PUFchain 4.0: Integrating PUF-based TPM in Distributed Ledger for Security-by-Design of IoT

Presenter: Venkata K. V. V. Bathalapalli

Venkata K. V. V. Bathalapalli¹, S. P. Mohanty², E. Kougianos³ Vasanth Iyer⁴, and Bibhudutta Rout⁵

University of North Texas, Denton, TX, USA.^{1,2,3,5} and Grambling State University⁴.

Email: vb0194@unt.edu, saraju.mohanty@unt.edu², elias.kougianos@unt.edu³, iyerv@gram.edu⁴, bibhudutta.rout@unt.edu⁵

Outline

- Security-by-Design (SbD) Principle
- Novelty of Proposed PUF-based-TPM Solution
- PUFchain-Variants (PUFchain 1.0, PUFchain 2.0, PUFchain 3.0)
- Working Flow of Proposed PUFchain 4.0
- Experimental implementation Overview
- Conclusion & Future Research Directions

Security-by-Design (SbD) – The Principle

3

Security by Design (SbD) and/or Privacy by Design (PbD)

Source: https://teachprivacy.com/tag/privacy-by-design/

Source: S. P. Mohanty, "Security and Privacy by Design is Key in the Internet of Everything (IoE) Era," IEEE Consumer Electronics Magazine, vol. 9, no. 2, pp. 4-5, 1 March 2020, doi: 10.1109/MCE.2019.2954959.

Security by Design (SbD)-Principles

Principles

Fundamental

-Proactive not Reactive

-Security/Privacy as the Default

Security/Privacy Embedded into Design

Full Functionality - Positive-Sum, not Zero-Sum

End-to-End Security/Privacy - Lifecycle Protection

-Visibility and Transparency

-Respect for Users

Source: S. P. Mohanty, "Security and Privacy by Design is Key in the Internet of Everything (IoE) Era," *IEEE Consumer Electronics Magazine*, vol. 9, no. 2, pp. 4-5, 1 March 2020, doi: 10.1109/MCE.2019.2954959.

Objectives of SbD/PbD

Physical Unclonable Function (PUF)-Introduction

PUF: A Hardware-Assisted Security Primitive

A secure fingerprint generation scheme based on process variations in an **Integrated Circuit** PUFs don't store keys in digital memory, rather derive a key based on the physical characteristics of the hardware; thus secure. A simple design that generates cryptographically secure keys for the device authentication

PUF Key Generation and Working

Source: International Symposium on Smart Electronics Systems (iSES) 2019 Demo (PUFchain: Hardware-Integrated Scalable Blockchain)

11

PUF Designs

Source: iSES 2019 Demo (PMsec: PUF-Based Energy-Efficient Authentication of Devices in the Internet of Medical Things (IoMT))

Trusted Platform Module (TPM)-Overview

13

Trusted Platform Module-Introduction

- A TPM is a secure cryptoprocessor that offers a range of capabilities to enhance the security of a computing system.
- TPM's Non-Volatile Memory (NVRAM) enables the sealing and unsealing of secret keys and the storage of passwords generated inside or outside TPM.
- TPMs perform remote attestation of an entity for security and privacy
- Additionally, TPMs provide extensive support for cryptographic operations such as encryption, decryption, and digital signatures.

14

Functionality of TPM

- A TPM consists of a cryptographic sub-system along with two memories, one non-volatile and one volatile. The Endorsement Key (EK) is an RSA key with a 2048-bit length, stored at the non-volatile memory, and is created by the TPM manufacturer to be able to identify this unique chip.
- A specified NV-index is defined for ensuring secure storage and retrieval of private keys. Access to TPM NVRAM can be user-defined and password-protected, following TCG's procedures.
- TPM's attestation identity key is a cryptography key used to generate a digital signature during remote attestation.
- The system configuration parameters during the boot process are stored inside the TPM's Platform Configuration registers (PCR).

Source: M. Calvo and M. Beltrán, "Remote Attestation as a Service for Edge-Enabled IoT," 2021 IEEE International Conference on Services Computing (SCC), Chicago, IL, USA, 2021, pp. 329-339, doi: 10.1109/SCC53864.2021.00046.

PUF versus TPM

TPM:

- 1) The set of specifications for a secure crypto-processor and
- 2) The implementation of these specifications on a chip

Physical Unclonable Functions (PUF) Source: Electric Power Research Institute (EPRI)

PUF:

- 1) Based on a physical system
- 2) Generates random output values

Our PUFchain

17

We Proposed World's First Hardware-Integrated Blockchain (PUFchain) that is Scalable, Energy-Efficient, and Fast

Source: S. P. Mohanty, V. P. Yanambaka, E. Kougianos, and D. Puthal, "PUFchain: Hardware-Assisted Blockchain for Sustainable Simultaneous Device and Data Security in Internet of Everything (IoE)", IEEE Consumer Electronics Magazine (MCE), Vol. 9, No. 2, March 2020, pp. 8-16.

Our PUFchain – 4 Variants

Research Works	Distributed Ledger Technology	Focus Area	Security Approach	Security Primitive	Security Principle
PUFchain	Blockchain	loT / CPS (Device and Data)	Proof of Physical Unclonable Function (PUF) Enabled Authentication	PUF + Blockchain	Hardware Assisted Security (HAS) or Security-by-Design (SbD)
PUFchain 2.0	Blockchain	IoMT/CPS (Device and Data)	Media Access Control (MAC) & PUF Based Authentication	PUF + Blockchain	Hardware Assisted Security (HAS) or Security-by-Design (SbD)
PUFchain 3.0	Tangle	IoT/CPS (Device and Data)	Masked Authentication Messaging (MAM)	PUF + Tangle	Hardware Assisted Security (HAS) or Security-by-Design (SbD)
PUFchain 4.0 (This Paper)	Tangle	IoT/CPS (Device)	PUF Based TPM	PUF + TPM Tangle	Hardware Assisted Security (HAS) or Security-by-Design (SbD)

PUFchain: Our Hardware-Assisted Scalable Blockchain

Source: S. P. Mohanty, V. P. Yanambaka, E. Kougianos, and D. Puthal, "PUFchain: Hardware-Assisted Blockchain for Sustainable Simultaneous Device and Data Security in Internet of Everything (IoE)", IEEE Consumer Electronics Magazine (MCE), Vol. 9, No. 2, March 2020, pp. 8-16.

GLSVLSI 2023 - PUFchain 4.0

 \checkmark

Source: S. P. Mohanty, V. P. Yanambaka, E. Kougianos, and D. Puthal, "PUFchain: Hardware-Assisted Blockchain for Sustainable Simultaneous Device and Data Security in Internet of Everything (IoE)", *IEEE Consumer Electronics Magazine (MCE)*, Vol. 9, No. 2, March 2020, pp. 8-16.

PUFchain: Proposed New Block Structure

Our PoP is 1000X Faster than PoW

PoW - 10	PoAh – 950ms	PoP - 192ms in
min in cloud	in Raspberry Pi	Raspberry Pi
High Power	3 W Power	5 W Power

✓ PoP is 1,000X faster than PoW
✓ PoP is 5X faster than PoAh

Source: S. P. Mohanty, V. P. Yanambaka, E. Kougianos, and D. Puthal, "PUFchain: Hardware-Assisted Blockchain for Sustainable Simultaneous Device and Data Security in Internet of Everything (IoE)", IEEE Consumer Electronics Magazine (MCE), Vol. 9, No. 2, March 2020, pp. 8-16.

PUF-based Scalable Blockchain for Smart Healthcare PUFchain 2.0: Hardware-Assisted Robust Blockchain for Sustainable Simultaneous Device and Data Security in Smart Healthcare

24

and Data Security in Smart Healthcare", Springer Nature Computer Science (SN-CS), Vol. 3, No. 5, Sep 2022, Article: 344, 19-pages, DOI: https://doi.org/10.1007/s42979-022-01238-2.

PUFchain 2.0: PUF Integrated Blockchain ...

Implementation and Validation of PUFchain 2.0

<pre>chon 3.7.3 (/usr/bin/python3) %Run PUFchain_Client_1.py pP target IP: 192.168.1.189 pP target Port: 12345 ::a6:32:c8:d7:50 10010001100100011001000110010001100100</pre>	Shell × >>> %Run PUFchain2_Server.py Waiting for client Given Encrypted Message: b'mlCjrC<;Ck?CjBCjj' from ('192.168.1.104', 37298) Waiting for client Message after decryption: dc:a6:32:b6:a9:aa dc:a6:32:b6:a9:aa 100010001000001100100001100100011001000110010001100100011 [74, 81, 54, 71, 84, 11, 3, 77] ['1645429578.710131' '24.6' 'dc:a6:32:b6:a9:aa' '1901000110010000
0110010001100100011001000110010001100100011001000110010001100100 01100100	<pre>Message after decryption: dc:a6:32:b6:a9:aa dc:a6:32:b6:a9:aa 100100011001000110010001100100011001000110010001100100011001000110010001100100011001000110010001101 [74, 81, 54, 71, 84, 11, 3, 77] ['1645429578.71013' '24.6' dc:a6:32:b6:a9:aa' '10010001100100011001000110010001100100011001000110010001'] '10010001100100011001000110010001100100011001000110010001100100011001000110010001'] '1001000110010001100100011001000110010001100100011001000110010001100100011001000110010001'] '10010001100100011001000110010001100100011001000110010001100100011001000110010001' 100100010</pre>

Source:V. K. V. V. Bathalapalli, **S. P. Mohanty**, E. Kougianos, B. K. Baniya, and B. Rout, "<u>PUFchain 2.0: Hardware-Assisted Robust Blockchain for Sustainable</u> <u>Simultaneous Device and Data Security in Smart Healthcare</u>", *Springer Nature Computer Science (SN-CS)*, Vol. 3, No. 5, Sep 2022, Article: 344, 19-pages, DOI: <u>https://doi.org/10.1007/s42979-022-01238-2</u>.

Shell ¥

PUF-based DLT for Internet-of-Medical-Things Security PUFchain 3.0: Hardware-Assisted Distributed Ledger for Robust Authentication in the Internet of Medical Things

Architectural Overview of PUFchain 3.0

Source: V. K. V. V. Bathalapalli, **S. P. Mohanty**, E. Kougianos, B. K. Baniya, and B. Rout, "<u>PUFchain 3.0: Hardware-Assisted Distributed Ledger for Robust Authentication in the</u> Internet of Medical Things", in *Proceedings of IFIP International Internet of Things Conference (IFIP-IoT)*, 2022, pp. 23--40, DOI: <u>https://doi.org/10.1007/978-3-031-18872-5_2</u>.

30

Masked Authentication Messaging (MAM) in IOTA Tangle

PUFchain 3.0: Prototype

PUFchain 3.0 Parameters	Specifications		
Application	Internet-of-Medical Things		
Database	Tangle		
Programming Languages	JavaScript, Verilog, and Python		
PUF Keys Extracted	500		
PUF Design	Arbiter PUF		
PUF Module	Xilinx xc7a35tcpg236-1		
IOTA Network	Mainnet		
Communication Protocol	Masked Authentication Messaging		
Edge Server	Single Board Computer		

Source: V. K. V. V. Bathalapalli, **S. P. Mohanty**, E. Kougianos, B. K. Baniya, and B. Rout, "<u>PUFchain 3.0: Hardware-Assisted Distributed Ledger for Robust Authentication in the</u> <u>Internet of Medical Things</u>", in *Proceedings of IFIP International Internet of Things Conference (IFIP-IoT)*, 2022, pp. 23--40, DOI: <u>https://doi.org/10.1007/978-3-031-18872-5_2</u>.

Our PUFchain 4.0

Novel Contributions

- A sustainable Hardware-Assisted security approach using TPM and PUF for ensuring the root of trust for the Security-by-Design of IoT.
- A security mechanism that utilizes Masked Authentication Messaging (MAM) for secure storage, retrieval, and authentication of IoT device properties and sensor data in Tangle.
- A robust approach for device integrity validation through the secure interface between TPM and PUF hardware security primitives.
- An approach that facilitates hardware-level secure storage for PUF key by accessing TPM Non-Volatile memory.
- A robust and lightweight security mechanism that can facilitate Hardware signature-based access control to DLT through a PUF-based TPM approach.
- A sustainable approach for PUF key verification and PUF-enabled TPM-based access control mechanism for miner-free and feeless DLT for data security in IoT.

Proposed PUF based TPM for SbD in IoT

Architecture of Proposed PUF-based TPM

Conventional TPM Architecture

PUF-based TPM Architecture

Related Research Overview

Work	Application	Security Primitive	Mechanism	ТРМ	Data Security Primitive
PUFchain[16]	loT (Device & Data)	Physical Unclonable Functions (PUF)	Proof-of-PUF- Enabled Authentication	N/A	Blockchain (SQLite)
xTSeH [14]	Smart e-Health Device Security	Trusted Platform Module (TPM)	TPM-based Remote Attestation	Hardware TPM	N/A
A Software- based remote attestation [8]	loT Device Security	N/A	Software-based Remote Attestation	Software TPM	N/A
Blockchain- based IoT Attestation [12]	юТ	ТРМ	Blockchain- Based Remote Attestation	Hardware TPM	Blockchain (Hyperledger Fabric)
This Paper PUFchain 4.0	IoT (Device & Data)	TPM & PUF	PUF based TPM	Hardware TPM	Tangle

Working Flow of Proposed PUFchain 4.0

Tangle is a simple fee-less, miner less Distributed Ledger Technology
In Tangle, Incoming transactions must validate tips (Unverified Transactions) to become part of the Network.

Comparative Perspectives of Blockchain, PUFchain, and PUFchain 4.0

41

PUFchain 4.0:Enrollment and Authentication

Implementation and Validation

Sealing and unsealing PUF Key inside TPM by accessing NVRAM

i@raspberrypi:~ \$ echo "10100111101001111010011110100111101001111
i@raspberrypi:~ \$ tpm2_nvwrite 0x1500020 -C o -i nv.dat
i@raspberrypi:~ \$ tpm2_nvread 0x1500020 -C o
0100111101001111010011110100111101001111
i@raspberrypi:~ \$ echo "11010010110100101101001011010010110100101
i@raspberrypi:∼ \$ tpm2_nvwrite 0x1500021 -C o -i nv.dat
i@raspberrypi:~ \$ tpm2 nvread 0x1500021 -C 0
101001011010010110100101101001011010010
i@raspberrypi:~ \$ echo "10100111101001111010011110100111101001111
i@raspberrypi:~ \$ tpm2_nvwrite 0x1500020 -C o -i _nv.dat
i@raspberrypi:∼ \$ tpm2_nvread 0x1500020 -C o
0100111101001111010011110100111101001111
i@raspberrypi:~ \$ echo "11010010110100101101001011010010110100101
i@raspberrypi:∼ \$ tpm2_nvwrite 0x1500021 -C o -i nv.dat
i@raspberrypi:~ \$ tpm2_nvread 0x1500021 -C o 2nd Edge Node PUF Key in TPM
101001011010010110100101101001011010010
j@raspberrypi:~ \$ tpm2 nyread 0x1500020 -C o
0100111101001111010011110100111101001111

pi@raspberrypi:~ \$

Uploading Transaction Details onto Tangle

Continued...

Working Prototype

Transaction Outputs on IOTA Explorer

Streams v0 C	Channel		
General			
Root	JBLTQEGMBNEBWQPUNPYTTYJOWZJILVAVJGEYOAJ9BZFBOTXJMFXNYVFLSOSFCRGNESKGFKPGSRNFXWARP		
Mode	Public Private Restricted		
Side Key	МҮКЕҮ		
	Fied Data Stop		
Root			
JBLTQEGMBNEBWQPUNPYT	TYJOWZJILVAVJGEYOAJ9BZFBOTXJMFXNYVFLSOSFCRGNESKGFKPGSRNFXWARP		
Tag MY9MAM			
Message ascii 🗖			
Node output: ['1676 1']	5446728.9390807' '0x1500020' 'dc:a6:32:c0:77:88' '10100111101001111010011110100111101001111		
PUF Key 1010011110100111101	1001111010011110100111101001111010011	\rightarrow	1 st Edge Node Transaction
Authentication is s TPM NV-Index for No	successful ode 1		5
0×1500020			
Root			
IKXBZZT9B9PUX9RILXXF	GO9RT9FWHSJTPBHRC9ZPPOZHLFPSRPVHEUYHYRMQEOWJGZKOMDOIVUYTBMLCY		
MY9MAM			
Message ascii 🛛 🖺			
Node output: ['1676	5447285.9460967' '0x1500021' 'dc:a6:32:c8:d7:59' '11010010110100101101001011010010110100101		
PUF Key 1101001011010010110		\rightarrow	2nd Edge Node Transaction o
Authentication is a	successful		6
0x1500021			

Performance Analysis of PUFchain 4.0

Characterization

Parameters	Results	
Application	loT	
Hardware Security Module	TPM, PUF	
Hardware Security Mechanism	PUF-based Hardware TPM	
TPM Board Specification	Infineon Optiga [™] SLB 9670 TPM 2.0	
TPM Storage	NVRAM	
Free NV Memory	6962 Bytes	
Data Security System	Tangle	
Communication Protocol	Masked Authentication Messaging	
TPM Module	Geek Pi TPM 2.0	
PUF Module	Arbiter PUF	
PUF Key	64 Bit	

Performance Analysis

Parameters	Results	
NV Storage Capacity (Read/Write)	768 Bytes	
Time to Generate PUF Key	87 ms	
Power Consumption of Pi with TPM	2.7-3.3 Watt	
Time to Perform Device Authentication	2000 ms	
PUF Metrics	Reliability-99%	
Time to Write PUF Key to TPM	real-299 ms, user-12 ms, and sys-19 ms	
Time to Read PUF Key from TPM	real-411 ms, user-22 ms, and sys-10 ms	

PUFchain 4.0: Performance Evaluation

Research Works	Application	DLT or Blockchain	Authentication Mechanism	Performance Metrics
Mohanty et al. 2020 - PUFchain	loT (Device and Data)	Blockchain	Proof-of-PUF-Enabled Authentication	PUF Design Uniqueness - 47.02%, Reliability-1.25%
Chaudhary et al. 2021 - Auto-PUFchain	Hardware Supply Chain	Blockchain	Smart Contracts	Gas Cost for Ethereum transaction 21.56 USD (5-Stage)
AI-Joboury et al. 2021 - PoQDB	IoT (Data)	Blockchain & Cobweb	IoT M2M Messaging (MQTT)	Transaction Time - 15 ms
Wang et al. 2022 - PUF- Based Authentication	IoMT (Device)	Blockchain	Smart Contracts	NA
Hellani et al. 2021- Tangle the Blockchain	IoT (Data)	Blockchain & Tangle	Smart Contracts	NA
Bathalapalli et al. 2022-PUFchain 2.0	IoMT (Device)	Blockchain	Media Access Control (MAC) & PUF based Authentication	Total On-Chip Power - 0.081 W, PUF Hamming Distance - 48.02 %
PUFchain 3.0 in 2022	IoMT (Device)	Tangle	Masked Authentication Messaging	Authentication 2.72 sec, Reliability - 100% (Approx), MAM Mode-Restricted
PUFchain 4.0 (This Paper)	loT(Device & Data)	Tangle	PUF Based TPM (SbD)	PUF Key Generation Time-87 ms, PUF Reliability-99% Power Consumption-2.7-3.3 Watt

Summary

- This paper proposed and validated a simple, lightweight, energy and time-efficient approach for IoT device authentication using PUF, TPM, and Tangle in this work. Sealing the PUF key to TPM hardware ensures hardware level root of trust.
- The proposed architecture exhibited an approach for DLT based access control mechanism through PUF-enabled TPM where the TPM's Endorsement and attestation key can be used to access and control the MAM communication channel to upload data onto Tangle.
- Simultaneously, the proposed approach used PUF based device authentication scheme for IoT, which generates a digital signature for each IoT based on process variations inside an IC.
- By Integrating the PUF with TPM in this work, we validated the potential of PUF-based TPM security solutions for IoT.

47

Future Research

- Idea of implementing PUF-based TPM scheme in Public and Private modes of MAM for the Security-by-Design (SbD) of Smart Electronics.
- Exploring the feasibility of a Trusted Platform Module (TPM) integrated scalable Blockchain-based cryptographic scheme to attain the Security by Design (SbD) objective in IoMT.
- Working on an integrated access control mechanism for resource-constrained electronic devices using TPM.
- Extending the utilization of Masked Authentication Messaging in Public and Private Modes in PUF-based TPM approach for the security of Smart Electronics

48

Thank You !!

