W-DaM: Weather Data Management in Smart Agriculture using Blockchain-as-a-Service

S. L. T. Vangipuram¹, S. P. Mohanty², and E. Kougianos³ University of North Texas, Denton, TX 76203, USA.^{1,2,3}

Email: It0264@unt.edu¹, saraju.mohanty@unt.edu², and elias.kougianos@unt.edu³.

Talk Outline

- Introduction.
- Motivation
- Related Works
- Novel Contributions
- IoT Hub
- Source Blockchain-as-a-Service(BaaS)
- Blockchain and Use cases
- Connections
- Architecture

- Algorithm proposed.
- Implementation.
- Results.
- Conclusion with Future work.

Motivation for W-DaM

Related Works

Application	IoT/Sensor	Communication	Data storage	Security Level	Computation
Purwandari et al. [4]	Yes	Single	Centralized	Low-High Risks High	High
Kodali and Sahu [6]	Yes	Single	Centralized	Low-High Risks	High
Tsao et al. [7]	Yes	Single	Distributed-(MQTT)	Low-High Risks	High
Osiorio et al. [8]	Yes	Single	Centralized	Low-High Risks	High
W-DaM [Current -Paper]	Yes	Bi-Directional	IoT Hub+ Decentralized	High	Low

Novel Contributions

- Connecting Internet-of-Agro-Things towards IoT-Hub for real-time weather data storage and bi-communication between various devices.
- The Blockchain-as-a-Service technology for added security and storage for weather data flow to mitigate uncertain facts and improve data quality.
- Increasing weather data precision and avoiding 1-degree differences in the forecast accuracy.
- Propose a novel architecture for a weather-quality data management system with hashing refuge through blockchain service in IoT Hub.
- Results comparing traditional weather data management systems and current W-DaM.

Weather forecasting Cites

What is IoT Hub?

An IoT hub is a way to centrally manage bi-directional communications between IoT devices and an IoT application.

What is BaaS?

- Blockchain-as-a-service (BaaS) is the third-party creation and management of cloud-based networks for companies building blockchain applications.
- The BaaS model allows companies to access a blockchain provider's services which can help access/develop blockchain-based applications.
- Examples of BaaS Providers: Amazon AWS, Azure, IBM, Ardor

Blockchain and its UseCases

IEEE-iSES_2023_W-DaM_Talk

Laboratory (SES)

EST 1890

Connect to IoT Hub - MQTT Protocol

Proposed Algorithm

- 1: Hname, PwD ← IoTHub.
- 2: Data transmission using MQTT Protocol between different en- tities. Client A is the IoT Hub, and Client B is the IoT De- vice/Sensor.
- 3: Generate Did ← Clid.
- 4: MQTT → MQTTbroker, ClientsA, B, C...n
- 5: CIACONNECT \longrightarrow MQTTbroker \longrightarrow CIB
- 6: if CIA equalto DidA then
- 7: CIBPUBLISHtemp,hum → MQTTbroker
- 8: MQTTbroker stores ClB,temp,hum through Rflag
- 9: MQTTbroker \rightarrow CONNACK \rightarrow CIA
- 10: CIA subscribes to MQTTbroker
- 11: MQTTbrokerPUBLISH \longrightarrow CIA,temp,hum
- 12: CIA DISCONNECT MQTTbroker
- 13: IoTHub Initialize and Add Endpoints

Proposed Algorithm

- 14: IoTHub → Add Route and fallback Route
- 15: lapp ← IoTHub,new message, USer, Tdata
- 16: lapp → call SP
- 18: BC ← SC ← IoTHub,new message
- 19: **else**
- 20: Discard operation.
- 21: End the Process
- 22: end if
- 23: Repeat the steps from 1 through 22 every time IoT Collects Weather Data.

W-DaM Implementation

W-DaM Performance Results

Application	Storage	Time Taken	Cost	Accuracy
Purwandari et al. [4]	Centralized	2.23s [14]	High	Low
Andrian of al [5]	Decontralized_IPES	120 [12]	High	High
Anunan et al. [5]	Decentralized-IFTS	135[13]	riigii	riigii
Kodali and Sahu [6]	Centralized	2.23s [14]	High	Low
	Centralized			LOW
Tsao et al. [7]	Distributed-(MQTT)	3s [13]	High	Hiah
Osiorio et al. [8]	Centralized	2.23s [14]	High	Low
W-DaM [Current- Paper]	IoT Hub +Blockchain	4.3s[13],[14]	Low	Very High

Conclusion & Future Direction

- A novel way of weather data management with the help of IoT Hub and using Blockchain-as-a-Service.
- We solve the issues related to multiple IoT device communication through Hub and provide weather data security with the service of Blockchain.
- The system is resistant and reliable to threats and data attacks through the authentication of devices.
- We show that IoT Hub and Blockchain have proven to be accurate in storing and sharing weather data.

rawptxel

