agroString 2.0: A Distributed-Ledger based Smart Agriculture Framework to Ensure Transparency in Food Delivery

S. L. T. Vangipuram¹, S. P. Mohanty², and E. Kougianos³ University of North Texas, Denton, TX 76203, USA.^{1,2,3}

Email: It0264@unt.edu¹, saraju.mohanty@unt.edu², and elias.kougianos@unt.edu³.

Talk Outline

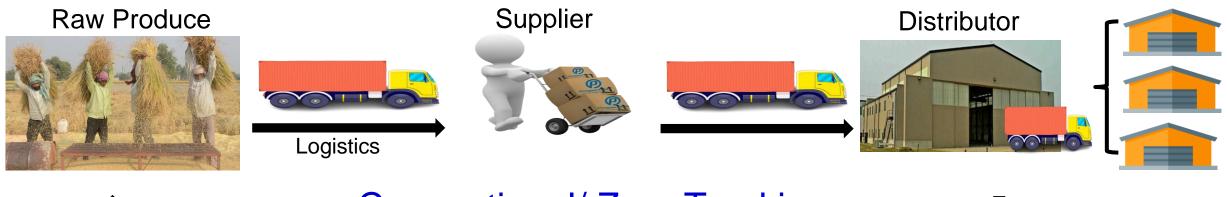
- Introduction.
- Reasons.
- Solutions.
- Motivation
- Related Works
- Why and what novelty in agroString 2.0.
- Architecture.

- ✤ Security in IOTA Tangle.
- Algorithm proposed.
- ✤ Implementation.
- Results.
- Conclusion with Future work.

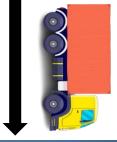
Introduction

Food Waste in Harvest

Unprepared Storage



Retail Wastage

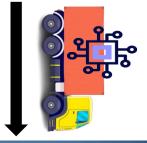

agroString 2.0

Reasons for Damaged Food Delivery

- Conventional/ Zero Tracking.
- Traditional Systems for Communication.
 - Traditional Systems for Data Storage.

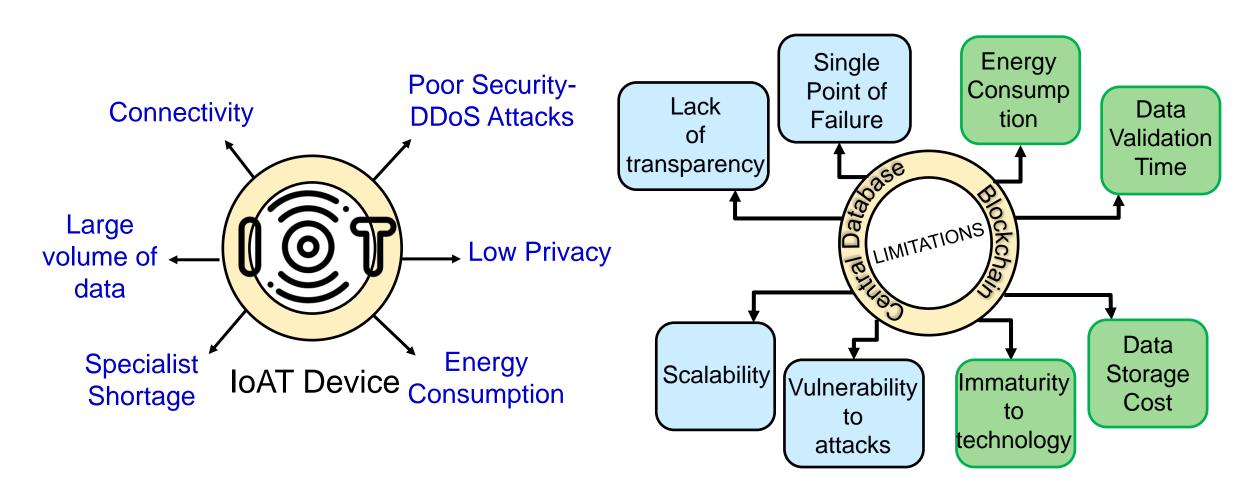
Consumers

Smart Electronic Systems Laboratory (SES)


agroString 2.0

Solutions with IoAT

Inserting Internet-of-Agro-Things (IoAT)/ Sensors or modern equipment's at each Logistic stage in agroString.



agroString 2.0

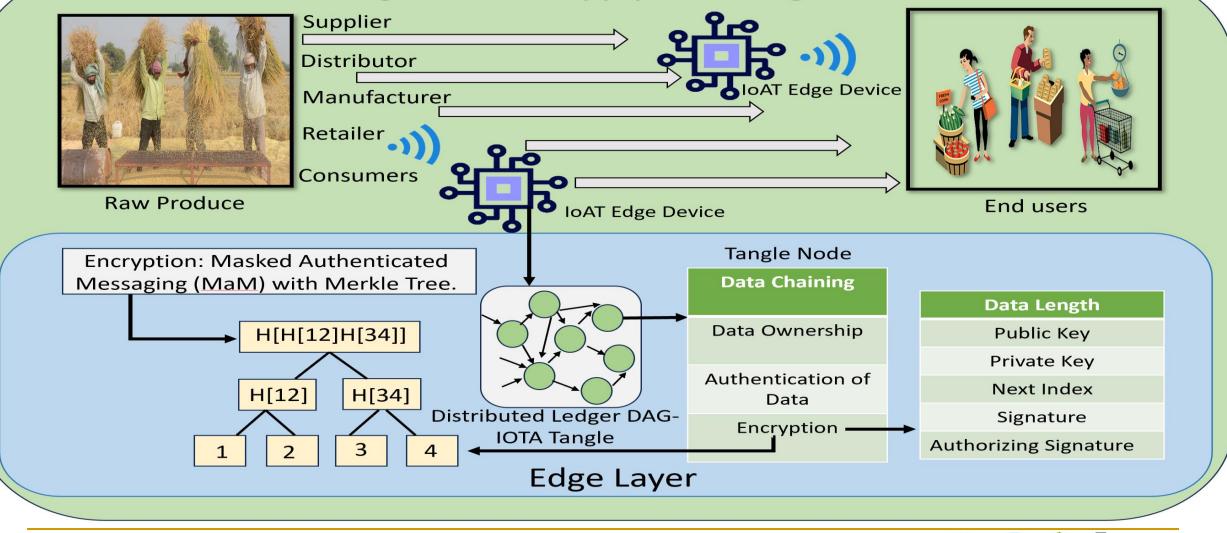
Motivation for agroString

Related Works

S.No	Paper	Storage Technology	Security Level	Computation	
1.	Traceability System - Zheng et al.[7]	Centralized	High Privacy Breach	Very High near Client	
2.	Food Supply Chain - Mohammed and Chopra.[8]	Decentralized- Blockchain	High	Very High near Client	
3.	Traceability System - Yang et al.[9]	Partially Centralized	High	High near Client	
4.	agroString 1.0 – Vangipuram et al. [10]	Decentralized Corda	High	High near Client	
5.	agroString 2.0 [Current Paper]	Distributed Ledger- IOTA Tangle	High	Very Low	

Why agroString 2.0?

- Distributed Ledger security for Internet-of-Agro-Things (IoAT) data in supply chain.
- Authenticity of data through Distributed Ledger System.
- Evading central storage in supply-chain.
- Proposing visibility and provenance design to end con- sumers in the food supply string.


How Novelty in agroString 2.0

- Proposed a ledger storage architecture with IoAT Edge device to avoid central and cloud limitations.
- Implementing the IOTA Tangle with Masked Authenticated Messaging (MaM) for data integrity and validity.
- Showing results with IoAT Edge device and Distributed Ledger-IOTA Tangle with MaM.
- Comparing the results with Public and private distributed ledger systems to the current System.

Novel Architecture

Agricultural supply chain Logistics

How Security in IOTA Tangle-STREAMS

Original Publisher

Data Streams

STREAMS

- All branches of data streams reference a common root and state of data belonging to publisher for authenticity.
- The Tangle data uses streams to always guarantee data integrity.
- Streams enable users to control the ownership of data and receive payments.

How Security in IOTA Tangle-MaM

Root Hash

Hash 12

Hash 1 📙 Hash 2 Hash 3

Hash 34

Hash 4

Μ

Tree's root as the Public Mode address of the transaction

Hash of the Tree's Private Mode root as the address of the transaction

Markle Tree

Tx1 Tx2 Tx3 Tx4

Authorization Key with Hash of the Tree's root as the address of the transaction

+Μ

Three Modes: Public, Private and **Restricted**.

MAM fulfills an important need for integrity and privacy.

MaM uses Merkle tree to hash the messages and give the root Message.

A MAM publisher can decide to split the channel at any point in time, which means future messages use a new Merkle tree whose root has not been revealed before

Proposed Algorithm- IoAT Sensor Data File in IOTA Tangle.

- 1: IoATinput --- IoATinput,IoATinput-len,IoATinput-Pr, IoATinput-Pu, Ivalue, NIvalue, Si, Siauth.
- 2: Srandom \rightarrow Sseed.
- 3: Sseed \rightarrow IOAT input-Pr,IOAT input-Pu.
- 4: $H(IOAT input-Pu) \longrightarrow I$.
- 5: Another key pair is generated for the next input data

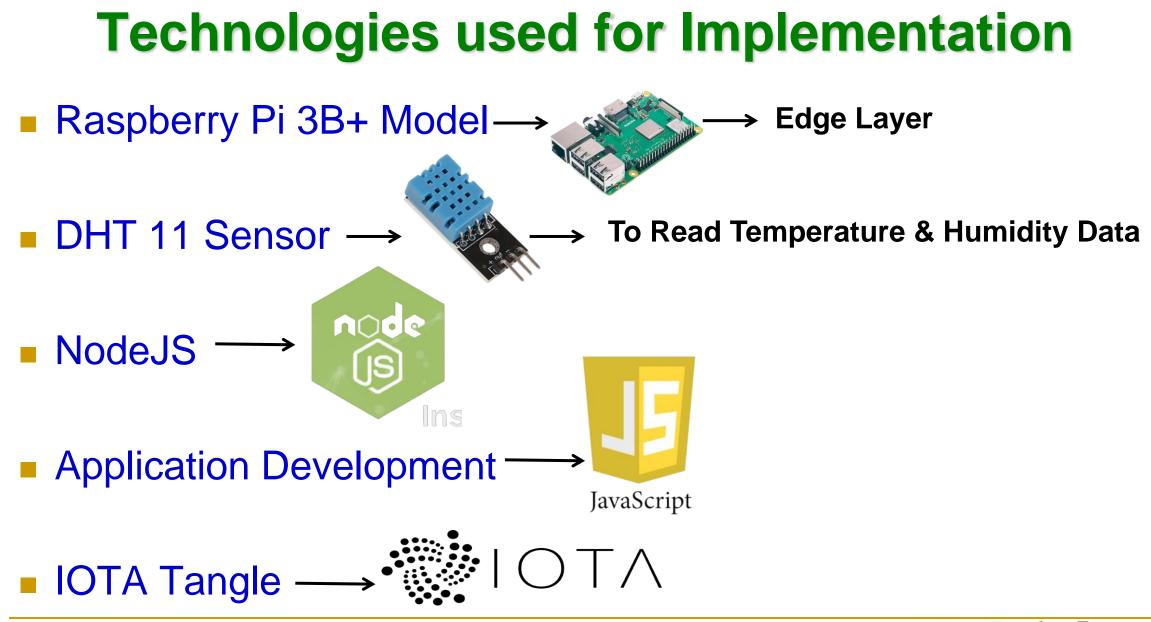
(IoATnextinput) from another random source (Srandom).

6: The key pairs from the next input data would be (IoATnextinput-Pr) and (IoATnextinput-Pu).

- 7: $H(IOAT nextinput-Pu) \rightarrow NIvalue$.
- 8: A digest D is calculated for signature.
- 9: D = H((IoAT input)+ (IoAT input-len)+ (IoAT input-Pu)+ (NIvalue)).

10: Si = signature(D + IoAT input-Pr)

Proposed Algorithms –loAT Sensor Data File in IOTA Tangle.


- 11: if H(IoATinput)==Si+IoATinput-Pu then
- 12: successful verification.

13: **else**

- 14: end the process.
- 15: Siauth = signature(IoATPrkey)
- 16: **if** Siauth == signature(IoATPukey) **then**
- 17: successful authentication.
- 18: else
- 19: end the process.
- 20: end if
- 21: end if

22: Repeat the steps from 1 through 21 in each logistic step of the supply chain

Implementation

agroString Functional Verification- Publish Data

- Publishes randomly generated numbers to the backend IOTA Tangle using MaM.
- A root hash is given as input in mamrecieve.js to retrieve the sensor data using MaM.

-iw-ii i þi þi - 55 bur i 15.20 syrtighöre
drwxr-xr-x 2 pi pi 4096 Jul 1 15:20 lib
-rw-rr 1 pi pi 1067 Jul 1 15:20 LICENSE.md
-rw-rr 1 pi pi 2916 Jul 1 15:20 mam_publish.js
-rw-rr 1 pi pi 1924 Jul 1 15:20 mam_receive.js
-rw-rr 1 pi pi 3189 Jul 1 15:20 mam_sensor.js
drwxr-xr-x 10 pi pi 4096 Jul 1 15:21 node_modules
-rw-rr 1 pi pi 349 Jul 1 15:20 package.json
-rw-rr 1 pi pi 2145 Jul 1 15:20 package-lock.json
-rw-rr 1 pi pi 1167 Jul 1 15:20 README.md
-rw-rr 1 pi pi 1286 Jul 1 15:20 sensor.js
pi@raspberrypi:~/dht11-raspi3 \$ node mam_publish.js
json= { data: 48, dateTime: ' 1/07/2023 13:22:34' }
Root: LMLNDCXBFONPEYFJNAQPDBNAL9SUEHZYPZPGYYFDQNHRGPZFJLKVMHDVBFQFVJDWFIDIEUFI
ROBIJQAO
Address: XPK9C9UEJLSMNWVWUFJIGLAODRZKCBEAVTKFAEYNWRUS9YTOJKOFLLQFJXXNSPVBUVPHZ
9JXIWJWGQP9
dateTime: 1/07/2023 13:22:34, data: 48, root: LMLNDCXBF0NPEYFJNAQPDBNAL9SUEHZY
ZPGYYFDQNHRGPZFJLKVMHDVBFQFVJDWFIDIEUFIGROBIJQAO

Publishing Data

agroString Functional Verification- Retrieve Data

- Extract the Stored Data from the IOTA Tangle using MaM and displays the Data.
- The node modules of IOTA and http client packages are called to run the code

C & Secure https://www.mobilefish.com/services/cryptocurrency/mam.html	역 수 🖸 🖬 1				
IOTA Masked Authenticated Messaging (v1.1.1)					
Select option:					
Data receiver					
Select testnet / mainnet endpoint or enter custom endpoint: Testnet - https://nodes.testnet.iota.org:443 (default) \$ Channel mode: Restricted \$ Display message logging in console (Chrome browser): no \$					
Encryption key (side_key, only ASCII characters allowed): Clear					
mysecret					
Root: Clear LMLNDCXBFONFEYFJNAQPDBNAL9SUEHSYFSFGYYFDQNHRGFSFJLKVMHDVBFQFVJDWFIDIEUFIGROBIJQAO					

User Interface of agroString 2.0

drwxr-xr-x 22 pi pi 4096 Jul 1 15:20
drwxr-xr-x 8 pi pi 4096 Jul 1 15:20 .git
-rw-rr 1 pi pi 35 Jul 1 15:20 .gitignore
drwxr-xr-x 2 pi pi 4096 Jul 1 15:20 lib
-rw-rr 1 pi pi 1067 Jul 1 15:20 LICENSE.md
-rw-rr 1 pi pi 2916 Jul 1 15:20 mam_publish.js
-rw-rr 1 pi pi 1924 Jul 1 15:20 mam_receive.js
-rw-rr 1 pi pi 3189 Jul 1 15:20 mam_sensor.js
drwxr-xr-x 10 pi pi 4096 Jul 1 15:21 node_modules
-rw-rr 1 pi pi 349 Jul 1 15:20 package.json
-rw-rr 1 pi pi 2145 Jul 1 15:20 package-lock.json
-rw-rr 1 pi pi 1167 Jul 1 15:20 README.md
-rw-rr 1 pi pi 1286 Jul 1 15:20 sensor.js
<pre>pi@raspberrypi:~/dht11-raspi3 \$ node mam_receive.js LMLNDCXBFONPEYFJNAQPDBNAL9S</pre>
EHZYPZPGYYFDQNHRGPZFJLKVMHDVBFQFVJDWFIDIEUFIGROBIJQAO
dateTime: 1/07/2023 13:22:34, data: 48
dateTime: 1/07/2023 13:23:13, data: 20
dateTime: 1/07/2023 13:23:53, data: 63
dateTime: 1/07/2023 13:24:29, data: 60

Retrieving Data

Limitations & Challenges

- If the data size increases, there may be multiple issues in loading times and latency.
- The edge device used in the current paper is Raspberry Pi; leaving the power 'ON' all the time leads to the rising temperature of the board.
- The main encounter was the need for knowledge in developing the current Tangle application and the lack of support for DApps with the Tangle. The Tangle network has no such support for these decentralized applications.

Performance Results of CroPAiD

Comparing Previous works

Performance Evaluation

Paper	Data Integrit	Authenticatio n	Double- Spendin	Energy Consumpt	Cost	Paper	Storage Technology	Edge	Time Taken	Latency
	У		g	ion		Zheng et al. [7]	Centralized	No	2.23s [15]	Very High
Zheng et al. [7]	No	Less	High	High	High	Mohammed and Chopra. [8]	Decentralized	No	8.72s [4]	Very High
Mohammed and	Yes	2-factor Authentication	Less	Very High	Very High	Yang et al. [9]	Partially Centralized	No	10.2s [15], [4]	High
Chopra. [8]						Vangipuram et al. [10] (agroString)	Decentralized	Yes-loAT Data	1 ms [10]	Less
Yang et al. [9]	Yes	Less	High	High	Less	[10] (agi ooti ilig)		Duiu		
Vangipura m et al. [10]	Yes	High	No	High	Less	agroString 2.0 [Current-Paper]	Distributed Ledger-Tangle	Yes-loAT Data	Zero	Less
(agroString						Perform	nance Calculated fo	r Data Size of	270 Kh File	
agroString 2.0 [Current- Paper]	Yes	High	Νο	Very Less	Zero	T CHOIN			210 10 110	

Conclusion & Future Direction

- We successfully design an application with the IoAT edge device raspberry pi to sense the data from the DHT1.
- Uses Masked Authenticated Messaging.
- The application we design evades the limitations of the central and blockchain storage platforms and takes in real-time data from the sensor inside the edge layer.
- The system increases the security of sensor data and provides integrity by providing quality food data to end consumers.
- In the future, the current system can be elaborated to other domains for the secure flow of sensitive information.

