Fortified-Edge: PUF based Authentication in Collaborative Edge Computing

Presenter: Seema G. Aarella

Seema G. Aarella¹, Saraju P.Mohanty², Elias Kougianos³, Deepak Puthal⁴

University of North Texas, Denton, TX 76203, USA.^{1,2,3} Khalifa University, Abu Dhabi, UAE.⁴

Email: Seema.Aarella@unt.edu¹, Saraju.Mohanty@unt.edu² and Elias.Kougianos@unt.edu³, deepak.puthal@ku.ac.ae⁴

Outline of the Talk

- Introduction
- Smart Cities and Smart Villages
- Related Prior Research
- Collaborative Edge Computing for Smart Village
- Proposed PUF CA Method
- Authentication Algorithms
- Experimental Results
- Conclusion
- Future Research

Smart Cities Vs Smart Villages

Source: http://edwingarcia.info/2014/04/26/principal/

Smart CitiesCFCPS Types - MoreDesign Cost - HighOpDesign Cost - HighOpEnergy Requirement - High

Smart Villages CPS Types - Less Design Cost - Low Operation Cost – Low Energy Requirement - Low

Source; P. Chanak and I. Banerjee, "Internet of Things-enabled Smart Villages: Recent Advances and Challenges," *IEEE Consumer Electronics Magazine*, DOI: 10.1109/MCE.2020.3013244.

Smart Village

Challenges of Smart Village

Security-by-Design (SbD)

- Integration of the cybersecurity early in the design phase, not retrofitted
- Device, circuit, and systemlevel cybersecurity solutions for robust CPS and smart component design

Image Source: https://dataprivacymanager.net/seve-principles-of-privacy-by-design-and-default-what-is-data-protection-by-design-and-default/

Security-by-Design (SbD)

7

Why SbD?

The generalization of attacks across all CPS typically ignores the role of Root-of-Trust (RoT) and security perimeter modeling, which are the basis of many SbD approaches

Image Source: A. Chattopadhyay, K. -Y. Lam and Y. Tavva, "Autonomous Vehicle: Security by Design," in IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 11, pp. 7015-7029, Nov. 2021, doi: 10.1109/TITS.2020.3000797.

Collaborative Edge Computing (CEC)

Source: D. Puthal, S. P. Mohanty, S. Wilson and U. Choppali, "Collaborative Edge Computing for Smart Villages", *IEEE Consumer Electronics Magazine (MCE)*, Vol. 10, No. 03, May 2021, pp. 68-71.

Collaborative Edge Computing is Cost Effective Sustainable Computing for Smart Villages

Source: D. Puthal, M. S. Obaidat, P. Nanda, M. Prasad, S. P. Mohanty, and A. Y. Zomaya, "Secure and Sustainable Load Balancing of Edge Data Centers in Fog Computing", IEEE Communications Mag, Vol. 56, No 5, May 2018, pp. 60--65.

edge

computing

Collaborative Edge Computing (CEC)

- Collaborative Edge Computing is a distributed processing environment
- **CEC** is a collaboration of distributed edge
- Smart control of heterogenous network

- Reduced Bandwidth and Transmission costs
- **.**
- CEC enables seamless processing through load balancing

Long-term Vision

Cybersecurity for smart villages based on the SbD principles for secure resource sharing in the CEC environment AI/ML for Cybersecurity in Smart Villages

5/31/2023

Edge Data Center (EDC) in CEC

Need for Secure Authentication of EDC

Existing Solutions

Symmetric and Key Cryptography

- Advanced Encryption Standard(AES)
- Client & server store a secret key

Asymmetric Key Cryptography

- Transport Layer Security(TLS)
- Secure Sockets Layer(SSL)
- Public Key and Private Key Pairs

Device Localization and Environmental data authentication technique

PUF based authentication techniques

Issues and Solutions

5/31/2023

Related Prior Research

Research	Algorithm	Application
Puthal, et al. [17]	AES-based Symmetric Encryption	Authentication and Load Balancing of EDCs
Barbareschi, et al. [3]	PUF based PHEMAP	Fog-IoT Systems
Hathal, et al. [8]	TA, TESLA	Vehicular Communication Systems
Li, et al. [13]	p-KNN	SND-based Edge Computing for Healthcare Systems
Zhang, et al. [25]	SRAM PUF and Blockchain	Multiserver Authentication in Cloud-Edge IoT
Puthal, et al. [15]	Decision Tree	Data aggregation and PoAh for Blockchain in IoT Edge
Fortified-Edge (Current Paper)	SRAM PUF based CA	Edge Data Center Authentication in CEC

Load Balancing in Edge Data Centers

18

PUF based Authentication

- Storage Space Complexity
- Data Security against data breaches and attacks
- Need for Root-of-Trust
- Faster Authentication Protocols

(a) Static Load Balancing

(b) Dynamic Load Balancing

Certificate Authority

- A Certificate Authority (CA) is a trusted resource that issues Secure Socket Layer (SSL) digital certificates which are a part of the Public Key Infrastructure (PKI)
- CAs help maintain trust between communicating entities over the internet
- The CA helps build a Root-of-Trust between the connected devices in the environment
- A centralized CA will be prone to single-point failure whereas a more distributed CA will provide flexible effective security management

Problems Addressed

Need for robust, secure and lightweight authentication scheme with low computational power

Authentication without Cloud Server to address latency issues

Lightweight and Low latency protocol for mutual authentication of EDCs

Solving the storage space complexity when storing CRP databases that are involved in PUF-based authentication schemes

21

Novel Contributions of Current Research

CA-based authentication to overcome the need for storing CRP databases in the EDCs

Reducing the storage space requirement at EDC, enhancing data security

PUF as the lightweight, robust and secure mode of key generation

EDC mutual authentication scheme during load balancing using SRAM PUF for CA

Proposed Solutions

- Edge server-based architecture for EDC verification and authentication
- A mutual authentication scheme for client-client authentication
- Removing the need for storing a CRP database locally at the EDC
- SRAM PUF-based certificate generation to establish the root of trust between EDCs
- Mutual authentication scheme based on certificates

Architecture of the proposed PUF based CA scheme

SRAM PUF

- Okdo E1 Development board used as SRAM PUF Module
- MCUXpresso IDE
- LCPXpresso55S9 SDK
- Tera Term SSH Terminal
- Digital fingerprint is generated when the SRAM PUF is powered up
- The 256-bit key is the root key used for the encryption/decryption of user keys

Certificate Generation

- Digital fingerprint of the SRAM PUF are the responses, stored in the CRP database of the Verification and Authentication Server
- Keycode:
 - 32-bit Key Header
 - □ Key Index ranging from 0-15
 - Key size ranging from 64-bits to 4096 bits
- SRAM PUF start up data along with activation code generates PUF key

🔟 COM3 - Tera Term VT	_	\times
File Edit Setup Control Window Help		
Generating user Key Code (KC) with Index 1, and Key length 128-bi Key: 0: 6d 79 73 65 63 75 72 65 70 61 73 73 77 6f 72 64 Key Code (KC) is generated succesfully Key code: 	its	^
0: 0 1 0 2 95 2c 5 f7 a7 bd 39 e3 5d 8c 79 d0 16: de a3 f 74 e8 e5 62 a7 47 c0 b8 f1 dd e8 ee d2 32: 9 b4 c5 f4 ab a8 ac f c1 94 8d 9f ec 96 fa 9 48: c0 d a3 3a Store key code to 1. RAM keycode0 2. RAM keycode1 3. FLASH keycode0 4. FLASH keycode1 1		

Parameters

- Digital Certificate is generated which includes the following information:
 - Certificate Version C_v
 - Certificate Serial Number C_s
 - Issuer ID C_i
 - Validity Period with Timestamp C_d
 - Edge Data Center ID E_i
 - Digital Signature D_s

Algorithm for PUF Certificate

Algorithm 1: Algorithm for Server Verifying EDC ar Sending Certificate	nd			
Sending Certificate.				
Input: Recieve EDC ceritification request with payload				
Output: Verify EDC and send Certificate from Authentication				
Client request regioned .				
cheft request recieved;				
if MacID MacID then				
3 If $MacID_c = MacID_s$ then EDC is Identified:				
else EDC is NOT Identified				
EDC IS NOT Identified ;				
Registration NOt Successful;				
Send random challenge C_r based on EDC ID ;				
Get PUF response R _p ;				
if $R_p \neq R_s$ then				
EDC is NOT Authenticated ;				
Registration NOt Successful ;				
else				
Registration Successful ;				
Generate Certificate ;				
Create hashString = $(C_v, C_s, C_i, C_d, E_i, D_s)$;				
Compute hash (hashString');				
Generate Private Key P _k ;				
Create Digital Signature = (hashString' + P_k);				
Send Digitally signed Certificate to EDC ;				
/* The Certificate Authority module will generate	the			
authentication certificate and send it to the E	DC			
to store.	*/			

Algorithm for Mutual Authentication

Algorithm 2: Algorithm for EDCs Mutual Authentication	L
during load Balancing.	

- Input: Recieve Authentication request from EDC with payload Output: Authenticate the EDC based on Certificate
- 1 Authentication request recieved ;
- 2 Send Certificate ;
- 3 Get Certificate :
- 4 Check validity Period ;
- 5 if Valid then
- Get Public Key Pu ; 6
- Verify Digital Signature = (hashString' + Pu);
- 8 if Verified then
- 9 Successfully Verified ;
- /* The EDCs will exchange the cerificates verify the validity period and digital signature, if it is */
 - valid they participate in load balancing

Experimental Results

Research	Algorithm	Server Authentication Time	Mutual Authentication Time
Barbareschi, et al.[3]	PUF based PHEMAP	NA	38.58ms
Hathal, et al.[8]	TA, TESLA	NA	8600ms
Zhang, et al. [25]	SRAM PUF and Blockchain	3302.9ms	991.8ms
Puthal, et al. [15]	Decision Tree(DT)	NA	0.6s to 0.803s
Aarella, et al.	XORArbiter PUF	0.5s -1.5s	500ms
Fortified-Edge	PUF based CA	<1500ms	500ms

Experimental Results – Server Response Times

Experimental Results – Mutual Authentication Time

Conclusion

- PUF-based authentication systems are proven to be a secure and lightweight scheme in IoT applications
- Mutual authentication of EDCs during load balancing takes less than 500 ms, hence reducing the latency
- The use of SRAM PUFs to generate certificates ensures the security of the authentication system
- The certificate-based authentication scheme discussed in this research removes the need for storing the CRP database at the client end, making it safe from external attackers accessing the database

Future Research

For future research and development of the developed scheme, we propose extensive security analysis against external attacks like man-in-the-middle, spoofing attacks, machine learning attacks, and so on.

Another objective is to design a PUF-based Security-by-Design (SbD) model for developing secure IoT applications for Smart Villages

Thank you!

35