\Desktop\RS\RS_Code>g++ Covid.cpp			^
C:\Users\cmaor\Desktop\RS\RS_Code>a.exe Enter your User ID: 101 Welcome: John Smith Location: Denton County Please select from the Menu: 1. Retail and Recreation 2. Grocery and Pharmacy 3. Parks 4. Transit Stations 5. Workplaces 6. Residential Enter your Choice: 1			
You Selected: 1			
Number of Confirmed Positive Cases in Texas is : 2890257 ************************************			
Current Government Measures Implemented: 1.Strengthening the public health system 2. Economic Measures			
Denton County: The Mobility Data For Retail and Recreation shows les	s free	quency	
Safe for Retail and Recreation			
C:\Users\cmaor\Desktop\RS\RS Code>			

 \sim

RSSI Values and Estimated Distance

Count	RSSI	Average Error	Approximate Distance
1	25.00	75.488	4.511
2	15.00	70.9144	13.659
3	11.00	66.094	23.544
4	5.00	55.541	56.116
5	1.00	48.833	102
6	6.00	45.958	48.415
7	6.00	43.905	48.415
8	6.00	42.365	48.415
9	5.00	40.311	56.116
10	5.00	37.324	56.116

EasyBand2.0 Validation

			pi@raspberrypi: ~/bluez-5.50/bluetooth-proximity/bt_proximity	~
File	Edit 7	Tabs	Help	
pi@ras Elapse Elapse	spberry ed time ed time Us	pi:∼/ is f for er A	bluez-5.50/bluetooth-proximity/bt_proximity \$ python sd_tim for user A 125.328685999 user B 10.7519581318	e_test.py
2021-1	12-20 0	1:33:	47.806772	
User 1 Distar	ID: F8: nce of	E9:4E user	:43:A2:04 A:95.7695898591	
	Us	er B_		
2021-1	12-20 0	1:35:	53.135622	
User 1	ID: 4C:	6A:F6	:02:25:B2	
Distar	nce of	user	B:95.7695898591	
	S	TATUS	5 - A	
Alert	for us	er A:	Yellow	
	c		- P	

Status unchanged: Green

Conclusions & Future Research

- The application is low power consuming and easily deployable
- In future the software can be quickly modified and deployed to assist in any other similar pandemic situation
- CARS recommendation system will ensure safe mobility during pandemic
- The RSSI based distance estimation used is sufficient for accurate distance estimation and alerting
- Under the Internet-of-Medical-Things the application can be modified to work as a case monitoring and reporting tool
- Further research towards data security & privacy
- User-friendly graphical interface

Symposium 2022

Questions?

Contact Information

Email: Seema.Aarella@unt.edu

Thank you!

ISQED 2022 - EasyBand 2.0

06 Apr 2022