QPUF: Quantum Physical Unclonable Functions for Security-by-Design of Industrial Internet-of-Things

Presenter: Venkata K. V. V. Bathalapalli

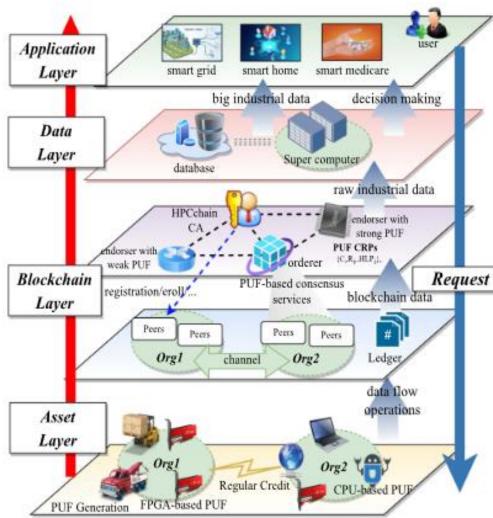
Venkata K. V. V. Bathalapalli¹, S. P. Mohanty², Chenyun Pan³. Elias Kougianos⁴

> University of North Texas, Denton, TX, USA.^{1,2,4} and University of Texas at Arlington³.

Email: vb0194@unt.edu¹, saraju.mohanty@unt.edu², chenyun.pan@uta.edu³, elias.kougianos@unt.edu⁴

Outline

- Introduction to Quantum Computing
- Security-by-Design (SbD) in Quantum Computing
- Cybersecurity in Industrial Internet-of-Things (IIoT)
- Physical Unclonable Functions (PUF)
- Proposed Quantum Hardware-based PUF Design
- Experimental implementation Overview
- Conclusion & Future Research Directions


Security-by-Design (SbD) – Industrial Internet-of-Things (IIoT)

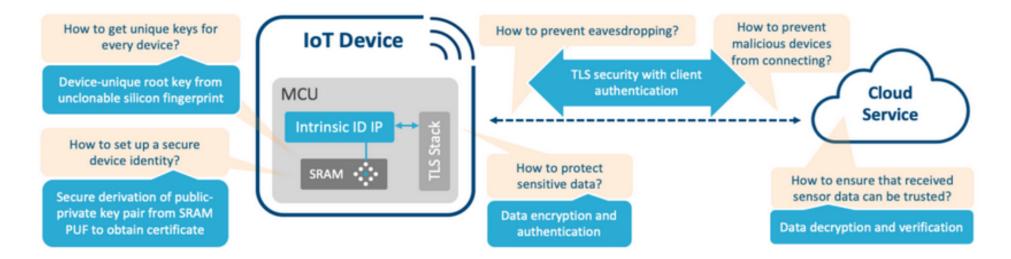
3

Architecture of I-CPS

Asset layer: This layer consists of smart manufacturing equipment, vehicles, drones, and sensors. These devices collect sensor data from IIoT network devices in real-time and communicate the data to the upper level.

Blockchain Layer: Blockchain securely records the sensor data inside a digital ledger and broadcasts it to all the stakeholders or industrial entities in the IIoT system globally.

Data layer: This layer edge, cloud, and supercomputers for faster analysis, processing and decision-making of sensor data IIoT systems employ Powerful databases, supercomputers, and high-speed networks.


Application layer: This layer consists of policy and decision making which integrates numerous IIoT application scenarios and users. Especially in the future Industry 4.0 era, the application of IIoT will be further expanded.

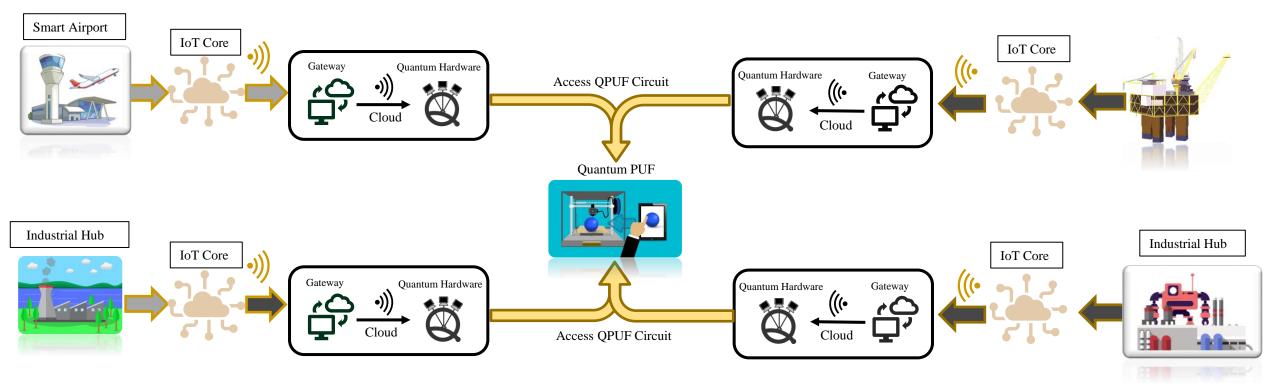
Source: K. Qian, Y. Liu, X. He, M. Du, S. Zhang, and K. Wang, "HPCchain: A Consortium Blockchain System Based on CPU-FPGA Hybrid-PUF for Industrial Internet of Things," in *IEEE Transactions on Industrial Informatics*, vol. 19, no. 11, pp. 11205-11215, Nov. 2023, doi: 10.1109/TII.2023.3244339.

PUF as a SbD Primitive for IIoT

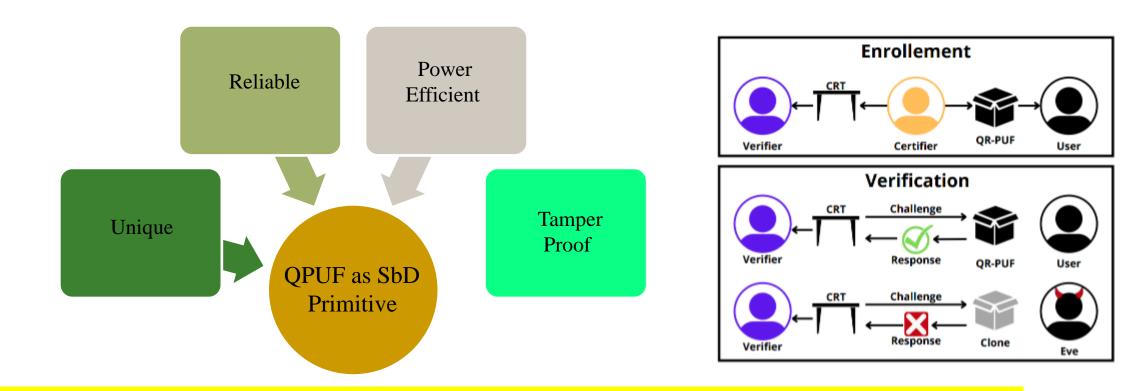
source: https://www.intrinsic-id.com/markets/industrial-iot/

Related Research Overview

Research Works	Security Mechanism	Approach	Features	Platform
Barbareschi, et al. 2021	Pseudo-PUF for Industrial IoT	Weak PUF, Encryption Module	Low energy overhead	NA
Phalak, et al.2021	Decoherence and Hadamard PUF	Qubit Decoherence	Security in Quantum Computing	Cloud
Gong, et al. 2022	PUF-based Authentication in IIoT	PUF, Fuzzy extractor	Secure Machine to Machine Communication	Cloud Computing
Shan, et al. 2023	PUF-based sensor security	SRAM PUF, HMAC Algorithm	Industrial sensor data integrity	SCADA System
Qian, et al. 2023	PUF-based Blockchain for IIoT	Hybrid PUF, Consortium Blockchain	CPU & FPGA based PUF with enhanced uniqueness	NA
QPUF (This Work)	Quantum Computing based PUF for IIoT	QPUF based on Quantum logic gates	Quantum hardware based Reliable QPUF responses	IBM's Quantum Cloud

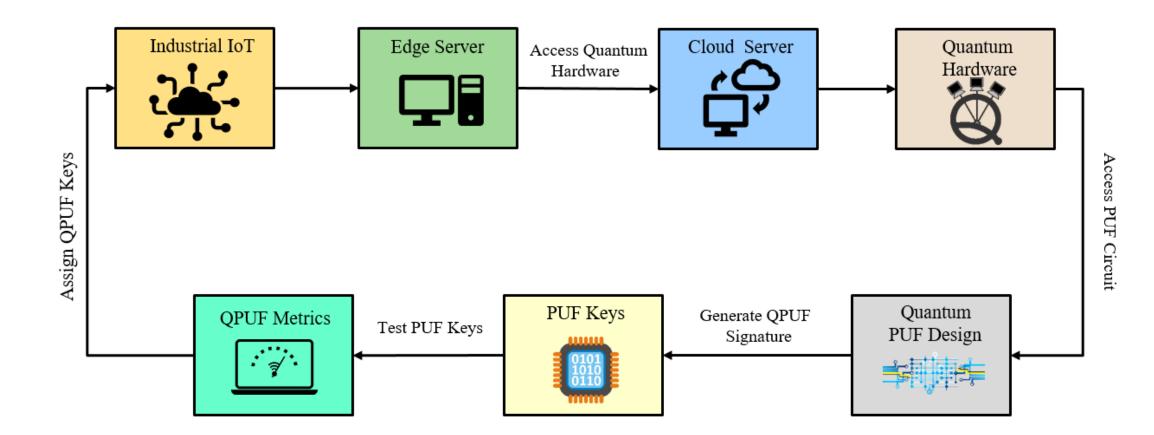


Quantum Physical Unclonable Function (QPUF) as a SbD Primitive


7

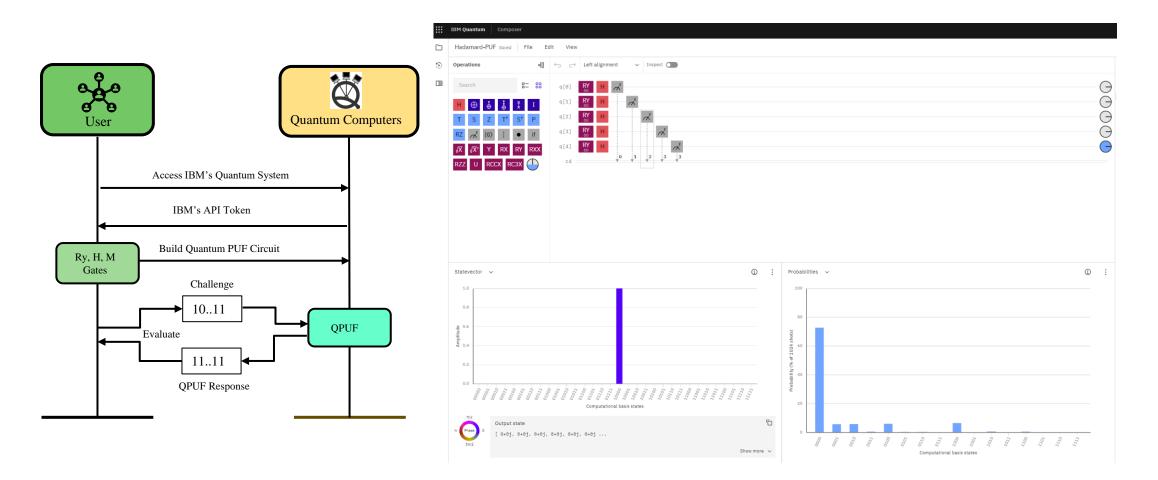
Architectural Overview of QPUF Enabled IIoT

QPUF as a SbD Primitive



Enrollment: The Certifier generates the Challenge-Response Table (CRP) by querying the QR-PUF and submits it to the Verifier while the QR-PUF is given to the user.
 Verification: The verifier extracts CRP from the user's QR-PUF through a Quantum channel.

Source: V. Galetsky, S. Ghosh, C. Deppe and R. Ferrara, "Comparison of Quantum PUF models," 2022 IEEE Globecom Workshops (GC Wkshps), Rio de Janeiro, Brazil, 2022, pp. 820-825, doi: 10.1109/GCWkshps56602.2022.10008722.



Working Overview of QPUF for SbD of IIoT

Accessing Quantum Hardware

11

Choosing Quantum Systems from IBM Quantum

- 5 Qubit and 7-Qubit systems are the most widely chosen Quantum Hardware.
- Ibmq_lima, ibmq_quito, ibmq_belem are 5 Qubit systems.
- Ibmq_Jakarta, ibm_perth, ibmq_manila are 7 Qubit systems.
- At present 127 –Qubit Hardware İS available for deployment of Quantum Circuits.

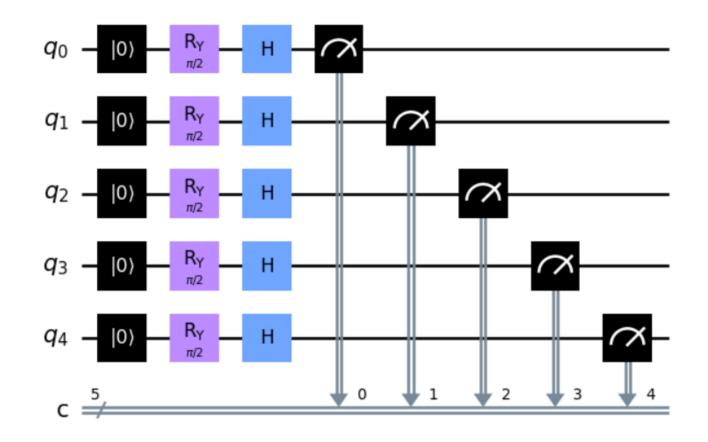
Step 1 Choose a system or simulator		Step 2 Choose you
Q Search by system or simulator name	t↓ ∇	Instance
System status • Online		ibm-q/op
Total pending jobs 59		Shots *
5 Qubits 32 QV 2.8 K CLOPS		2048
O ibmq_quito	See details	Job limit: 5 r
System status • Online		Tags (optional
Total pending jobs 7		Add tags
5 Qubits 16 QV 2.5K CLOPS		Autitags
● ibmq_belem	See details	
System status • Online		
Total pending jobs 10		
5 Qubits 16 QV 2.5K CLOPS		
O ibmq_lima	See details	
System status		
Total pending jobs 65		
5 Qubits 8 QV 2.7K CLOPS		
🔿 simulator_stabilizer	See details	
Simulator status • Online		
Total pending jobs 2		
5000 Qubits		
() simulator_mps	See details	
Simulator status • Online		
Total pending jobs 2		
100 oubite		

Set up and run your circuit

settings			
n/main			

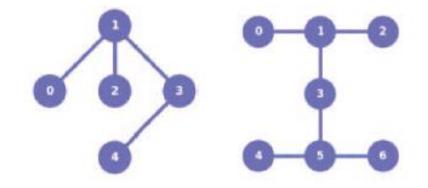
х

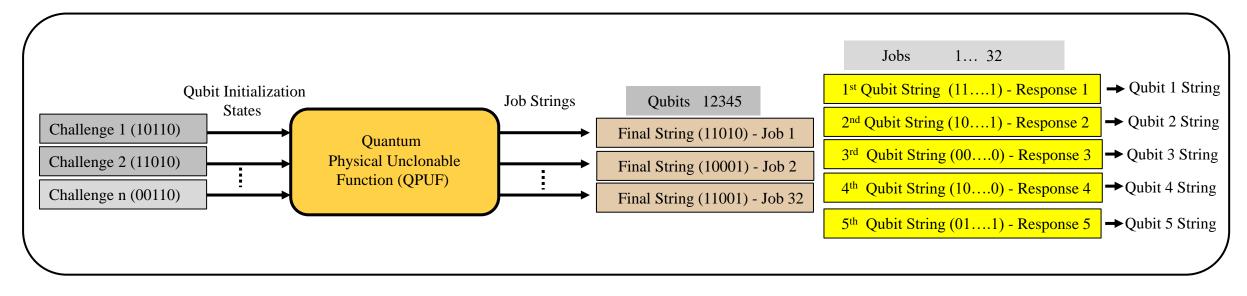
 \sim


Job limit: 5 remaining

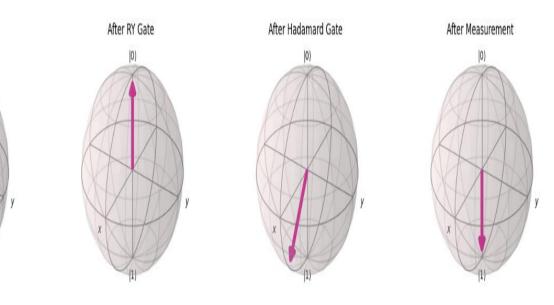
lags (optional)

Run on ibmq_belem



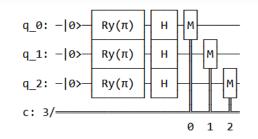

QPUF Design Using Quantum Logic Gates

QPUF Modelling Approach

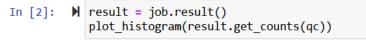


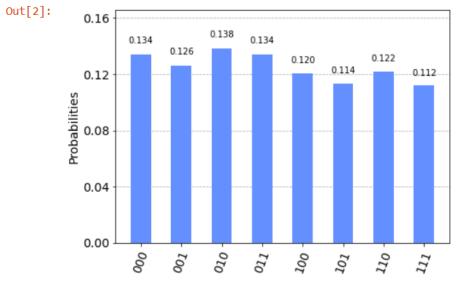
QPUF Quantum State Representation

- Initialize Qubits (Varying Initializations)
- Apply Ry gate to all Qubits: Ry Angle→pi/4, pi/2,...
 Circuit→ Ry[q]
- Apply Hadamard gate to all Qubits: Circuit→ H(Ry[q])
- Apply Measurement Gate(M)
 Circuit→ M[H(Ry[q])]
- Execute the circuit on the Chosen backend
- Jobs sets-5 sets, Each job
- Inputs- Initialization, Ry Gate angle
- Extract results string from all jobs
- Extract Qubit strings from all job strings



QPUF Characterization


QPUF Parameters	Specific Details	
Quantum System	IBM	
Working Platform	IBM Quantum Experience	
Environment	Qiskit	
Quantum Logic Gates	Hadamard, Ry, and Measurement Gates	
Quantum Systems	Hardware	
Noise Reduction Scheme	Majority Vote	
Quantum Hardware	Ibmq_belem, ibmq_lima, and ibmq_quito	
Number of Jobs Submitted to Each Hardware	25	
Number of Shots for Each Job	8192	
Hardware	5-Qubit	



QPUF Validation

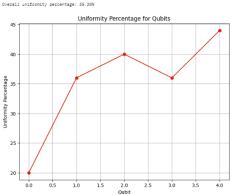
Total counts: {'000': 1, '010': 4, '101': 4, '001': 3, '100': 2, '110': 1, '111': 1} Job Status: job has successfully run

Qubit Frequencies

Frequencies	ibmq_lima (GHz)	ibmq_quito (GHz)	ibmq_belem (GHz)
Qubit 0	5.03	5.30	5.09
Qubit 1	5.13	5.08	5.25
Qubit 2	5.25	5.32	5.36
Qubit 3	5.30	5.16	5.17
Qubit 4	5.09	5.05	5.26

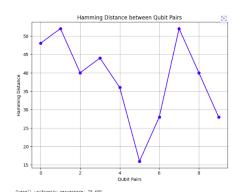
QPUF Evaluation Results

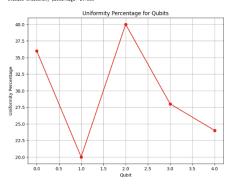
Figure-of-Merits	ibmq_lima	ibmq_quito	ibmq_belem
Overall Hamming Distance	40.0%	38.4%	34.4%
Uniformity of QPUF	35.2%	29.6%	27.6%
Uniqueness of QPUF		25.2%	
Reliability	60.0%	48.0%	-



QPUF Evaluation Results

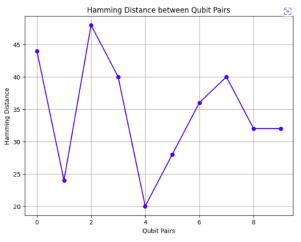
lbmq_lima

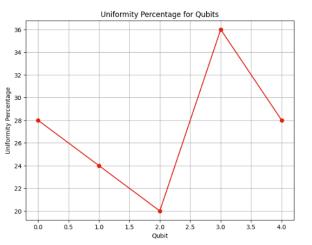

Oubit 0 string: 0001000010000100001000010 Oubit 1 string: 1100010010110000100011000 Oubit 2 string: 0001010110110000011001100 Oubit 3 string: 01000100100100100100111000 Oubit 4 string: 1100001001100110011011000 Calculating Hamming distance between qubit 0 and qubit 1. Hamming distance between qubit 0 and qubit 1: 0.48 Calculating Hamming distance between qubit 0 and qubit 2. Hamming distance between qubit 0 and qubit 2: 0.36 Calculating Hamming distance between qubit 0 and qubit 3. Hamming distance between qubit 0 and qubit 3: 0.40 Calculating Hamming distance between qubit 0 and qubit 4. Hamming distance between qubit 0 and qubit 4: 0.48 Uniformity percentage for qubit 0: 20.00% Calculating Hamming distance between qubit 1 and qubit 2. Hamming distance between qubit 1 and qubit 2: 0.36 Calculating Hamming distance between oubit 1 and oubit 3. Hamming distance between oubit 1 and oubit 3: 0.16 Calculating Hamming distance between qubit 1 and qubit 4 Hamming distance between qubit 1 and qubit 4: 0.40 Uniformity percentage for qubit 1: 36.00% Calculating Hamming distance between gubit 2 and gubit 3. Hamming distance between qubit 2 and qubit 3: 0.44 Calculating Hamming distance between qubit 2 and qubit 4. Hamming distance between qubit 2 and qubit 4: 0.52 Uniformity percentage for qubit 2: 40.00% Calculating Hamming distance between qubit 3 and qubit 4. Hamming distance between gubit 3 and gubit 4: 0.40 Uniformity percentage for qubit 3: 36.00% Uniformity percentage for qubit 4: 44.00% Overall Hamming distance: 40.00% Overall uniformity percentage: 35.20%


Hamming Distance between Qubit Pairs (*)

Ibmq_quito

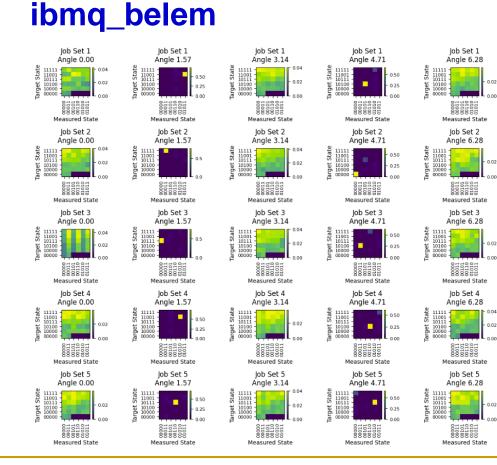
Qubit 0 string: 1001100111000100001000010 Oubit 1 string: 0100000010010000100001000 Qubit 2 string: 0011010010010011001001001 Oubit 3 string: 0100100010001100100001000 Oubit 4 string: 0100001000000101001001000 Calculating Hamming distance between qubit 0 and qubit 1... Hamming distance between qubit 0 and qubit 1: 0.48 Calculating Hamming distance between qubit 0 and qubit 2... Hamming distance between qubit 0 and qubit 2: 0.52 Calculating Hamming distance between qubit 0 and qubit 3... Hamming distance between gubit 0 and gubit 3: 0.40 Calculating Hamming distance between qubit 0 and qubit 4... Hamming distance between qubit 0 and qubit 4: 0.44 Uniformity percentage for qubit 0: 36.00% Calculating Hamming distance between gubit 1 and gubit 2... Hamming distance between oubit 1 and oubit 2: 0.36 Calculating Hamming distance between qubit 1 and qubit 3... Hamming distance between gubit 1 and gubit 3: 0.16 Calculating Hamming distance between oubit 1 and oubit 4... Hamming distance between qubit 1 and qubit 4: 0.28 Uniformity percentage for qubit 1: 20.00% Calculating Hamming distance between qubit 2 and qubit 3... Hamming distance between qubit 2 and qubit 3: 0.52 Calculating Hamming distance between qubit 2 and qubit 4... Hamming distance between qubit 2 and qubit 4: 0.40 Uniformity percentage for qubit 2: 40.00% Calculating Hamming distance between qubit 3 and qubit 4... Hamming distance between qubit 3 and qubit 4: 0.28 Uniformity percentage for qubit 3: 28.00% Uniformity percentage for gubit 4: 24.00% Overall Hamming distance: 38.40% Overall uniformity percentage: 29.60%



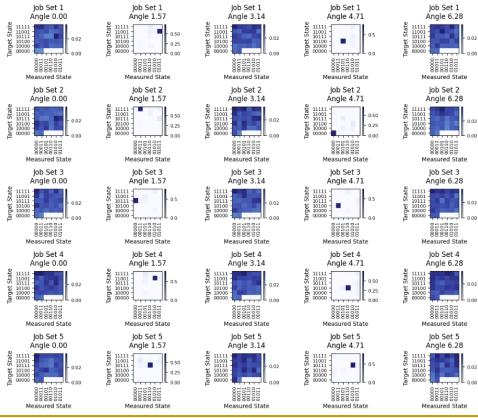

Continued...

Ibmq_belem

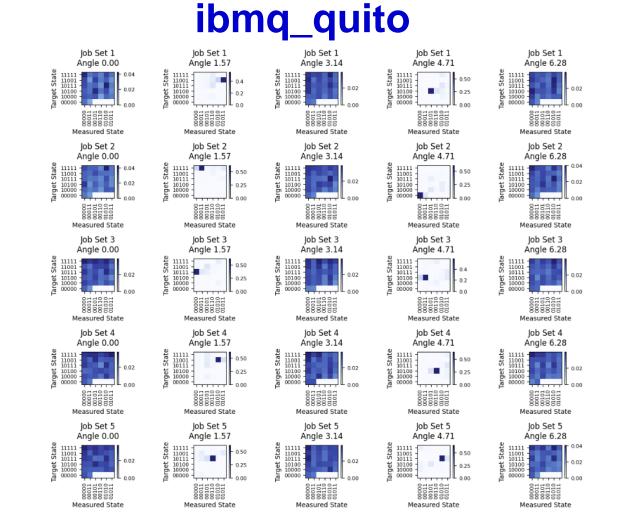
Oubit 0 string: 1001010010000100001000010 Oubit 1 string: 0100100010010000100001000 Oubit 2 string: 0001000010010000001001000 Oubit 3 string: 0100000111000100110101000 Oubit 4 string: 0100001000000100001101001 Calculating Hamming distance between qubit 0 and qubit 1... Hamming distance between qubit 0 and qubit 1: 0.44 Calculating Hamming distance between qubit 0 and qubit 2... Hamming distance between qubit 0 and qubit 2: 0.24 Calculating Hamming distance between qubit 0 and qubit 3... Hamming distance between qubit 0 and qubit 3: 0.48 Calculating Hamming distance between qubit 0 and qubit 4... Hamming distance between qubit 0 and qubit 4: 0.40 Uniformity percentage for qubit 0: 28.00% Calculating Hamming distance between qubit 1 and qubit 2... Hamming distance between qubit 1 and qubit 2: 0.20 Calculating Hamming distance between gubit 1 and gubit 3... Hamming distance between qubit 1 and qubit 3: 0.28 Calculating Hamming distance between qubit 1 and qubit 4... Hamming distance between qubit 1 and qubit 4: 0.36 Uniformity percentage for qubit 1: 24.00% Calculating Hamming distance between qubit 2 and qubit 3... Hamming distance between qubit 2 and qubit 3: 0.40 Calculating Hamming distance between qubit 2 and qubit 4... Hamming distance between qubit 2 and qubit 4: 0.32 Uniformity percentage for qubit 2: 20.00% Calculating Hamming distance between qubit 3 and qubit 4... Hamming distance between gubit 3 and gubit 4: 0.32 Uniformity percentage for qubit 3: 36.00% Uniformity percentage for qubit 4: 28.00% Overall Hamming distance: 34.40% Overall uniformity percentage: 27.20%



Overall uniformity percentage: 27.20%



QPUF Outcome Probabilities



ibmq_lima

Continued..

Summary

- Implementing PUF technology in Quantum Computers which are noisy is a challenging task due to Qubit's nature of decoherence.
- The interaction of Qubit with the environment can result in its decoherence.
- This can be addressed by increasing the number of samples and executing a greater number of jobs.
- We found that the problem with the execution of jobs on IBM quantum backends is that some quantum systems tend to get faulty and require maintenance which can disrupt the execution of jobs.
- This work has successfully evaluated PUF metrics from QPUF and generated responses from the design.

Future Research

- Improving the accuracy of the proposed QPUF design through various noise reduction techniques can be a direction for future research.
- Furthermore, the proposed work could be integrated with the QKD protocol to enable secure exchange of PUF keys using Quantum mechanics principles.
- Exploring the QPUF application in IIoT to improve the performance of IIoT devices in I-CPS
- Extending QPUF design to various areas of IoT-based applications with minimal tradeoffs.
- Exploring the feasibility of further development of QPUF designs using teleportation, decoherence, and other properties of Quantum systems.

Thank You !!

26