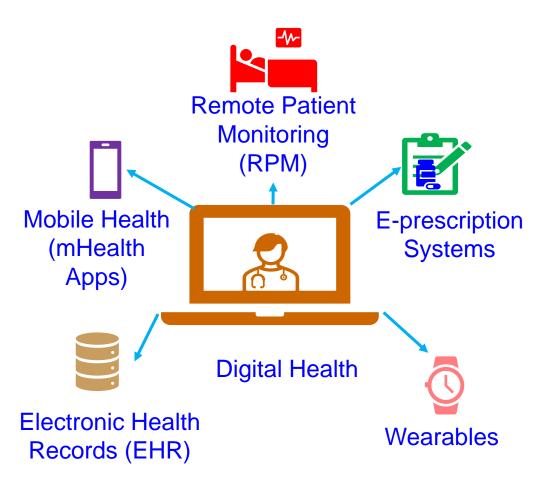
FortiRx 2.0: Smart Privacy-Preserved Demand Forecasting of Prescription Drugs in Healthcare-CPS

Presenter: Sukrutha L. T. Vangipuram

Anand Kumar Bapatla¹, S. P. Mohanty², E. Kougianos³ University of North Texas, Denton, TX, USA.^{1,2,3}

Email: ab0841@unt.edu¹, saraju.mohanty@unt.edu², elias.kougianos@unt.edu³

- Digital Health Technologies and E-Prescription
- Challenges
- Blockchain as a Solution
- Overview of FortiRx
- Novel Contributions
- Architectural Overview
- Implementation Details
- Results and Analysis
- Conclusion


Digital Health Technologies and E-Prescription

3

What are Digital Health Technologies?

- Digital Health Technologies encompasses a range of digital tools and platforms to improve healthcare services
- Facilitates remote consultation, personalized health tracking, and data-driven interventions
- E-prescription systems are crucial components of Digital Health Technologies and are often integrated into Electronic Health Records

Electronic Health Records (EHR's)

- Electronic Health Record (EHR) is an electronic version of patient medical history maintained by the provider
- Contains demographics, progress notes, problems, medications, and other administrative information

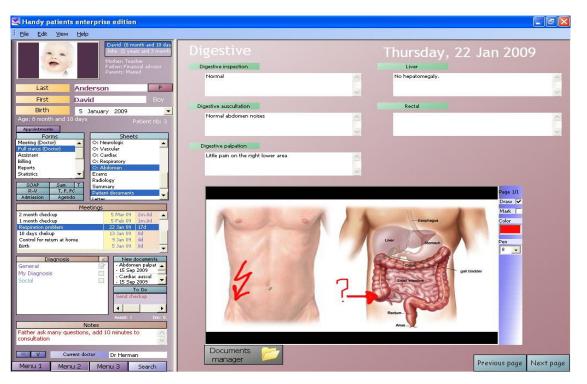
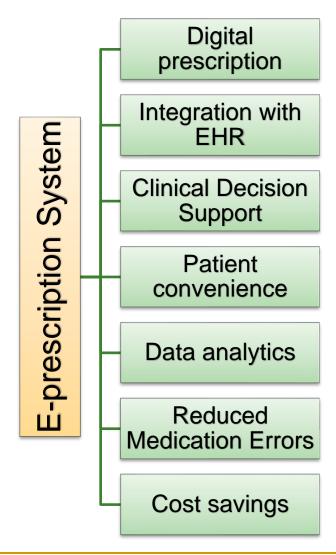
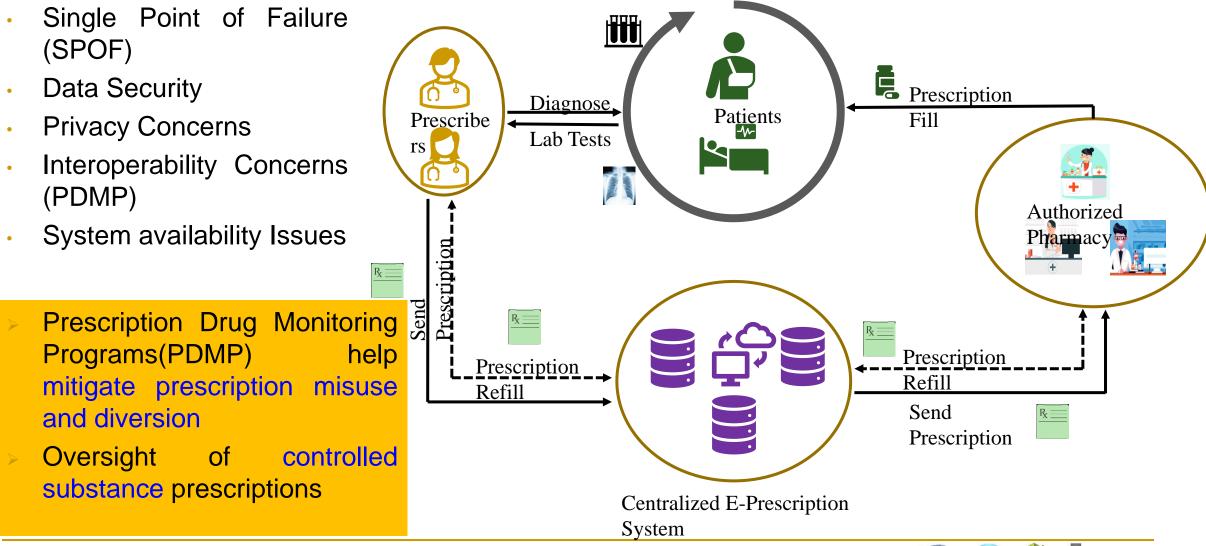
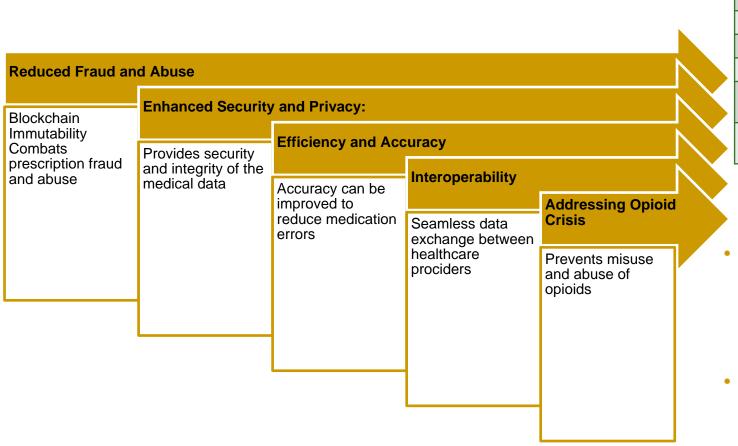



Image Source: DaCarpenther, An electronic medical record example, Handy patients electronic medical record (free open-source version)


Electronic Prescription

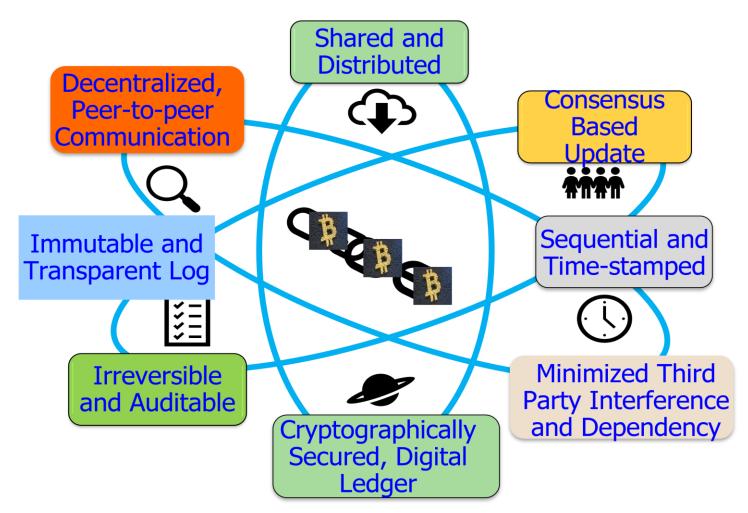
- Revolutionized the way medications are prescribed, processed, and dispensed
- Digital version of prescriptions increase legibility and reduces medication errors
- Clinical Decision Support Tools Warn potential drug interactions, suggest alternate medication, offer dosage recommendations
 - More than 100,000 reports of medication errors (FDA)
 - > 40% of Americans report being involved in medical errors (Institute for Healthcare Improvement/NORC at the University of Chicago)
 - 1 in 5 doses of medication provided during patient visits is administered incorrectly


E-Prescription System and Issues

7

Motivation

Prescription Drug Type	Annual Abusers	% Among Rx Abusers	% Among Americans	
Painkillers	9.7 million	59.5%	3.43%	
Opioids Alone	9.3 million	57.1%	3.29%	
Sedatives	5.9 million	36.2%	2.08%	
Stimulants	4.9 million	30.1%	1.73%	
Benzodiazepine Alone	4.8 million	29.4%	1.70%	
All Prescription Drugs	16.3 million	100%	5.76%	


16M – 6% of Americans over the age of 12 abuse prescriptions in a year.

 2M – 12% of prescription drug abusers are addicted.

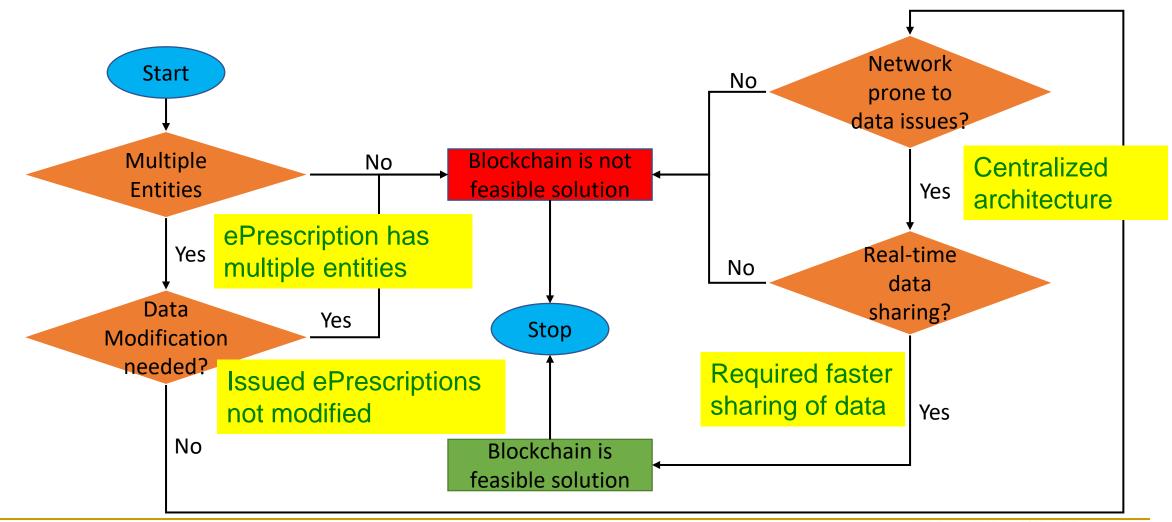
Statistics Source: https://drugabusestatistics.org/prescription-drug-abuse-statistics/

Blockchain Technology

Technical Definition: A blockchain is a linked list that is built with hash pointers instead of regular pointers. Socio-Political–Economic Definition: A blockchain is an open, borderless, decentralized, public, trustless, permissionless, immutable record of transactions.

Financial – Accounting Definition: A blockchain is a public, distributed ledger of peer-to-peer transactions.

Source: D. Puthal, N. Malik, S. P. Mohanty, E. Kougianos, and C. Yang, "The Blockchain as a Decentralized Security Framework", *IEEE Consumer Electronics Magazine (CEM)*, Volume 7, Issue 2, March 2018, pp. 18--21.

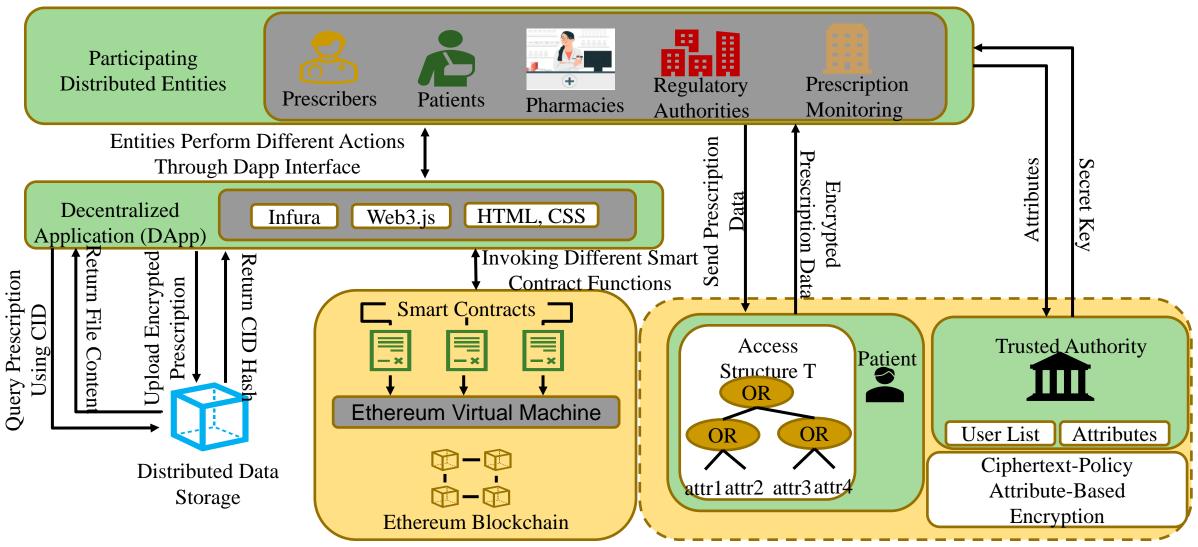


Blockchain as a Solution

- Enhanced Data Security: Decentralized and immutable ledger reduces the risk of data breaches and maintains data integrity.
- Patient-Centric Privacy: Empowers patients to have control over their health data.
- Interoperability: Improves interoperability between healthcare providers, pharmacies, PDMP databases, and other participants of the prescription process.
- High Availability: Blockchain-based e-prescription systems are more resilient to downtime, ensuring uninterrupted access.
- Automated Processes: Smart Contracts can automate various aspects of the eprescription process.

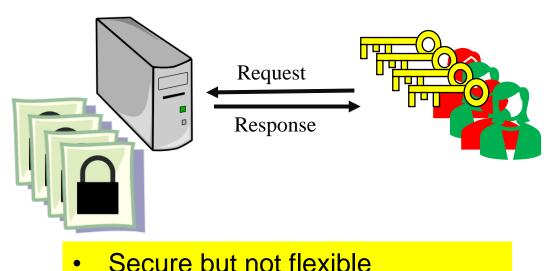
Evaluating Blockchain for E-prescription

FortiRx: Distributed Ledger based Verifiable and Trustworthy Electronic Prescription Sharing

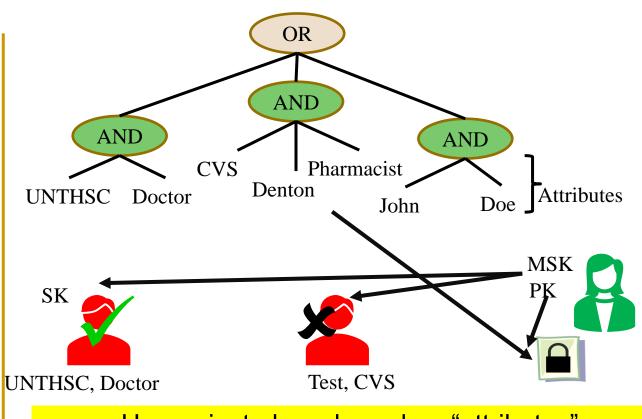


Novel Contributions

- Proposed FortiRx makes use of blockchain combined with the distributed file system (IPFS) to create a decentralized environment for all the participating entities.
- Blockchain enhances the interoperability of the system.
- Usage of off-chain distributed file-sharing systems to store prescription information can help in reducing the amount of on-chain data.
- It is resistant to Single Point of Failure (SPOF) and reduces response latency
- It avoids data tampering and prescription abuse
- Cipher text-policy attribute-based encryption (CP-ABE) provides a robust access control mechanism.

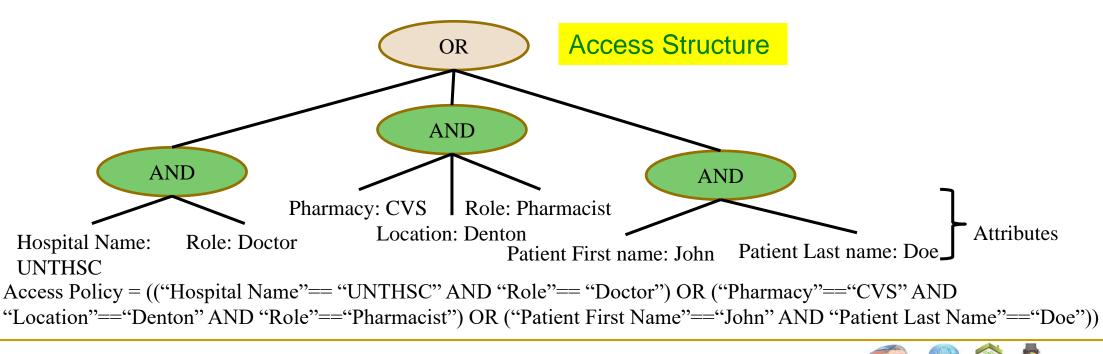


FortiRx Architecture



Asymmetric Encryption vs CP-ABE

- Secure but not flexible
- New key for every participant
- Fine-grain access control not possible
- Needs efficient key distribution

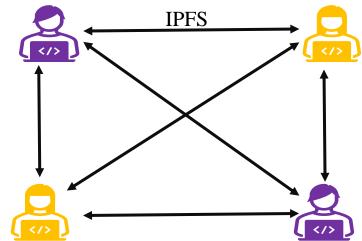


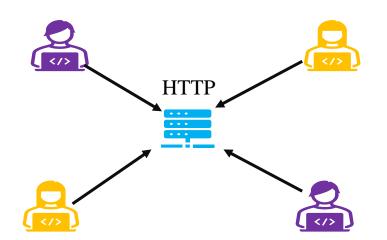
- User private keys based on "attributes"
- Files can be encrypted under "policy" over those attributes
- Can only decrypt if attributes satisfy policy

Access Control Mechanisms

- For Prescription Access
 - Cipher text-policy attribute-based encryption (CP-ABE) allowing fine-grained control of data access
 - Data-sharing among multiple parties without revealing the content of the data.
 - Access the data based on attributes, such as roles or clearances rather than specific keys.
 - Effectively scales as the number of parties involved in a multi-party access scenario grows

aboratory (S


Access Control Mechanisms


- CP-ABE Steps
 - Key Generation Generates a master key and a set of attributes
 - Attribute Assignment Attributes assigned to users or entities
 - Policy Specification The data owner specifies an access policy using a set of attributes
 - Encryption The data owner encrypts using the access policy
 - Decryption Requesting user attributes evaluated against policy and information before decrypting
 - For Role Specific Functions
 - Role-Based Access Control (RBAC) mechanism automated using smart contracts.
 - Define, assign, and revoke roles for specific External Owner Accounts (EOA)
 - Modifiers defined and assigned to different smart contract functions
 - Authenticate role-based transactions and prevent unauthorized access.

Distributed Data Storage (IPFS)

Aspect	НТТР	IPFS	
Adoption and Support	Widespread, universally supported	Growing adoption, expanding support	
Protocol Complexity	Simple, well-established	Decentralized, content-addressed	
Caching	Supports various caching mechanisms	Distributed content, local caching	
Direct Access	Connects to centralized web servers	Peer-to-peer and distributed access	
Control	Centralized control by web server	Decentralized, no single control	
Data Addressing	URL-based addressing	Content-based addressing (hashes)	
Redundancy and Resilience	Limited redundancy	Content distributed across nodes	
Data Immutability	Can be updated by the server	Immutable content, cannot be changed	
Data Sharing	Limited sharing without a server	Easy sharing with peers and nodes	
Offline Access	Requires internet connection	Offline access to previously viewed	
Data Retrieval Efficiency	Traditional DNS-based lookup	Efficient DHT-based content routing	

Prescription Upload Steps in FortiRx

- Generate a digital prescription and create a file.
- For each prescription file, open and read the contents.
- Encrypt the prescription content using a public key and the patient's access policy, creating a ciphertext.
- For each encrypted prescription file and upload to IPFS.
- Retrieve the Content ID (CID) from the IPFS response.
- Create a new transaction in the prescription smart contract to create the prescription for the patient.
- If the caller of this transaction is the prescriber:
 - Create a new prescription and associate it with the patient's address.
 - Emit an event with prescription data, generating a log.
 - Return the transaction hash (Txhash).
- If the caller is not the prescriber, reject the transaction.

Algorithm 1 Proposed Prescription Upload Algorithm for FortiRx.

Input: Digital Prescription Data, public parameters (params,g1,g2,e) generated during CP-ABE setup, Access policy ρ defined by the patient **Output:** Content ID for IPFS file, Transaction hash of prescription creation in blockchain

1: A digital p	rescription is generated, and a file is created
2: For each	prescription file f do
3:	Open file in read mode
4:	FileItem \leftarrow open(filePath,'r')
5:	Read prescription content from the file
6:	prescription content (Pcontent) ← fileItem.read()
7:	Encryption is done using the public key (pk) and policy p to generate ciphertext of
	the prescription content
8:	Cipher text CT ← cpabe.encrypt(pk, Pcontent ,ρ)
9:	A new file is created and generated cipher text is written to that file
10: end for	
11: For each	encrypted prescription file f do
12:	Send upload request to IPFS
13:	Response (res) ← requests.post(Infura endpoint, authentication parameters, file f)
14:	Content ID from response is retrieved
15:	Content ID (CID) ← res.text['Hash']
16: end for	
17: Prescribe	er creates a new createPrescription transaction in prescription smart contract
18: Transact	ion (Tx) ← prescription.createPrescription(patient address (Paddr),CID)
19: if caller =	= Prescriber then
20:	A new prescription is created and added to patient's address
21:	Emit an event (ev) with prescription data and a log is generated
22:	Return transaction hash (Tx hash)
23: else	
24:	Reject Tx
25: end if	

Prescription Retrieval Steps in FortiRx

- For each view request, Retrieve the prescription based on PID from the blockchain using the smart contract.
- Get the IPFS Hash (CID) of the prescription from the retrieved data.
- Request the prescription content from IPFS using CID.
- Receive the ciphertext (CT) from IPFS.
- Obtain a secret key for a specific set of attributes (attr list) from a trusted authority.
- Decrypt the ciphertext (CT) using the secret key to reveal the prescription content.
- Display the decrypted prescription content if the access policy (p) evaluates positively for the attribute list (attr list)
- If the access policy doesn't match the attribute list, decryption is not allowed.

Algorithm 2 Proposed Prescription Retrieval Algorithm for FortiRx.

Input: Prescription ID (PID) generated while creating new prescription in blockchain, attribute list of requesting entity (attr list) **Output:** Decrypted prescription content (Pcontent)

1: For each	view request (req) do
2:	Send a function call to prescription smart contract to retrieve Prescription based on PID
3:	Retrieved prescription Pret ← prescription.viewPrescription(PID)
4:	Get IPFS Hash (CID) from the function response
5:	CID ← Pret['IPFSHash']
6:	Send a request to IPFS to retrieve prescription content (Pcontent)
7:	Response (res) ← requests.post(Infura end point, CID, authentication parameters)
8:	Retrieved cipher text (CT) ← res.text
9:	Secret key for a set of attributes attr list is requested from trusted authority
10:	Secret key (Sk) ← cpabe.keygen(public key (pk), attr list)
11:	Decrypt cipher text using the secret key to get prescription content
12:	if p.evaluate(attr list) then
13:	Pcontent ← cpabe.decrypt(Sk, CT)
14:	else
15:	Cannot decrypt prescription content
16:	end if
17: end for	

Prescription Retrieval Steps in FortiRx

- Pharmacy or physician sends different status updates.
- Depending on the type of update, the smart contract is called with the PID as a parameter.
- If the prescription is filled:
 - The smart contract marks the prescription as filled.
- If the prescription needs re-filling:
 - The smart contract requests a refill.
- Otherwise:
 - The smart contract issues a refill.

Input: Problem Blockchai	escription ID (PID) generated while creating a new prescription in n
Output:	The Status of the prescription will be updated
2: Based will be inv	nt status flag updates will be sent either by the pharmacy or physician on the type of status update, different functions of the smart contract voked with (PID) as parameter
3: If the P 4:	rescription is filled then
4. 5:	prescription.updatePrescriptionStatus(PID) Smart contract check the pharmacy Ethereum address for access and updates isFilled flag of prescription
6: else if l	Prescription needs re-filling, then
7:	prescription.requestRefill(PID)
8:	Smart contract checks the pharmacy Ethereum address for access and updates the requestRefill flag of prescription
9: else	
10:	prescription.issueRefill(PID)
11:	Smart contract checks the physician's Ethereum address for access and updates the isFilled and requestRefill flags of prescription
12: end if	

Used Sample Prescription Data

John Doe's Bags of Medications

(Note: you would only know what these are if you accessed an electronic pill identifier site likeDrugs.com) Morning Ziplock:

- Allopurinol 2 50 mg tablets: learn he takes 1 or 2 a day depending on whether he has gout
- Aspirin 1/2 tablet: doctor told him to take 1/2 tablet
- Clopidogrel 75 mg tablet
- Colchicine 0.6 mg tablet
- Glyburide 1.25 mg tablet
- Toprol XL 50 mg tablet
- Amiloride 5 mg tablet
- Enalapril 20 mg tablet

• Tylenol Arthritis 2 650 mg tablets Afternoon Ziplock:

• Tylenol Arthritis 2 650 mg tablets

PM Ziplock:

- Colchicine 0.6 mg tablet
- Glyburide 1.25 mg tablet
- Simvastatin 80 mg tablet
- Warfarin 5 mg tablet
- Amiloride 5 mg tablet
- Enalapril 20 mg tablet
- Tylenol Arthritis 2 650 mg tablets

Also has:

- Nitroglycerin bottle of 0.4 mg tablets takes 1 QD or QOD
- Albuterol inhaler: prn. Does not use often.

Source: https://www.hospitalmedicine.org/globalassets/clinical-topics/medication-reconciliation/1_john-doe-caseprework-for-pharmacist-trx-1.pdf

22

OCIT 2023 - FortiRx 2.0

Used Sample Prescription Text File Size: 913 bytes

Encrypting and Uploading Prescription to IPFS

'c1': {'C tilde': [3215696477602543308509687472299842733447469043790367587388678653917361102650358066447731024216493404689568137050900697756452955137114836886501609304445748, 837566400379269078798303153 196912462055653498429949004093385175538061956020577786851021342716938948436393201837227569793818305191624227910299357750124601], 'C': [3545286006617797074529535372798534778334137782844731531763005399874 645576599590388159491163104986261305214]. 'Cv': {'0NE': [4217179885320506263331214696361518319115121005532026115684555650253408934844995153 63283619. 5214112989796991481560649264992035394134295172305297883412206977700263863661588679408536998667176963139130467454735515028415268994174370938814309913794843] 96361518319115121005532026115684555560253408934844995153706907045163476799688287756796260512866682609534992049935635857563283619. 52141129897969914815606492649920353941342951723052978834122069 661588679408536998667176963139130467454735515028415268994174370938814309913794843], 'TWO': [776248738852230528423976894319937197482496554704928576617100447522635514899703444454231356361268 2215546936496015506735462602279385429747926, 81181425275517214920497901418224458658046908234353404301347194392240210754072470469368637582075567 0UR': [77624873885223052842397689431993719748249655470492857661710044752263551489970344445423135636126829208699264042822155469364960155 69082343534043013471943922402107540724704693686375820755678411209976200944280682568090336860288528588108636765908] 3844230384399246056765123644963390648 0582888374449758314100827252215751090], 'THREE': [75778580573190155391122791396145525255657871960487735726477720490342917804349696138452610459 1080105864017791238343079083249249231393898824772431199899179711342448105508732069942830572744491402935430894437015364490392546 42347469363565532540327325624979133593536087139619933430641970392447191. 'FOUR': [806428082519213067203293206840028971832903410882498 751611723264241486021136894681073, 3561827273631685939592151147010324151126824743991426854170279092465456120594687755108122993849588458094019627359816582456598437223146568156560112031271351 '((ONE or THREE) and (TWO or FOUR))', 'attributes': ['ONE', 'THREE', 'TWO', 'FOUR']}, 'c2': {'alg': 'HMAC_SHA2', 'msg': '{"ALG": 0, "MODE": 2, "IV": "3xchsyuYidxRTKE/wdWcXg==", "CipherText": "1dKUFnI/iAC G0lqe16ZNYzxBJP+25Fuy3YfZczfJbBys2GDnvSQV6s3M4ofIVG8II979QUnRR2ySRl6PfoALIIvS3XdMzuJGJv5TWxhVGzB/Ux7B9XfgTPkz60K71eUL4g8Fv0r2CHsii1EaIXtIFdId0TeEmWAjY1ZjilS8yuVXm3G/zsYDqoaevtaWqtu7YbZ5p06Y0be1qIA0YC1DH F4vTIoPgXM6NqzSYNNWW4rR6+Ui+5DA0kirClvi)l/ySZiVs00N+C12LsMIATvgYt40CMKyoMfKvxrECAp90832fLc7bqQtpvBNQRbdÄyHGoVze6sfsLaeXIlAJlDGn/wVtgq7+ls+Sto8MDooOtlvG2aqjsot0Tnll7VYbaktmrnxwllVsq2xtenx8P6RE5SdQ0GXFRR 7UMGEtPhSt0EVraXFWMlWlfqct0M9tu4J1cz/CI72PSBrwowrme803Kf10hu3F810vBY0etu6Qrs3zAdCn4tyY2Jy/seL0dLoNgarJtCuB2CE+V2+RRQYPM+PltoYuPuhFGpBeWQgKUxVh010yVQrMGVj0KLMfyNL4RF+K9uNF1NT84amsD/UUuGBdEKu0U7NeMP4Ki95/r ZErgkDHLkTsnzcw00e+LTXue4AjGdAIYgldx4dVK+TCch/qAychMddJ+WiBE9xeh89Xg1cnlqAVA5JPJnPbfFlmP5qwwZ5tg+8DtxhlUvjqldFMaEvIqcW82ytuAVoCcccibU+iuA16D7m3KG5koVJALZ+i89Wsf9chUuxWAbP3ysyiA8y85Z7s8M0pf51/uBQA4k0jMEHC vI4m2a6Tk3ALuTBCrZZFt/hemt2/mSn/wfbsQC4A+Hb9Ps7fn/GY+P8hdpJf00+HeYxyN4xrY5EJACY00nvbhYQRJaEFlExV5BuiNS565ZoMAqhq+gzdCWxqjUuYJbwztAkMfrewAvib157VV0XlDKC4fYWjHKRH0tWA3gaCnMhHbTPyfiUV2upIITCSkn73bX1y11a8CwJ sv4isqHASqjehFieb8F0zf1mzC3TJXi0zCCzLHVd4bhqVe6IhSCRzoGVqNJaBGsHWj/S7FqX+zcSDE3fUsc/MprEGqjqJM5N7HWmvyV6icjAT0w4d0+0zzM73GNMvMCnIttFPIaG8S8w8XmNzT2YNN1ZVusjVm/rfFafvDnHft0FCY10GFswUSGFAYZyTwPKZyxMGWmqzZr UaalNxz0g=="}', 'digest': '20776da162fb1e8255c56dab07f1c1c33bc776ad7ac60c7c7da14468441e4f95'})

<kesponse [200]>
Prescription.txt: Qme7Sq8gLmE875kE79QyWWFy9wqQ4yHnTEHMur511PrZfF
Folder CID: QmWP13wr64fit1Nt7PUpM3wxBro5x1LvjzWgiZFNXtJFrH

Encrypted Prescription

Content ID from IPFS

[2055518218368535312257156353032542535393806874053072486268224518005117455169046211829527488705937844597456797852989786590374842683211657473035663777879271, 3720114716169197903951888851439982024564117835 553509220866437609836832652740866847294379841501181255853864519743502467547014029491057158033532387391522880]

b'John Doe\xe2\x80\x99s Bags of Medications\n(Note: you would only know what these are if you accessed an electronic pill identifier site like\nDrugs.com)\nMorning Ziplock:\n\xe2\x80\xa2 Allepurinol 2 50 mg tablets: learn he takes 1 or 2 a day depending on whether he has gout\n\xe2\x80\xa2 Aspirin \xc2\xbd tablet: doctor told him to take \xc2\xbd tablet\n\xe2\x80\xa2 Clopidogrel 75 mg tablet\n\xe2\x80\xa2 Aspirin \xc2\xbd tablet: doctor told him to take \xc2\xbd\tablet\n\xe2\x80\xa2 Clopidogrel 75 mg tablet\n\xe2\x80\xa2 Allepurinol 2 50 ritis 2 650 mg tablets\nAfternoon Ziplock:\n\xe2\x80\xa2 Tylenol Arthritis 2 650 mg tablet\n\xe2\x80\xa2 Clopidogrel 75 mg tablet\n\xe2\x80\xa2 Allepurinol 2 50 titl 80 mg tablet\n\xe2\x80\xa2 Warfarin 5 mg tablet\n\xe2\x80\xa2 Tylenol Arthritis 2 650 mg tablet\n\xe2\x80\xa2 Clopidogrel 7.5 troglocerin bottle of 0.4 mg tablets_\xe2\x80\x32 Warfarin 5 mg tablet\n\xe2\x80\xa2 Amiloride 5 mg tablet\n\xe2\x80\xa2 Enalapril 20 mg tablet\n\xe2\x80\xa2 Fylenol Arthritis 2 650 mg tablet\n\xe2\x80\x80 Fylenol Arthritis 2 650 mg tablet\n\xe2\x80\

osboxes@osboxes:~/Desktop/FortiRX\$

Retrieved Prescription Information

23

Smart Contract Deployment

Deployment in Sepolia

Ethereum Addresses with Roles

	Sn	nart Contract	Wallet Transaction			
		e=false&runs=200&evmVersic ==null&version=soljson=v0.8.18+commit.87/61d96.js		Account New contract		
Iookmarks 🔮 IATA - Travellers Fre 🔮 C DEPLOY & RUN TRANSACTION ENVIRONMENT 👾 Injected Provider - MetaMask Septiat (1135313) instants		Q Q () [Home SfortResol X () // SPOX-License-Identifier: (PL-3.0 pragma solidity >=0.4.24; 3 // Inherited contracts 4 inport: ', (ownable.sol';		https://remix.ethereum.org CONTRACT DEPLOYMENT		
ACCOUNT 🕥		<pre>uint prescriptionID = 999; mapping(address patientAddress => uint[] prescriptions) prescri mapping(uint prescriptionID => prescription) prescriptionMap;</pre>		Site suggested) O.0.0407075 Gas (estimated) O.0.0407075 SepoliaETH Very likely in < Max feet: 0.00407075 SepoliaETH Is eccented		
CONTRACT (Compiled by Remix) FortiRx - contracts/FortiRx.sol Deploy	1 1 1 1 1 1 2 2	0 string IPFSFileHash; 1 }		0.00407/75 Total 0.00407/75 SepoliaETH Amount + gas Max amount: fee 0.00407/75 SepoliaETH		
Publish to IPFS OR At Address Last contract from Add Transactions recorded ① ①	esi 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	function createPrescription(address patientAddress, string memory arequire(isPatient(patientAddress), 'Check Address of Patient prescriptionID - prescriptionID+1; prescription memory createdPrescription = prescription(prescription)				
Deployed Contracts	3	<pre>function updatePrescriptionStatus(uint ID) public onlyPharmacy(</pre>	0 (

Feature	Value
Physician Account Address	0x3d352313f4f5561d0ffbfda205b52a3c3b70af35
Pharmacy Account Address	0x3D352313F4f5561D0fFBfda205B52A3c3b70af35
Patient Account Address	0x2a9884dfa7E6890FE8AA99FE2486c613C32b697a
Contract Deployment Hash	0x798d1f5ff49f9df09b9856db2646cebc2029d5cd2a45c5ef0c1b9
	acb9f217c6f
Prescription Content ID	Qme7Sq8gLmE875kE79QyWWFy9wqQ4yHnTEHMur511PrZfF
Prescription Creation Hash	0xda5bd0ce943325696e91bfe140bd8cdd60eafdca6f2a41b0722
	1e499bfe7f1f7

Remix Environment Network Configuration

FortiRx 2.0: Smart Privacy-Preserved Demand Forecasting of Prescription Drugs in Healthcare-CPS

25

Motivation

- Small changes in the demand at the consumer level can progressively increase the fluctuation the upstream of supply chain
- Patient needs are ever-changing: e.g., serious illness, public health crisis (COVID-19)
- Demand forecasting errors at lower levels of PSC can lead to supply chain disruptions. (Witnessed: COVID-19)

THE BULLWHIP EFFECT

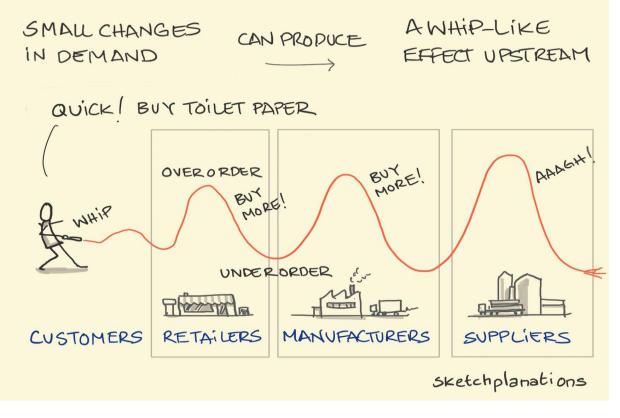
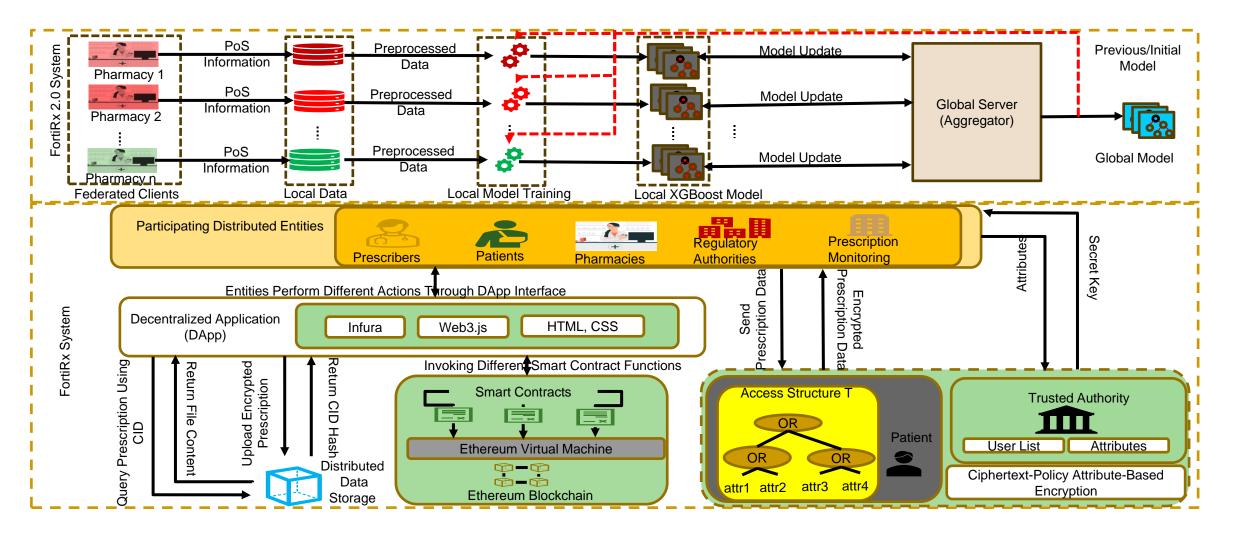


Image Source: https://sketchplanations.com/the-overview-effect

Demand Forecasting Model – PSC Problems



Novel Contributions

- Utilizing real-time prescription information can help in creating accurate DFM that reduces overstocking and understocking issues in the supply chain.
- Blockchain-leveraged decentralized architecture can help in real-time sales data available.
- Federated learning approach and CP-ABE access control mechanism ensures the privacy of the patients and doesn't reveal the patient prescription information to unintended parties.
- Blockchain-based approach helps in creating a cost-effective and adaptable E-Prescription system.
- The Trust model through consensus protocols ensures no outliers and helps in the accuracy of the DFM.

FortiRx 2.0 Architecture

Federated XGBoost Steps

Data is partitioned into local datasets and resides at each local pharmacy.

Dataset D =
$$\bigcup_{i=1}^{n} D_{ci}$$

Each federated client (Pharmacy) loads the local dataset and trains the local XGBoost model using initialized parameters.

 $M_{ci} = XGBoostTrain(Dci_{,}\theta_{ci})$

 A starting point global model M_{global} is initialized at the server using global hyperparameters O_{global} as follows:

 $M_{global} = XGBoostInitialize(\theta_{global})$

Federated XGBoost Steps

- The number of iterations of federated training is determined by a pre-determined value T.
- At each iteration client c_i generates a model update which are gradients ∇_{ci} and/or Hessians H_{ci}.

 ∇_{ci} , H_{ci} = CalculateGradientHessians(Dci, M_{ci})

• These computed gradients and/or Hessians will be packaged as model update Ψ_{ci} .

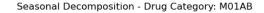
 $\Psi_{ci} = PackageModelUpdate(\nabla_{ci}, H_{ci})$

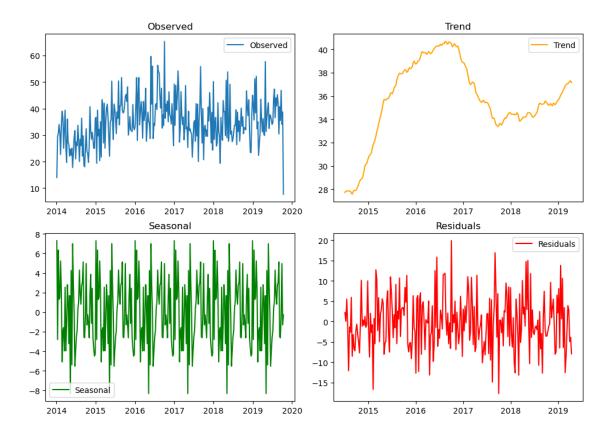
Updates sent back from the client C_i to the centralized server and aggregated.

 Ψ aggregate = Aggregate ModelUpdates ($\Psi_{c1}, \Psi_{c2}, \Psi_{c3}, \dots, \Psi_{cn}$)

The aggregated model is sent back to the client Ci and retrained by integrating the aggregated model.

Dataset and Exploratory Analysis


- Public Pharma Sales dataset from Kaggle is used for simulation and analysis of the proposed FortiRx 2.0.
- Covers sales data collected over 6 years from 2014-2019 for a selected type of drugs and classified into 8 groups based on Anatomical Therapeutic Chemical (ATC) Classification.
- Categories: M01AB, M01AE, N02BA, N02BE, N05C, N05B, R03, and R06.


Dataset Name	Frequency	No.of Recordings
Saleshourly.csv	Hourly	656928
Salesdaily.csv	Daily	27390
Salesweekly.csv	Weekly	2726
Salesmonthly.csv	Monthly	638

Dataset and Exploratory Analysis

- Seasonal decomposition helps in breaking down the time-series data into fundamental components
- Fundamental components: Trend, Seasonality, Residual

Implementation

- Programming Language: Python
- Desktop: Intel i7-11700F @ 2.5 GHz
- Operating Systems: Windows
- RAM: 16GB
- GPU: GeForce RTX 3060 12GB
- Federated Framework: Flower
- Federated Clients: 5
- Train/Test Split: 80%-20%

Configuration Parameters

Parameter	Value
Train Split	80%
Test Split	20%
Number of Communication Rounds	15
Local Training Iterations	100
Model Update Aggregation	FedAvg
Batch Size of Client	64
Fraction of clients selected for evaluation	1.0
Minimum number of clients need to be connected	1

Evaluation Metrics

- Centralized evaluation is performed with two metrics Loss and Mean Squared Error (MSE).
- Compared with Naïve Forecasting as a baseline for forecasting performance of implemented FortiRx 2.0.
- Naïve Model:

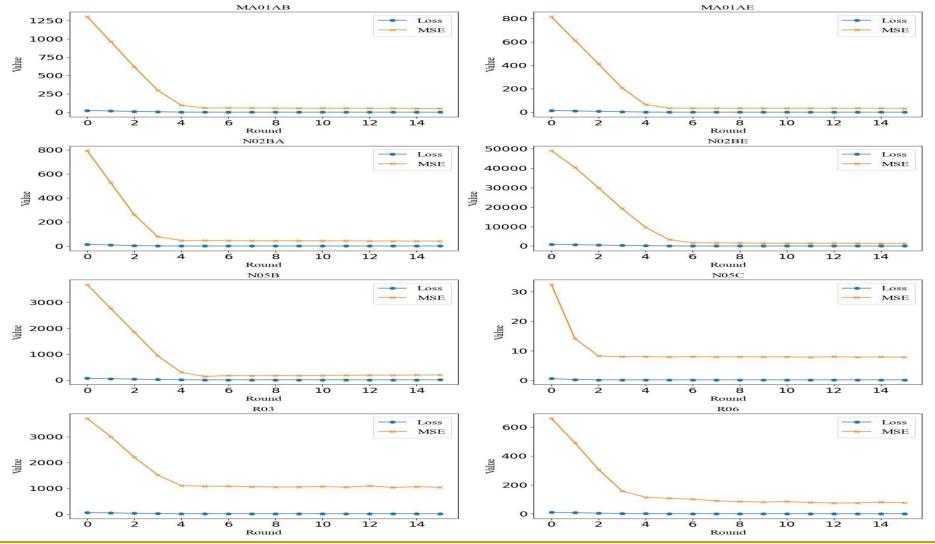
$$Forecast_{t+1} = Actual_t$$

Seasonal Naïve Forecast:

$$Forecast_{t+1} = Actual_{t+1-k}$$

Where k is the length of seasonal cycle

• Loss Function measures the difference between the predicted values from the actual values. Let the Loss L with predicted values \hat{y} and actual value y can be computed as follows:


$$L_i(\hat{y}, y) = (\hat{y}_i - yi)^2$$

• Mean Square Error (MSE) is another metric. Given n data points with predicted value \hat{y} and true value as y.

$$MSE = \frac{1}{n} \sum_{1}^{n} (\hat{y}_i - yi)^2$$

Evaluation Metrics of Implemented Model

Comparative Analysis with Baseline

Method	Metric	M01AB	M01AE	N02BA	N02BE	N05B	N05C	R03	R06
Naive	Loss	415.83	375.466	267.55	2042.151	629.4	162	1168.25	329.2
Naive	MSE	116.014	93.875	44.741	2753.643	255.485	14.92	948.56	82.228
Seasonal Naïve	Loss	449.31	511.552	301.25	3530.317	699.8	166	1218.167	596.57
Seasonal Naïve	MSE	137.699	197.862	58.105	8829.751	294.693	17.76	1068.78	250.794
Federated XGBoost	Loss	<mark>0.86</mark>	<mark>0.542</mark>	<mark>0.695</mark>	<mark>22.76</mark>	<mark>2.718</mark>	<mark>0.133</mark>	<mark>17.702</mark>	<mark>1.304</mark>
Federated XGBoost	MSE	<mark>50.073</mark>	<mark>52.774</mark>	<mark>41.403</mark>	<mark>1346.836</mark>	<mark>161.162</mark>	<mark>7.845</mark>	<mark>1044.049</mark>	<mark>76.623</mark>

Conclusions

- A Real-time reliable blockchain-based prescription information sharing system is proposed.
- Efficient usage of this real-time data to build accurate DFM is proposed in FortiRx 2.0.
- The Proposed Federated approach ensures security and privacy of patient information.
- Proposed methods are implemented and analyzed with different metrics Loss and MSE.
- Comparing with baseline models proves the effectiveness of the proposed FortiRx 2.0.

Future Work

- More advanced models like LSTM will be explored to improve the performance of the proposed system.
- Multivariate time series analysis with more exploratory attributes such as location, price of drug, weather conditions, etc. will be designed.

Thank You !!

41